CN112535458A - 基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法 - Google Patents
基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法 Download PDFInfo
- Publication number
- CN112535458A CN112535458A CN202011287015.2A CN202011287015A CN112535458A CN 112535458 A CN112535458 A CN 112535458A CN 202011287015 A CN202011287015 A CN 202011287015A CN 112535458 A CN112535458 A CN 112535458A
- Authority
- CN
- China
- Prior art keywords
- upper limb
- lymphatic
- flow ratio
- indocyanine green
- patient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000001364 upper extremity Anatomy 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 34
- MOFVSTNWEDAEEK-UHFFFAOYSA-M indocyanine green Chemical compound [Na+].[O-]S(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS([O-])(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C MOFVSTNWEDAEEK-UHFFFAOYSA-M 0.000 title claims abstract description 27
- 229960004657 indocyanine green Drugs 0.000 title claims abstract description 27
- 230000003692 lymphatic flow Effects 0.000 title claims abstract description 26
- 210000002048 axillary vein Anatomy 0.000 claims abstract description 40
- 210000002751 lymph Anatomy 0.000 claims abstract description 37
- 230000001926 lymphatic effect Effects 0.000 claims abstract description 32
- 206010030113 Oedema Diseases 0.000 claims abstract description 30
- 210000001165 lymph node Anatomy 0.000 claims abstract description 27
- 230000002980 postoperative effect Effects 0.000 claims abstract description 26
- 206010006187 Breast cancer Diseases 0.000 claims abstract description 19
- 208000026310 Breast neoplasm Diseases 0.000 claims abstract description 18
- 238000004140 cleaning Methods 0.000 claims abstract description 16
- 238000010992 reflux Methods 0.000 claims abstract description 15
- 239000002872 contrast media Substances 0.000 claims abstract description 14
- 238000002347 injection Methods 0.000 claims abstract description 5
- 239000007924 injection Substances 0.000 claims abstract description 5
- 238000004458 analytical method Methods 0.000 claims abstract description 4
- 238000003825 pressing Methods 0.000 claims abstract description 4
- 238000002583 angiography Methods 0.000 claims abstract 2
- 230000006870 function Effects 0.000 claims description 13
- 206010025282 Lymphoedema Diseases 0.000 claims description 12
- 238000005516 engineering process Methods 0.000 claims description 12
- 208000002502 lymphedema Diseases 0.000 claims description 12
- 238000013135 deep learning Methods 0.000 claims description 8
- 238000003709 image segmentation Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- 230000011218 segmentation Effects 0.000 claims description 6
