CN112513876B - 一种用于地图的路面提取方法及装置 - Google Patents
一种用于地图的路面提取方法及装置 Download PDFInfo
- Publication number
- CN112513876B CN112513876B CN202080004150.3A CN202080004150A CN112513876B CN 112513876 B CN112513876 B CN 112513876B CN 202080004150 A CN202080004150 A CN 202080004150A CN 112513876 B CN112513876 B CN 112513876B
- Authority
- CN
- China
- Prior art keywords
- road surface
- road
- points
- point cloud
- candidate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000605 extraction Methods 0.000 title claims abstract description 91
- 238000012545 processing Methods 0.000 claims description 18
- 230000011218 segmentation Effects 0.000 claims description 16
- 238000004590 computer program Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 description 39
- 238000010586 diagram Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 12
- 238000004891 communication Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 230000004927 fusion Effects 0.000 description 5
- 235000008429 bread Nutrition 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/08—Projecting images onto non-planar surfaces, e.g. geodetic screens
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/182—Network patterns, e.g. roads or rivers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Multimedia (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Traffic Control Systems (AREA)
- Image Processing (AREA)
Abstract
本申请提供一种用于地图的路面提取方法,包括:基于原始激光点云,确定路面的候选路面点,其中所述原始激光点云是激光传感器采集的点云;在相机采集的图像中确定路面的路面图像;将所述候选路面点与所述路面图像进行融合,得到所述路面的第一路面点;提取所述第一路面点的第一路面包络线,其中所述第一路面包络线包括所述第一路面点中的一组有序点,用于表征所述路面的轮廓;基于所述原始激光点云和所述第一路面包络线,确定所述路面的第一路面点云。
Description
技术领域
本申请涉及电子地图技术领域,具体涉及一种用于地图的路面提取的方法和装置。
背景技术
自动驾驶汽车依靠人工智能、视觉计算、雷达、定位系统和高精度地图等技术的协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。高精度地图作为汽车导航使用的工具,其准确度和精度对于自动驾驶汽车的安全至关重要。
在无人驾驶领域中,准确的路面提取结果能够为无人驾驶车辆提供可行驶区域,为车辆的规划控制提供很强的环境先验信息。目前的路面提取的研究中,有基于激光的提取,主要根据路面激光点云的厚度及高度信息。还有基于视觉的路面分割技术,应用深度学习的方式对图像中地面像素点进行语义分割。也有基于视觉和激光融合的路面提取技术,将激光与相机两种传感器融合起来,获得鲁棒性更强的地面提取结果。
