CN112528065B - 一种流形相似度保持自编码器的医学超声图像检索方法 - Google Patents
一种流形相似度保持自编码器的医学超声图像检索方法 Download PDFInfo
- Publication number
- CN112528065B CN112528065B CN202011496971.1A CN202011496971A CN112528065B CN 112528065 B CN112528065 B CN 112528065B CN 202011496971 A CN202011496971 A CN 202011496971A CN 112528065 B CN112528065 B CN 112528065B
- Authority
- CN
- China
- Prior art keywords
- encoder
- hash code
- decoder
- similarity
- manifold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000013507 mapping Methods 0.000 claims abstract description 12
- 239000011159 matrix material Substances 0.000 claims description 32
- 238000002604 ultrasonography Methods 0.000 claims description 15
- 238000005457 optimization Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 13
- 238000012549 training Methods 0.000 claims description 13
- 238000000354 decomposition reaction Methods 0.000 claims description 7
- 238000012417 linear regression Methods 0.000 claims description 6
- 238000004321 preservation Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 3
- 239000008186 active pharmaceutical agent Substances 0.000 claims 1
- 238000003745 diagnosis Methods 0.000 abstract 1
- 238000012544 monitoring process Methods 0.000 abstract 1
- 230000006870 function Effects 0.000 description 24
- 238000012423 maintenance Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 241000220010 Rhode Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/583—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/55—Clustering; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Library & Information Science (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011496971.1A CN112528065B (zh) | 2020-12-17 | 2020-12-17 | 一种流形相似度保持自编码器的医学超声图像检索方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011496971.1A CN112528065B (zh) | 2020-12-17 | 2020-12-17 | 一种流形相似度保持自编码器的医学超声图像检索方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112528065A CN112528065A (zh) | 2021-03-19 |
CN112528065B true CN112528065B (zh) | 2022-12-27 |
Family
ID=75001054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011496971.1A Active CN112528065B (zh) | 2020-12-17 | 2020-12-17 | 一种流形相似度保持自编码器的医学超声图像检索方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112528065B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113449849B (zh) * | 2021-06-29 | 2022-05-27 | 桂林电子科技大学 | 基于自编码器的学习型文本哈希方法 |
CN114022701B (zh) * | 2021-10-21 | 2022-06-24 | 南京审计大学 | 基于近邻监督离散判别哈希的图像分类方法 |
CN116610927B (zh) * | 2023-07-21 | 2023-10-13 | 傲拓科技股份有限公司 | 基于fpga的风机齿轮箱轴承故障诊断方法及诊断模块 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104820696A (zh) * | 2015-04-29 | 2015-08-05 | 山东大学 | 一种基于多标签最小二乘哈希算法的大规模图像检索方法 |
CN105069173A (zh) * | 2015-09-10 | 2015-11-18 | 天津中科智能识别产业技术研究院有限公司 | 基于有监督的拓扑保持哈希的快速图像检索方法 |
CN106126585A (zh) * | 2016-06-20 | 2016-11-16 | 北京航空航天大学 | 基于质量分级与感知哈希特征组合的无人机图像检索方法 |
CN106780639A (zh) * | 2017-01-20 | 2017-05-31 | 中国海洋大学 | 基于显著性特征稀疏嵌入和极限学习机的哈希编码方法 |
CN108182256A (zh) * | 2017-12-31 | 2018-06-19 | 厦门大学 | 一种基于离散局部线性嵌入哈希的高效图像检索方法 |
CN109166615A (zh) * | 2018-07-11 | 2019-01-08 | 重庆邮电大学 | 一种随机森林哈希的医学ct图像存储与检索方法 |
CN109783682A (zh) * | 2019-01-19 | 2019-05-21 | 北京工业大学 | 一种基于点对相似度的深度非松弛哈希图像检索方法 |
CN110069644A (zh) * | 2019-04-24 | 2019-07-30 | 南京邮电大学 | 一种基于深度学习的压缩域大规模图像检索方法 |
CN110083734A (zh) * | 2019-04-15 | 2019-08-02 | 中南大学 | 基于自编码网络和鲁棒核哈希的半监督图像检索方法 |
CN110516095A (zh) * | 2019-08-12 | 2019-11-29 | 山东师范大学 | 基于语义迁移的弱监督深度哈希社交图像检索方法和系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150169682A1 (en) * | 2013-10-18 | 2015-06-18 | Google Inc. | Hash Learning |
CN104298791A (zh) * | 2014-11-19 | 2015-01-21 | 中国石油大学(华东) | 一种基于集成哈希编码的快速图像检索方法 |
US20170293838A1 (en) * | 2016-04-06 | 2017-10-12 | Nec Laboratories America, Inc. | Deep high-order exemplar learning for hashing and fast information retrieval |
CN106777038B (zh) * | 2016-12-09 | 2019-06-14 | 厦门大学 | 一种基于序列保留哈希的超低复杂度图像检索方法 |
-
2020