- 208000019425 cirrhosis of liver Diseases 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 206010070863 Toxicity to various agents Diseases 0.000 claims description 3
- 238000013527 convolutional neural network Methods 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 230000006378 damage Effects 0.000 claims description 3
- 238000004043 dyeing Methods 0.000 claims description 3
- 208000006454 hepatitis Diseases 0.000 claims description 3
- 231100000283 hepatitis Toxicity 0.000 claims description 3
- 208000019423 liver disease Diseases 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 210000004185 liver Anatomy 0.000 claims description 2
- 238000012800 visualization Methods 0.000 claims 5
- 210000003141 lower extremity Anatomy 0.000 abstract description 8
- 238000009472 formulation Methods 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 5
- 230000001681 protective effect Effects 0.000 abstract description 3
- 210000001099 axilla Anatomy 0.000 abstract description 2
- 210000004324 lymphatic system Anatomy 0.000 description 9
- 206010028980 Neoplasm Diseases 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 210000005075 mammary gland Anatomy 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 239000001045 blue dye Substances 0.000 description 2
- 238000002224 dissection Methods 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000011272 standard treatment Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- 208000036487 Arthropathies Diseases 0.000 description 1
- 206010019668 Hepatic fibrosis Diseases 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 206010030124 Oedema peripheral Diseases 0.000 description 1
- SJEYSFABYSGQBG-UHFFFAOYSA-M Patent blue Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 SJEYSFABYSGQBG-UHFFFAOYSA-M 0.000 description 1
- 208000035965 Postoperative Complications Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 210000005005 sentinel lymph node Anatomy 0.000 description 1
- 210000000323 shoulder joint Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/41—Detecting, measuring or recording for evaluating the immune or lymphatic systems
- A61B5/414—Evaluating particular organs or parts of the immune or lymphatic systems
- A61B5/418—Evaluating particular organs or parts of the immune or lymphatic systems lymph vessels, ducts or nodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20192—Edge enhancement; Edge preservation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30068—Mammography; Breast
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Theoretical Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Quality & Reliability (AREA)
- Artificial Intelligence (AREA)
- Immunology (AREA)