然而上述路面提取的方法,无法兼顾路面提取精度与提取速度,即现有技术中存在着提高路面提取精度,会相应的增加路面提取时间的问题。
发明内容
本申请实施例提供一种用于地图的路面提取方法及装置,提高了路面提取的精度并且同时缩短了计算时间。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种用于地图的路面提取方法,包括:基于原始激光点云,确定路面的多个候选路面点,其中所述原始激光点云是激光传感器采集的点云;在相机采集的图像中确定路面的路面图像;将所述多个候选路面点与所述路面图像进行融合,得到所述路面的多个第一路面点;提取所述多个第一路面点的第一路面包络线,其中所述第一路面包络线包括所述多个第一路面点中的一组有序点,用于表征所述路面的轮廓;基于所述原始激光点云和所述第一路面包络线,确定所述路面的第一路面点云。
采用上述技术方案,将第一路面包络线与原始激光点云进行计算,保留了原始激光点云的高分辨率的效果,提高了运算速度;提取路面边沿点能够准确的确定道路边沿;采用路面图像进行融合能够适合多种不良路况。因此,本申请能够快速、准确、完备的提取激光点云中的路面信息,同时提取得到的路面信息具有高精度、高分辨率的特点。
可选地,所述提取所述多个第一路面点的第一路面包络线包括:采用凹包提取方法提取所述多个第一路面点的第一路面包络线。
采用上述技术方案,实现了计算机的自动提取,无需人为干预,能够获得更加完备的包络线,从而提高了路面提取的准确性。
可选地,所述基于原始激光点云,确定路面的候选路面点包括:将所述原始激光点云划分为多个网格;计算所述多个网格中的每一个网格的点云厚度,所述点云厚度为所述每一个网格中的最高高度的点与最低高度的点的高度差;当所述点云厚度小于第一阈值时,确定该网格为候选网格;确定所述候选路面点,所述候选路面点包括所述多个网格中的至少一个候选网格中的任一点或多个点。
采用上述技术方案,可以灵活选取网格的步长,当激光点云的网格选取步长较大时,计算装置需要数据处理的时间较短,提升了路面点云的提取速度。
可选地,所述在相机采集的图像中确定所述路面的路面图像包括:对所述相机采集的图像进行语义分割,确定所述路面图像。
采用上述技术方案,对道路前方、后方以及缺失路边沿的情况都可以进行提取,从而提高了路面提取的准确度。
可选地,所述将所述候选路面点与所述路面图像进行融合,得到所述路面的第一路面点包括:将所述候选路面点投影到所述路面图像上;当所述候选路面点中的至少一个候选路面点能够投影到路面图像上,对所述至少一个候选路面点进行聚类,得到所述第一路面点。
采用上述技术方案,利用了多传感器融合技术,提高了提取路面的鲁棒性,提高了路面提取的精度。
可选地,还包括:基于所述原始激光点云,确定所述路面的路面边沿点;所述将所述候选路面点与所述路面图像进行融合,得到所述路面的第一路面点包括:将所述候选路面点、所述路面边沿点、与所述路面图像进行融合,得到所述路面的第一路面点。
采用上述技术方案,利用了多传感器融合技术,提高了提取路面的鲁棒性,并且获得了更加准确的路面边沿信息,提高了路面提取的精度。
可选地,所述基于所述原始激光点云,确定所述路面的路面边沿点包括:利用路面边沿模型处理所述原始激光点云,获取所述路面边沿点。
采用上述技术方案,使得路面边沿的提取更加准确,从而提高了路面提取的准确度。
可选地,所述基于所述原始激光点云和第一路面包络线,确定第一路面点云包括:将所述原始激光点云中位于所述第一路面包络线所包括的区域内的点,判定为第一路面点云。
采用上述技术方案,提高了路面提取的精确度,并且提取用时并不会随着精度提升而提升,降低了提取时间的复杂度。
第二方面,提供了一种用于地图的路面提取装置,包括:候选点确定模块,基于原始激光点云,确定路面的多个候选路面点,其中所述原始激光点云是激光传感器采集的点云;图像确定模块,在相机采集的图像中确定路面的路面图像;路面点确定模块,将所述多个候选路面点与所述路面图像进行融合,得到所述路面的第一路面点;包络线提取模块,提取所述多个第一路面点的第一路面包络线,其中所述第一路面包络线包括所述第一路面点中的一组有序点,用于表征所述路面的轮廓;路面点云确定模块,基于所述原始激光点云和所述第一路面包络线,确定所述路面的第一路面点云。
可选地,所述包络线提取模块具体用于:采用凹包(concave)提取方法提取所述第一路面点的第一路面包络线。