- 2020-12-17 CN CN202011496971.1A patent/CN112528065B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104820696A (zh) * | 2015-04-29 | 2015-08-05 | 山东大学 | 一种基于多标签最小二乘哈希算法的大规模图像检索方法 |
CN105069173A (zh) * | 2015-09-10 | 2015-11-18 | 天津中科智能识别产业技术研究院有限公司 | 基于有监督的拓扑保持哈希的快速图像检索方法 |
CN106126585A (zh) * | 2016-06-20 | 2016-11-16 | 北京航空航天大学 | 基于质量分级与感知哈希特征组合的无人机图像检索方法 |
CN106780639A (zh) * | 2017-01-20 | 2017-05-31 | 中国海洋大学 | 基于显著性特征稀疏嵌入和极限学习机的哈希编码方法 |
CN108182256A (zh) * | 2017-12-31 | 2018-06-19 | 厦门大学 | 一种基于离散局部线性嵌入哈希的高效图像检索方法 |
CN109166615A (zh) * | 2018-07-11 | 2019-01-08 | 重庆邮电大学 | 一种随机森林哈希的医学ct图像存储与检索方法 |
CN109783682A (zh) * | 2019-01-19 | 2019-05-21 | 北京工业大学 | 一种基于点对相似度的深度非松弛哈希图像检索方法 |
CN110083734A (zh) * | 2019-04-15 | 2019-08-02 | 中南大学 | 基于自编码网络和鲁棒核哈希的半监督图像检索方法 |
CN110069644A (zh) * | 2019-04-24 | 2019-07-30 | 南京邮电大学 | 一种基于深度学习的压缩域大规模图像检索方法 |
CN110516095A (zh) * | 2019-08-12 | 2019-11-29 | 山东师范大学 | 基于语义迁移的弱监督深度哈希社交图像检索方法和系统 |
Non-Patent Citations (2)
Title |
---|
Hashing with Non-Linear Manifold Learning;Yanzhen Liu等;《IEEE》;20161226;第1-8页 * |
基于PCA的哈希图像检索算法;马绍覃;《计算机工程与设计》;20200216;第483-487页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112528065A (zh) | 2021-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | SCRATCH: A scalable discrete matrix factorization hashing framework for cross-modal retrieval | |
Deng et al. | Unsupervised semantic-preserving adversarial hashing for image search | |
Li et al. | Reciprocal multi-layer subspace learning for multi-view clustering | |
Wang et al. | Robust and flexible discrete hashing for cross-modal similarity search | |
CN112528065B (zh) | 一种流形相似度保持自编码器的医学超声图像检索方法 | |
Shi et al. | Asymmetric discrete graph hashing | |
Shen et al. | {\cal U} Boost: Boosting with the Universum | |
Seng et al. | Big feature data analytics: Split and combine linear discriminant analysis (SC-LDA) for integration towards decision making analytics | |
CN102508910A (zh) | 基于多哈希表映射误差最小化的图像检索方法 | |
Yao et al. | Efficient discrete supervised hashing for large-scale cross-modal retrieval | |
Sumbul et al. | Deep learning for image search and retrieval in large remote sensing archives | |
Yang et al. | Supervised learning of semantics-preserving hashing via deep neural networks for large-scale image search | |
Passalis et al. | Learning neural bag-of-features for large-scale image retrieval | |
CN109960732B (zh) | 一种基于鲁棒监督的深度离散哈希跨模态检索方法及系统 | |
CN115880556B (zh) | 一种多模态数据融合处理方法、装置、设备及存储介质 | |
Zhang et al. | Deep supervised hashing using symmetric relative entropy | |
Huang et al. | Two-stage asymmetric similarity preserving hashing for cross-modal retrieval | |
CN117171393A (zh) | 一种面向多模态检索的自适应半配对询问哈希方法 | |
Tang et al. | Deep semantic ranking hashing based on self-attention for medical image retrieval | |
Dai et al. | A Bayesian Hashing approach and its application to face recognition | |
Ma et al. | Discrete cross-modal hashing for efficient multimedia retrieval | |
CN111984800B (zh) | 基于字典对学习的哈希跨模态信息检索方法 | |
Ling et al. | Balanced Deep Supervised Hashing. | |
Yi et al. | Unsupervised feature selection with graph regularized nonnegative self-representation | |
Fang et al. | Angular quantization online hashing for image retrieval |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240119 Address after: Room 801, 85 Kefeng Road, Huangpu District, Guangzhou City, Guangdong Province Patentee after: Guangzhou Dayu Chuangfu Technology Co.,Ltd. Address before: 400065 Chongwen Road, Nanshan Street, Nanan District, Chongqing Patentee before: CHONGQING University OF POSTS AND TELECOMMUNICATIONS |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240403 Address after: Room 1101-1103, Building 2, No. 18 Qingjiang South Road, Gulou District, Nanjing City, Jiangsu Province, 210009 Patentee after: Jiangsu kangyitong Technology Co.,Ltd. Country or region after: China Address before: Room 801, 85 Kefeng Road, Huangpu District, Guangzhou City, Guangdong Province Patentee before: Guangzhou Dayu Chuangfu Technology Co.,Ltd. Country or region before: China |