- Vascular Medicine (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法,具体包括以下步骤:S1、术前注射造影剂吲哚菁绿;S2、挤压造影剂;S3、获取上肢淋巴回流造影视频;S4、计算腋静脉上下淋巴流量比值;S5、依据淋巴流量比预测患者术后水肿的发生,本发明涉及医学测定技术领域。该基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法,通过利用乳腺癌患者腋静脉上下上肢淋巴流量比与患者术后水肿发生之间的关系,通过术前分析计算患者腋静脉上下上肢淋巴流量比预测术后水肿发生的风险,指导手术方案的制定,当腋静脉上下淋巴回流比大于30%,建议患者进行标准腋窝淋巴结清扫术,否则进行上肢淋巴系统功能保护性腋窝淋巴结清扫术。
Description
技术领域
本发明涉及医学测定技术领域,具体为基于吲哚菁绿显影的方式测定上 肢淋巴流量比值的方法。
背景技术
乳腺癌是我国女性发病率第一位的恶性肿瘤,每年新增病例30.4万。腋 窝淋巴结清扫术(axillary lymph node dissection,ALND)是淋巴结阳性乳 腺癌患者的腋窝标准治疗方式,用于实现腋窝的局部控制、淋巴结分期、辅 助治疗方案的制定以及评估预后,但其术后上肢淋巴水肿、肩关节功能障碍 等并发症严重影响了患者的生活质量,随着乳腺癌治疗综合管理的完善,早 期患者规范治疗后五年生存率可达98%。人们在根治肿瘤的同时,也在追求术 后患侧的功能保护。目前对于术后上肢水肿尚无有效的治疗措施,术后水肿 一旦发生,便难以逆转,给患者生活带来痛苦和不便。
乳腺癌术后上肢淋巴水肿可能由ALND手术或者腋窝放疗等综合治疗使上 肢淋巴循环损伤增加或代偿减弱,打破了上肢淋巴循环的平衡状态引起,有 研究提示同侧上肢和乳腺的淋巴回流在腋窝中可能相互独立不交通,若ALND 术中只清扫引流乳腺的淋巴而保护引流上肢的淋巴,则有可能降低甚至避免 上肢淋巴水肿的发生,因此,Thompson等于2007年提出了腋窝逆行淋巴结示 踪(axillaryreversemapping,ARM)的概念,其实质为乳腺癌手术中使用 示踪剂识别引流上肢的淋巴结及淋巴管并在术中予以保护,进而降低术后上 肢淋巴水肿的发生率。ARM技术中使用的示踪剂包括蓝染料(亚甲蓝、专利蓝、 纳米炭),放射性核素、荧光染料,对ARM淋巴结识别率由大到小的顺序为放 射性同位素、荧光染料、蓝染料,已报道的示踪剂的注射部位有手指间蹼、 前臂或上臂内侧肌间沟。ARM技术的有效性和肿瘤安全性还未被完全证实,因 此,本发明在前期的研究工作中提出了DEPART技术——通过对“上肢前哨淋 巴结”进行分级显影提高上肢淋巴结的识别数目,通过“部分(1/4)淋巴结术 中冰冻切片”找出可能存在转移的上肢淋巴结,保护已识别的未转移的上肢 淋巴结及淋巴管。
乳腺癌ALND术后上肢淋巴水肿的发生率为13-40%,对未发生术后上肢淋 巴水肿的患者,ALND术中可不保护上肢淋巴系统,缩短手术时间,避免出现 保护上肢淋巴系统后的肿瘤安全性问题。ALND的清扫范围上界为腋静脉,上 肢淋巴系统可经过腋静脉上方及腋静脉下方的淋巴网络汇入锁骨下干,如图1 所示,腋静脉上下的上肢淋巴回流有个体差异性,若ALND术中除去腋静脉下 方上肢淋巴后,乳腺癌患者位于腋静脉上方的上肢淋巴回流占比不足以代偿, 则ALND术后发生上肢淋巴水肿的可能性增加。在前期的研究工作中通过计算 乳腺癌患者腋静脉上下上肢淋巴回流比值,联合患者术后1年淋巴水肿发生 与否发现:当腋静脉上方上肢淋巴回流比值>30%时,标准腋窝淋巴结清扫术 后不会发生上肢淋巴水肿,此时不需保护上肢淋巴系统,可避免保护上肢淋 巴系统引起的肿瘤安全性问题;当比值≤30%时,发生水肿的可能性大,应该 采用DEPART技术避免发生术后上肢淋巴水肿。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了基于吲哚菁绿显影的方式测定上肢 淋巴流量比值的方法,通过荧光染料吲哚菁绿联合红外荧光探测仪显像判断 腋静脉上下上肢淋巴回流情况,从而预测乳腺癌腋窝淋巴结清扫术后发生水 肿的风险,指导乳腺奶爱术中手术方案的制定,对于上肢淋巴回流以腋静脉 上方淋巴结为主的人群,术后上肢淋巴回流功能可代偿,即采用传统腋窝淋 巴结清扫手术;对于以腋静脉下方淋巴回流为主的人群,术后上肢淋巴回流 功能不可代偿,选择上肢淋巴系统功能保护性腋窝淋巴结清扫术。通过个体 化的精准手术方式,达到保证肿瘤安全性的情况下降低术后水肿发生的目的, 极大提高患者的生活质量。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:基于吲哚菁绿显 影的方式测定上肢淋巴流量比值的方法,具体包括以下步骤:
S1、术前在乳腺癌患者上肢的腋静脉处注射造影剂吲哚菁绿;
S2、挤压造影剂使其流向患者腋静脉周围淋巴液中;
S3、使用红外荧光定位相机扫描患者上肢注射处,获取上肢淋巴回流造 影视频;
S4、采用图像处理技术计算腋静脉上下淋巴流量比值(图3);
S5、依据淋巴流量比预测患者术后水肿的发生,并制定相应手术方案。
优选的,所述步骤S1中造影剂吲哚菁绿应用于检测肝硬化、肝纤维化、 韧性肝炎、职业和药物中毒性肝病的指标,了解肝脏的损害程度及其储备功 能。
优选的,所述步骤S3中使用的红外荧光定位相机为日本滨松企业产品, 能够捕捉在淋巴流中流动的造影剂吲哚菁绿,通过对造影视频的分析计算出 上肢腋静脉上下淋巴回流比。
优选的,所述步骤S4中采用的图像处理技术为深度学习中的图像分割技 术,分割图像中腋静脉上下淋巴回流部分。
优选的,所述深度学习图像分割技术具体为:
a1、首先用染色校正预处理方式提高原始图像样本的色彩对比度;
a2、然后利用卷积神经网络得到初步的分割结果;
a3、最后通过边缘聚类算法以提升分割结果的连续性和完整性,通过利 用深度学习目标检测技术做细胞区域目标检测,也取得了一定的实现效果, 更加直观显示细胞图像中有效目标区域,帮助广大医学工作者识别判定,为 病理学家提供一些客观的数据参考。
优选的,所述步骤S5中通过大量病人的造影视频的分析及术后上肢淋巴 水肿发生情况得到:当淋巴回流比大于30%时无水肿发生,小于30%则伴随水 肿发生,因此,依据流量比能够确定患者腋窝淋巴结清扫的手术方案,从而 避免术后水肿的发生。