可选地,所述候选点确定模块具体用于:将所述原始激光点云划分为多个网格;计算所述多个网格中的每一个网格的点云厚度,所述点云厚度为所述每一个网格中的最高高度的点与最低高度的点的高度差;当所述点云厚度小于第一阈值时,确定该网格为候选网格;确定所述候选路面点,所述候选路面点包括所述多个网格中的至少一个候选网格中的任一点或多个点。
可选地,所述图像确定模块具体用于:对所述相机采集的图像进行语义分割,确定所述路面图像。
可选地,所述路面点确定模块具体用于:将所述候选路面点投影到所述路面图像上;当所述候选路面点中的至少一个候选路面点能够投影到路面图像上;对所述至少一个候选路面点进行聚类,得到所述第一路面点。
可选地,还包括边沿点确定模块,具体用于:基于所述原始激光点云,确定所述路面的路面边沿点;所述路面点确定模块,具体用于:将所述候选路面点、所述路面边沿点、与所述路面图像进行融合,得到所述路面的第一路面点。
可选地,所述边沿点确定模块,具体用于:利用路面边沿模型处理所述原始激光点云,获取所述路面边沿点。
可选地,所述路面点云确定模块具体用于:将所述原始激光点云中位于所述第一路面包络线所包括的区域内的点,判定为第一路面点云。
第三方面,提供了一种电子设备,所述电子设备包括:处理器;用于存储所述处理器可执行指令的存储器;所述处理器,用于执行上述第一方面任一所述的提取方法
第四方面,提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第一方面任一所述的提取方法。
第五方面,提供了一种芯片,包括处理器和接口,所述接口用于从外部存储器读取所述处理器可执行指令,所述处理器,可以用于执行上述第一方面任一所述的提取方法。
第六方面,提供了一种服务器,所述服务器用于执行上述第一方面任一所述的提取方法。
第七方面,提供了一种计算机存储介质,该计算机存储介质存储有计算机程序,该计算机程序用于执行上述第一方面任一所述的提取方法。
第八方面,提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面任一所述的提取方法。
第九方面,提供了一种电子设备,所述电子设备用于执行上述第一方面任一所述的提取方法。
可以理解地,上述提供的任一种用于地图的路面提取装置、计算机可读存储介质、电子设备、计算机程序产品、芯片、服务器,均可以由上文所提供的对应的方法来实现,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的电子地图数据采集场景示意图;
图2是本申请实施例提供的电子地图的数据处理和使用场景的示意图;
图3为本申请实施例提供的一种云端指令侧地图数据处理结构示意图;
图4为本申请实施例提供的一种用于地图的路面提取方法流程图;
图5为本申请实施例提供的一种道路示意图;
图6为本申请实施例提供的一种包络线提取方法示意图;
图7为本申请实施例提供的一种真实道路的第一路面包络线示意图;
图8为本申请实施例提供的一种真实道路的第一路面点云示意图;
图9为本申请实施例提供的一种路面提取装置结构图;
图10为本申请实施例提供的另一种路面提取装置结构图;
图11为本申请实施例提供的一种具有完整的道路边沿线的路面提取过程示意图;
图12为本申请实施例提供的一种具有缺失道路边沿线的的路面提取过程示意图;
图13为本申请实施例提供的一种无道路边沿线的提取过程示意图;
图14为本申请实施例提供的一种计算机程序产品的结构示意图。
具体实施方式
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
为了便于理解,以下,对本申请实施例可能出现的术语进行解释。
激光雷达(light detection and ranging,LiDRA)能够捕获目标物基本形状特征及丰富局部细节,具有可靠性及测量精度高等优点,目前被广泛应用在智能设备(例如无人驾驶车辆、机器人、无人机等)环境感知中。
激光雷达,例如扫描式激光雷达,通过多束激光竖列而排,绕轴进行360度旋转,每一束激光扫描一个平面,纵向叠加后呈现出三维立体图形。具体地,激光雷达通过发射激光光束来探测目标,并通过搜集反射回来的光束获取点云数据。这些点云数据可以生成精确的三维立体图像。
电子地图,电子地图即数字地图,包括高精度地图。电子地图是以地图数据库为基础,利用计算机技术,以数字形式存储,可以在终端设备的屏幕上显示的地图。电子地图的主要构成元素就是地图元素,例如山脉、水系、陆地、行政区划、兴趣点或者道路等地理元素,其中,道路还可以进一步划分为高速公路、一级公路、二级公路、三级公路和四级公路五个等级,每个等级的道路可以为不同的地图元素。