(三)有益效果
本发明提供了基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法。 与现有技术相比具备以下有益效果:该基于吲哚菁绿显影的方式测定上肢淋 巴流量比值的方法,通过利用乳腺癌患者腋静脉上下上肢淋巴流量比与患者 术后水肿发生之间的关系,通过术前分析计算患者腋静脉上下上肢淋巴流量 比预测术后水肿发生的风险,进而指导个性化手术方案的制定,具体为,当 腋静脉上下淋巴回流比大于30%,建议患者进行标准腋窝淋巴结清扫术,否则 进行上肢淋巴系统功能保护性腋窝淋巴结清扫术,对于上肢淋巴回流以腋静 脉上方淋巴结为主的人群,术后上肢淋巴回流功能可代偿,即采用传统腋窝 淋巴结清扫手术;对于以腋静脉下方淋巴回流为主的人群,术后上肢淋巴回 流功能不可代偿,选择上肢淋巴系统功能保护性腋窝淋巴结清扫术。通过个 体化的精准手术方式,达到保证肿瘤安全性的情况下降低术后水肿发生的目 的,极大提高患者的生活质量。
附图说明
图1为本发明的流程图;
图2为本发明人体右侧腋窝示意图;
图3为本发明基于上肢淋巴流量比值的乳腺癌腋窝淋巴结清扫术手术方 式选择逻辑框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而 不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-3,本发明实施例提供一种技术方案:基于吲哚菁绿显影的方 式测定上肢淋巴流量比值的方法,具体包括以下步骤:
S1、术前在乳腺癌患者上肢的腋静脉处注射造影剂吲哚菁绿;
S2、挤压造影剂使其流向患者腋静脉周围淋巴液中;
S3、使用红外荧光定位相机扫描患者上肢注射处,获取上肢淋巴回流造 影视频;
S4、采用图像处理技术计算腋静脉上下淋巴流量比值;
S5、依据淋巴流量比预测患者术后水肿的发生,并制定相应手术方案, 由图3所示。
本发明实施例,步骤S1中造影剂吲哚菁绿应用于检测肝硬化、肝纤维化、 韧性肝炎、职业和药物中毒性肝病的指标,了解肝脏的损害程度及其储备功 能。
本发明实施例中,步骤S3中使用的红外荧光定位相机为日本滨松企业产 品,能够捕捉在淋巴流中流动的造影剂吲哚菁绿,通过对造影视频的分析计 算出上肢腋静脉上下淋巴回流比。
本发明实施例,步骤S4中采用的图像处理技术为深度学习中的图像分割 技术,分割图像中腋静脉上下淋巴回流部分。
本发明实施例中,深度学习图像分割技术具体为:
a1、首先用染色校正预处理方式提高原始图像样本的色彩对比度;
a2、然后利用卷积神经网络得到初步的分割结果;
a3、最后通过边缘聚类算法以提升分割结果的连续性和完整性,通过利 用深度学习目标检测技术做细胞区域目标检测,也取得了一定的实现效果, 更加直观显示细胞图像中有效目标区域,帮助广大医学工作者识别判定,为 病理学家提供一些客观的数据参考。
本发明实施例,步骤S5中通过大量病人的造影视频的分析及术后上肢淋 巴水肿发生情况得到:当淋巴回流比大于30%时无水肿发生,小于30%则伴随 水肿发生,因此,依据流量比能够确定患者腋窝淋巴结清扫的手术方案,从 而避免术后水肿的发生。
对比案例
应用基于上肢淋巴流量比值的乳腺癌术后水肿风险预测方法和未应用基 于上肢淋巴流量比值的乳腺癌术后水肿风险预测方法的术后水肿发生率实验 结果如表1所示。
表1实验结果数据表
综上,本发明通过利用乳腺癌患者腋静脉上下上肢淋巴流量比与患者术 后水肿发生之间的关系,通过术前分析计算患者腋静脉上下上肢淋巴流量比 预测术后水肿发生的风险,进而指导个性化手术方案的制定,具体为,当腋 静脉上下淋巴回流比大于30%,建议患者进行标准腋窝淋巴结清扫术,否则进 行上肢淋巴系统功能保护性腋窝淋巴结清扫术,对于上肢淋巴回流以腋静脉 上方淋巴结为主的人群,术后上肢淋巴回流功能可代偿,即采用传统腋窝淋 巴结清扫手术;对于以腋静脉下方淋巴回流为主的人群,术后上肢淋巴回流 功能不可代偿,选择上肢淋巴系统功能保护性腋窝淋巴结清扫术。通过个体 化的精准手术方式,达到保证肿瘤安全性的情况下降低术后水肿发生的目的, 极大提高患者的生活质量。
同时本说明书中未作详细描述的内容均属于本领域技术人员公知的现有 技术。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来 将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示 这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、 “包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系 列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明 确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有 的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而 言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行 多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限 定。
Claims (6)
1.基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法,其特征在于:具体包括以下步骤:
S1、术前在乳腺癌患者上肢的腋静脉处注射造影剂吲哚菁绿;
S2、挤压造影剂使其流向患者腋静脉周围淋巴液中;
S3、使用红外荧光定位相机扫描患者上肢注射处,获取上肢淋巴回流造影视频;
S4、采用图像处理技术计算腋静脉上下淋巴流量比值;
S5、依据淋巴流量比预测患者术后水肿的发生,并制定相应手术方案。
2.根据权利要求1所述的基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法,其特征在于:所述步骤S1中造影剂吲哚菁绿应用于检测肝硬化、肝纤维化、韧性肝炎和药物中毒性肝病的指标,从而了解肝脏的损害程度及其储备功能。