语义分割,计算机视觉中的基本任务,在语义分割中我们需要将视觉输入分为不同的语义可解释类别,语义的可解释性,即分类类别在真实世界中是有意义的。例如,需要区分图像中属于道路的所有像素。
图1是本申请实施例提供的电子地图数据采集场景示意图。请参阅图1,电子地图的数据主要通过激光雷达120进行采集,其他传感器110进行辅助,将激光雷达120设置在移动载体的顶部上,移动载体例如可以为采集车辆100、无人机、机器人等,上述车辆100可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,其他传感器110可以设置在车辆的前部、后部或者侧面,其他传感器110可以为相机(也可称之为摄像头)、毫米波雷达、超声波雷达、红外传感器等,本申请实施例不做特别的限定。通过多传感器融合技术,将其他传感器110采集的数据与激光雷达120采集的数据进行融合。
由于道路表面树木、植被、建筑、路标等物体的存在,激光雷达120采集到的路面激光点云包括很多的噪声,因此要提取路面信息就需要对激光雷达120采集的数据进行处理。
图2是电子地图的数据处理和使用场景的示意图。将激光雷达120和其他传感器110采集的数据输入到图2的计算装置1中,以下其他传感器110以相机为例进行介绍,同样也适合其他传感器。计算装置1对激光雷达120采集的点云数据以及相机110采集的图像,进行一系列的数据处理,得到准确的路面点云,提取出路面信息进行电子地图的制作。将制作好的电子地图通过有线、无线、或者通过存储介质如U盘、硬盘的方式传输到云端服务器2,云端服务器2包括较大容量的存储空间,用于存储地图数据,包括高精度地图,并且负责将电子地图更新下发给车辆终端等,或其他的终端如手机、平板等。其中,车辆终端包括图2下方的普通车辆101,还可以包括图2右侧的专用采集车辆100。具体的,可以将地图数据部署于一台或者多台服务器上。
可选的,电子地图数据还可以采用众包模式,众包作为一种成本较低的数据采集模式近几年来被广泛采用,众包就是基于大众的力量完成某种特定工作任务,即图2中的普通车辆101也可以进行道路数据的采集,将采集的道路数据上报给计算装置1。
可选的,在云端服务器2中可以由计算装置1基于普通车辆101上报的道路数据,决策是否对当前地图进行更新,并执行对地图数据的更新工作,更新后可以下发新的电子地图。
可选的,计算装置1可以是独立的装置,比如独立的计算机。计算装置1也可以包含在云端服务器2中,专用采集车辆100采集的道路数据以及普通车辆101采集的道路数据都可以直接上报给云端服务器2中的计算装置1。计算装置1也可以设置在采集车辆100上,在车端直接进行计算。
图3为本申请实施例提供的一种云端指令侧地图数据处理结构示意图。
车端计算机系统112还可以从其它计算机系统接收信息或转移信息到其它计算机系统。或者,从车辆终端12的传感器系统,例如激光雷达或相机收集的传感器数据可以被转移到另一个计算机对此数据进行处理。如图3所示,来自计算机系统112的数据可以经由网络被传送到云侧的计算机720用于进一步的处理。网络以及中间节点可以包括各种配置和协议,包括因特网、万维网、内联网、虚拟专用网络、广域网、局域网、使用一个或多个公司的专有通信协议的专用网络、以太网、WiFi和HTTP、以及前述的各种组合。这种通信可以由能够传送数据到其它计算机和从其它计算机传送数据的任何设备,诸如调制解调器和无线接口。
在一个示例中,计算机720可以包括具有多个计算机的服务器,例如负载均衡服务器群,为了从计算机系统112接收、处理并传送数据的目的,其与网络的不同节点交换信息。该服务器可以被类似于计算机系统配置,具有处理器730、存储器740、指令750、和数据760。
数据760可以包括激光雷达120采集的点云数据,其他传感器110采集的道路数据,如相机采集的图像,经过处理的中间过程的数据以及最终的处理路面点云数据等。服务器720可以接受、监视、存储、更新、以及与地图道路数据相关的各种信息,并且判别地图数据是否更新。
图4下面结合附图详细说明本申请的技术方案。图4为本申请实施例提供的一种用于地图的路面提取方法流程图,如图4所示,本实施例的执行主体可以为云端服务器中的计算装置1或者独立的计算装置1。
S101、基于原始激光点云,确定路面的候选路面点,其中所述原始激光点云是激光传感器采集的点云。