3.根据权利要求1所述的基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法,其特征在于:所述步骤S3中使用的红外荧光定位相机为日本滨松企业产品,能够捕捉在淋巴流中流动的造影剂吲哚菁绿,通过对造影视频的分析计算出上肢腋静脉上下淋巴回流比。
4.根据权利要求1所述的基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法,其特征在于:所述步骤S4中采用的图像处理技术为深度学习中的图像分割技术,分割图像中腋静脉上下淋巴回流部分。
5.根据权利要求4所述的基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法,其特征在于:所述深度学习图像分割技术具体为:
a1、首先用染色校正预处理方式提高原始图像样本的色彩对比度;
a2、然后利用卷积神经网络得到初步的分割结果;
a3、最后通过边缘聚类算法以提升分割结果的连续性和完整性。
6.根据权利要求1所述的基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法,其特征在于:所述步骤S5中通过大量病人的造影视频的分析及术后上肢淋巴水肿发生情况得到:当淋巴回流比大于30%时无水肿发生,小于30%则伴随水肿发生,因此,依据流量比能够确定患者腋窝淋巴结清扫的手术方案,从而避免术后水肿的发生。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011287015.2A CN112535458A (zh) | 2020-11-17 | 2020-11-17 | 基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011287015.2A CN112535458A (zh) | 2020-11-17 | 2020-11-17 | 基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112535458A true CN112535458A (zh) | 2021-03-23 |
Family
ID=75014134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011287015.2A Pending CN112535458A (zh) | 2020-11-17 | 2020-11-17 | 基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112535458A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113469565A (zh) * | 2021-07-21 | 2021-10-01 | 中国人民解放军国防科技大学 | 能力不可代偿机制下多功能装备方案选择方法及相关设备 |
CN116453669A (zh) * | 2023-06-14 | 2023-07-18 | 武汉大学中南医院 | 一种基于大数据的护理预测方法及装置 |
-
2020
- 2020-11-17 CN CN202011287015.2A patent/CN112535458A/zh active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113469565A (zh) * | 2021-07-21 | 2021-10-01 | 中国人民解放军国防科技大学 | 能力不可代偿机制下多功能装备方案选择方法及相关设备 |
CN113469565B (zh) * | 2021-07-21 | 2023-08-22 | 中国人民解放军国防科技大学 | 能力不可代偿机制下多功能装备方案选择方法及相关设备 |
CN116453669A (zh) * | 2023-06-14 | 2023-07-18 | 武汉大学中南医院 | 一种基于大数据的护理预测方法及装置 |
CN116453669B (zh) * | 2023-06-14 | 2023-08-25 | 武汉大学中南医院 | 一种基于大数据的护理预测方法及装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images | |
Beckers et al. | CT texture analysis in colorectal liver metastases and the surrounding liver parenchyma and its potential as an imaging biomarker of disease aggressiveness, response and survival | |
CN112535458A (zh) | 基于吲哚菁绿显影的方式测定上肢淋巴流量比值的方法 | |
Choi et al. | Liver Imaging Reporting and Data System v2014 with gadoxetate disodium–enhanced magnetic resonance imaging: validation of LI-RADS category 4 and 5 criteria | |
Qu et al. | Preoperative CT findings of thymoma are correlated with postoperative Masaoka clinical stage | |
Kim et al. | The diagnostic performance of MRI for detection of extramural venous invasion in colorectal cancer: a systematic review and meta-analysis of the literature | |
Fan et al. | Radiomics of tumor heterogeneity in longitudinal dynamic contrast-enhanced magnetic resonance imaging for predicting response to neoadjuvant chemotherapy in breast cancer | |
Van Wettere et al. | Low specificity of washout to diagnose hepatocellular carcinoma in nodules showing arterial hyperenhancement in patients with Budd-Chiari syndrome | |
Baltzer et al. | Lesion type and reader experience affect the diagnostic accuracy of breast MRI: a multiple reader ROC study | |
Mao et al. | Radiomics nomogram of DCE-MRI for the prediction of axillary lymph node metastasis in breast cancer | |
Jiang et al. | Assessing EGFR gene mutation status in non-small cell lung cancer with imaging features from PET/CT | |
Ren et al. | An unsupervised semi-automated pulmonary nodule segmentation method based on enhanced region growing | |
Ba et al. | Diagnostic assessment of deep learning for melanocytic lesions using whole-slide pathological images | |
Becker et al. | Increased interreader agreement in diagnosis of hepatocellular carcinoma using an adapted LI-RADS algorithm | |
Mazzei et al. | Gastric cancer maximum tumour diameter reduction rate at CT examination as a radiological index for predicting histopathological regression after neoadjuvant treatment: a multicentre GIRCG study | |
Szabo et al. | Neural network approach to the segmentation and classification of dynamic magnetic resonance images of the breast: Comparison with empiric and quantitative kinetic parameters1 | |
Cantisani et al. | Recall strategies for patients found to have a nodule in cirrhosis: is there still a role for CEUS? | |
Firmansyah et al. | Detection melanoma cancer using ABCD rule based on mobile device | |
Wu et al. | Preoperative Diagnosis of Dual‐Phenotype Hepatocellular Carcinoma Using Enhanced MRI Radiomics Models | |
Wang et al. | A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet++ | |
Jiang et al. | Differentiating between cardiac amyloidosis and hypertrophic cardiomyopathy on non-contrast cine-magnetic resonance images using machine learning-based radiomics | |
Zhao et al. | Prediction of early recurrence of hepatocellular carcinoma after liver transplantation based on computed tomography radiomics nomogram | |
Maino et al. | Radiomics and liver: Where we are and where we are headed? | |
Baleato-González et al. | Current and Advanced Applications of Gadoxetic Acid–enhanced MRI in Hepatobiliary Disorders | |
Tang et al. | Value of MRI morphologic features with pT1‐2 rectal cancer in determining lymph node metastasis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Yuan Qianqian Inventor after: Wu Gaosong Inventor after: Hou Jinxuan Inventor after: Jiao Chong Inventor before: Yuan Qianqian Inventor before: Gao Song Inventor before: Hou Jinxuan Inventor before: Jiao Chong |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210323 |