其中,原始激光点云是上述激光雷达120采集的道路点云,可以设置每隔一定时间间隔采集一次当前路面激光点云,周期长度可以根据作业人员的需求进行调整。激光雷达可以为单线激光雷达、多线激光雷达、机械旋转式激光雷达、MEMS激光雷达、相控阵激光雷达、Flash型激光雷达等。一般情况下,由于道路表面树木、植被等存在,激光雷达采集到的路面的原始激光点云中包含很多噪声,需要将原始激光点云进行除噪,从而确定候选路面点。
候选路面点的确定方式可以采用多种方式,例如网格法。该网格法具体包括:将该原始激光点云划分为多个网格。因为较大的网格边长能够有效的降低提取路面点的噪声以及提取路面点网格的时间,因此可以设置网格的边长大于某个阈值,例如设置网格的边长大于1m。
针对每一个网格分别进行点云厚度的计算,该点云厚度为所述每一个网格中最高高度的点与最低高度的点的高度差。厚度的计算可以采用多种方法:
方法一、可以通过建立直角坐标系计算该网格中的点的高度差的方法来计算点云厚度。
或者方法二、还可以通过平面差的方法计算每个网格的点云厚度。
基于点云的厚度,选取点云厚度低于某一个阈值的网格为路面的候选网格,并可以将此网格的任一点或多个点作为路面候选点,其中该任一点或多个点可以为该网格的中心点、网格四角的顶点、或者四条边上的点。
依次计算所有网格的点云厚度,并选出所有符合条件的路面候选点。
在该方案中,可以灵活选取网格的步长,当激光点云的网格选取步长较大时,计算装置1需要数据处理的时间较短,提升了路面点云的提取速度。
S102、在相机采集的图像中确定路面的路面图像。
其中,相机可以为设置在车辆100上的摄像头,该摄像头可以设置在车辆的上方、前方、后方、或侧面。具体可设置位置可以为:挡风玻璃、车门、立柱、车顶、车尾等。该摄像头可以为单目摄像头、双目摄像头、三目摄像头、深度摄像头、红外摄像头、鱼眼摄像头、环视摄像头等。
计算装置1可以对该相机采集的图像进行语义分割,确定所述路面图像,语义分割可以采用多种方法,比如人工标注、或者深度学习的方法,深度学习的方法包括例如卷积神经网络CNN、循环神经网络RNN、K-means聚类等方法。
由于一般情况,激光雷达是设置在车辆顶部上的,车辆在行进的过程中进行道路点云的采集,如图5所示,由于位于车辆的前方道路和后方道路的反射率并未发生变化。因此,原始激光点云对于道路前方和后方的数据并不能有效的进行区分,这种情况下,对相机采集的图像数据进行语义分割,就可以得到道路前方和后方的边界。
还有一种情况,有些道路的全部路段或部分路段可能没有边沿,原始激光点云对于没有边沿的道路采集的路面点云并不准确,从而造成了路面点云提取的不准确,此时单纯的依靠激光点云的提取方法无法分割出路面与非路面的信息。这种情况下,结合语义分割过的图像数据,就可以得到准确的路面信息。
S104、得到所述路面的第一路面点。
其中,可以将所述候选路面点与所述路面图像进行融合,得到所述路面的第一路面点。
根据相机的内参、外参、位姿以及激光雷达位姿,将路面候选点投影到进行过语义分割的该路面图像上。
如果该候选路面点中的某些点无法投影到该路面图像上,则确定该点为噪声点,对噪声点进行过滤,留下可以投影到路面图像上的反射点,作为候选路面点。对多个候选路面点进行聚类,得到第一路面点。
采用上述技术方案,利用了多传感器融合技术,提高了获取的路面的鲁棒性,提高了提取精度。
S105、提取所述第一路面点的第一路面包络线,其中所述第一路面包络线包括所述第一路面点中的一组有序点,用于表征所述路面的轮廓。
其中,提取所述第一路面点的第一路面包络线有很多种方法。例如可以采用凹包(concave)提取方法提取所述第一路面点的第一路面包络线。如图6所示,6a图为一个点的集合S,该凹包(concave)提取方法如下:
步骤1、先求点集合S的凸包,如图6b所示,该凸包为包络线的初始轮廓;
步骤2、选择凸包中的一个边MN,如图6c所示,如果MN的长度大于阈值d1,则选择距离MN边距离最近的一个内点P,图6c中的星星形状的点。计算内点P距离MN的距离,如果该距离大于阈值d2,则将此内点作为包络线上的点,如图6d所示。
步骤3、重复步骤2,直到包络线上的所有的边都遍历完毕。最终得到的包络线如图6e所示。
对于第一路面点,可以按照图6的所示的包络线提取方法提取路面的包络线,从而得到路面的轮廓信息。
采用凹包的提取方法,实现了计算机的自动提取,无需人为干预,能够获得更加完备的包络线。
如图7所示,图7为对真实道路的第一路面点进行包络线的提取结果,得到第一路面包络线,其中该第一路面包络线为灰色的线条组成的路面轮廓。可采用上述的凹包(concave)提取方法,也可以采用其他的方法,能够通过将冗余无序的点提取出外边界,仅保留第一路面点轮廓上的有序的包络线点即可。
S106、基于所述原始激光点云和所述第一路面包络线,确定所述路面的第一路面点云。
其中,将所述原始激光点云中位于所述第一路面包络线所包括的区域内的点,判定为第一路面点云。
如图8所示,图8为将该第一路面包络线应用到原始激光点云上的示意图,从而能够确定中间部分的激光点云为第一路面激光点云,其中该第一路面激光点云为白色部分。
采用上述第一路面包络线提高了路面提取的精确度,并且提取用时并不会随着精度提升而提升,降低了提取时间的复杂度。
因此,在本申请上述实施例中,因为采用包络线提取方法,选择了第一路面点的外轮廓,将第一路面点的最大范围都作为了第一路面包络线,从而保证了路面点云数据的完备性。并且采用了包络线方法来提取原始激光点云中的路面点云,有效的控制了时间复杂度,缩短了数据处理的时间,可以快速的获取完备的路面点云。可见,本申请实施例可以完备、快速、准确的提取出路面信息。
进一步的,如图5所示一般在城市道路中,道路都会有道路边沿,通过提取道路边沿,能够准确的确定道路的边界,然后通过判定原始激光点云是在该道路边沿的哪一边,从而判定反射点是否为路面点云,提升了路面点云提取的准确度和精度。
可选的,该提取方法还可以包括步骤:S103、基于所述原始激光点云,确定所述路面的路面边沿点。
如图5所示,路面边沿点包括与道路平面在高度上存在较大变化的点,例如激光雷达发射的信号遇到道路上设置的护栏、墩子、隔离带、马路牙子等产生反射信号的反射点为路面边沿点。
提取道路边沿可以利用路面边沿模型处理所述原始激光点云,获取所述路面边沿点。例如可以采用激光雷达单线信息寻找跳变点、应用深度学习的方法分析道路边沿、或采用滑动框寻找跳变点的方式等。
下面以滑动框寻找跳变点的方式为例进行介绍,首先设置滑动框,沿着激光雷达采集点云数据的轨迹,分别向左向右滑动该晃动框,移动该滑动框的补偿等于该滑动框的边长。每滑动一次滑动框就计算一次该原始激光点云的厚度。如果相邻的两个滑动框的厚度大于某一阈值,则认为发生了跳变,将该次滑动框的任一点,例如中心点或者边角点作为道路边沿的点。
所述步骤“S104、得到所述路面的第一路面点”具体包括:将所述候选路面点、所述路面边沿点、与所述路面图像进行融合,得到所述路面的第一路面点。
其中,在该实施例中将候选路面点、所述路面边沿点、路面图像三者进行融合来计算路面的第一路面点。
根据相机的内参、外参、位姿以及激光雷达位姿,将路面候选点云投影到进行过语义分割的该路面图像上。
如果该候选路面点中的某些反射点无法投影到该路面图像上,则确定该反射点为噪声点,对噪声点进行过滤,留下可以投影到路面图像上的反射点,作为候选路面点。对多个候选路面点进行聚类,将聚类后的点与路面边沿点进行融合,判定该聚类后的点是否位于该路面边沿点内部,选择该路面边沿内部的点为第一路面点,从而得到所述路面的第一路面点。
因此,本申请上述实施例通过提取道路边沿的方法,对于具有道路边沿的路面点云可以准确的确定路面的边界,从而提高了路面提取的准确性。
本申请实施例还提供了一种用于地图的路面提取装置,该路面提取装置可以如图9或图10所示,该路面提取装置可以包括:候选点确定模块121、边沿点确定模块122、图像确定模块123、路面点确定模块124、包络线提取模块125、路面点云确定模块126。
在本申请实施例中,候选点确定模块121,基于原始激光点云,确定路面的候选路面点,其中所述原始激光点云是激光传感器采集的点云;
图像确定模块123,在相机采集的图像中确定路面的路面图像;
路面点确定模块124,将所述候选路面点与所述路面图像进行融合,得到所述路面的第一路面点;
包络线提取模块125,提取所述第一路面点的第一路面包络线,其中所述第一路面包络线包括所述第一路面点中的一组有序点,用于表征所述路面的轮廓;
路面点云确定模块126,基于所述原始激光点云和所述第一路面包络线,确定所述路面的第一路面点云。
进一步的,所述包络线提取模块125具体用于:
采用凹包(concave)提取方法提取所述第一路面点的第一路面包络线。
进一步的,所述候选点确定模块121具体用于:
将所述原始激光点云划分为多个网格;
计算所述多个网格中的每一个网格的点云厚度,所述点云厚度为所述每一个网格中的最高高度的点与最低高度的点的高度差;
当所述点云厚度小于第一阈值时,确定该网格为候选网格;
确定所述候选路面点,所述候选路面点包括所述多个网格中的至少一个候选网格中的任一点或多个点。
进一步的,所述图像确定模块123具体用于:
对所述相机采集的图像进行语义分割,确定所述路面图像。
进一步的,所述路面点确定模块124具体用于:
将所述候选路面点投影到所述路面图像上;
当所述候选路面点中的至少一个候选路面点能够投影到路面图像上,对所述至少一个候选路面点进行聚类,得到所述第一路面点。
进一步的,如图10所示,还包括边沿点确定模块122,具体用于:
基于所述原始激光点云,确定所述路面的路面边沿点;
所述路面点确定模块,具体用于:将所述候选路面点、所述路面边沿点、与所述路面图像进行融合,得到所述路面的第一路面点。
进一步的,所述边沿点确定模块122,具体用于:
利用路面边沿模型处理所述原始激光点云,获取所述路面边沿点。
进一步的,所述路面点云确定模块124具体用于:
将所述原始激光点云中位于所述第一路面包络线所包括的区域内的反射点,判定为第一路面点云。
需要说明的是,上述候选点确定模块121、边沿点确定模块122、图像确定模块123、路面点确定模块124、包络线提取模块125、路面点云确定模块126的具体描述可以参见上述方法实施例中的相关描述,本申请实施例在此不再赘述。
本申请实施例中的道路情况包含以下几种情况:
一、具有完整的道路边沿线
如图11所示,图11a中的两条实线为道路边沿,箭头为道路的方向。
图11b为基于原始激光点云,确定的路面的候选路面点。如图11b所示,由于反射率没有发生变化,在激光雷达采集的道路两头(相当于图5中的道路前方和后方)多出很多候选路面点,因而没有分界,无法进行路面提取。
图11c为基于所述原始激光点云,确定的所述路面的路面边沿点。
图11d为将所述候选路面点与所述路面图像进行融合,得到的所述路面的第一路面点。由于融合了经过语义分割的路面图像数据,可以对上述候选路面点的两头进行切割。但是,由于为了提高运算速度,网格的步长选取的较大,造成了路面候选点的精度较低,因此,此环节的路面候选点的分辨率不高。如果减小网格步长,又会增加运算时间,而且还会提高噪声点的数量。
图11e为将所述候选路面点、所述路面边沿点、与所述路面图像进行融合,得到的所述路面的第一路面点。
因此,图11e的第一路面候选点轮廓准确、完备,通过提取图11e中的第一路面点的包络线,与原始激光点云进行运算,从而得到更加准确的路面激光点云,即第一路面点云(图略,可参见附图8)。
该实施例,由于将第一路面包络线与原始激光点云进行计算,保留了原始激光点云的点云信息,解决了图11d存在的分辨率不高的问题,提高了点云的分辨率,同时还提高了运算速度。能够快速、准确、完备的提取激光点云中的路面信息,提取得到的路面点云具有高精度、高分辨率的特点。
二、道路边沿缺失情况
在城市中,由于交通事故等因素,道路边沿可能会出现缺失。如图12所示,图12a图为道路,两条实线为道路的边沿,在上面一条实线的中间出现了缺失。上方的虚线为辅路的边界。箭头为道路的方向。
图12b为基于原始激光点云,确定的路面的候选路面点。如图12b所示,由于反射率没有发生变化,在激光雷达采集的道路两头(相当于图5中的道路前方和后方)多出很多候选路面点,因而没有分界,无法进行路面提取。并且,在辅路中也具有大量的候选点。
图12c为基于所述原始激光点云,确定的所述路面的路面边沿点。
图12d为将所述候选路面点与所述路面图像进行融合,得到的所述路面的第一路面点。由于融合了经过语义分割的路面图像数据,可以对上述候选路面点的两头进行切割,并且将辅路上的部分点筛除,仅保留路面上的点与没有道路边沿部分的辅路上的点。
图12e为将所述候选路面点、所述路面边沿点、与所述路面图像进行融合,得到的所述路面的第一路面点。
因此,图12e的第一路面候选点轮廓准确、完备,通过提取图12e中的第一路面点的包络线,与原始激光点云进行运算,从而得到更加准确的路面激光点云,即第一路面点云(图略,可参见附图8)。
在该实施例中,由于将第一路面包络线与原始激光点云进行计算,保留了原始激光点云的点云信息,提高了点云的分辨率,同时还提高了运算速度。能够快速、准确、完备的提取激光点云中的路面信息,提取得到的路面点云具有高精度、高分辨率的特点。此外,对于路面边沿缺失的部分,可以自动的提取出辅路的道路边沿。
三、无道路边沿情况
在乡村道路上,有一些道路没有道路边沿。如图13所示,图13a为道路,两条虚线为虚拟的道路边界。箭头为道路的方向。
图13b为基于原始激光点云,确定的路面的候选路面点。如图13b所示,由于反射率没有发生变化,在激光雷达采集的道路两头(相当于图5中的道路前方和后方)多出很多候选路面点,因而没有分界,无法进行路面提取。并且,由于没有道路边沿,在虚拟的道路边界外也具有大量的候选点。
图13c为基于所述原始激光点云,确定的所述路面的路面边沿点。
图13d为将所述候选路面点与所述路面图像进行融合,得到的所述路面的第一路面点。由于融合了经过语义分割的路面图像数据,可以对上述候选路面点的两头进行切割,并且将虚拟的道路边界外的点筛除,仅保留路虚拟道路边界内的点。
图13e为将所述候选路面点、所述路面边沿点、与所述路面图像进行融合,得到所述路面的第一路面点。
因此,图13e的第一路面候选点轮廓准确、完备,通过提取图13e中的第一路面点的包络线,与原始激光点云进行运算,从而得到更加准确的路面激光点云,即第一路面点云(图略,可参见附图8)。
在该实施例中,由于将第一路面包络线与原始激光点云进行计算,保留了原始激光点云的点云信息,提高了点云的分辨率,同时还提高了运算速度。能够快速、准确、完备的提取激光点云中的路面信息,提取得到的路面点云具有高精度、高分辨率的特点。此外,对于没有道路边界的情况,可以自动的提取出虚拟道路边界内的点。
本申请实施例还提供一种芯片,包括处理器和接口,所述接口用于从外部存储器读取所述处理器可执行指令,所述处理器,可以用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
本申请实施例还提供一种服务器,所述服务器可以用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
本申请实施例还提供了一种计算机存储介质,该计算机存储介质存储有计算机程序,该计算机程序用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
本申请实施例还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述方法实施例的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
本申请实施例还提供一种电子设备,所述电子设备可以用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
在一些实施例中,所公开的方法可以实施为以机器可读格式被编码在计算机可读存储介质上的或者被编码在其它非瞬时性介质或者制品上的计算机程序指令。图14示意性地示出根据这里展示的至少一些实施例而布置的示例计算机程序产品的概念性局部视图,所述示例计算机程序产品包括用于在计算设备上执行计算机进程的计算机程序。在一个实施例中,示例计算机程序产品600是使用信号承载介质601来提供的。所述信号承载介质601可以包括一个或多个程序指令602,其当被一个或多个处理器运行时可以提供以上针对图4描述的功能或者部分功能。因此,例如,参考图4中所示的实施例,步骤101-106的一个或多个特征可以由与信号承载介质601相关联的一个或多个指令来承担。此外,图9中的程序指令602也描述示例指令。
在一些示例中,信号承载介质601可以包含计算机可读介质603,诸如但不限于,硬盘驱动器、紧密盘(CD)、数字视频光盘(DVD)、数字磁带、存储器、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等等。在一些实施方式中,信号承载介质601可以包含计算机可记录介质604,诸如但不限于,存储器、读/写(R/W)CD、R/W DVD、等等。在一些实施方式中,信号承载介质601可以包含通信介质605,诸如但不限于,数字和/或模拟通信介质(例如,光纤电缆、波导、有线通信链路、无线通信链路、等等)。因此,例如,信号承载介质601可以由无线形式的通信介质605(例如,遵守IEEE 802.11标准或者其它传输协议的无线通信介质)来传达。一个或多个程序指令602可以是,例如,计算机可执行指令或者逻辑实施指令。在一些示例中,诸如针对图3、9、10描述的计算设备或路面提取装置可以被配置为,响应于通过计算机可读介质603、计算机可记录介质604、和/或通信介质605中的一个或多个传达到计算设备的程序指令602,提供各种操作、功能、或者动作。应该理解,这里描述的布置仅仅是用于示例的目的。因而,本领域技术人员将理解,其它布置和其它元素(例如,机器、接口、功能、顺序、和功能组等等)能够被取而代之地使用,并且一些元素可以根据所期望的结果而一并省略。另外,所描述的元素中的许多是可以被实现为离散的或者分布式的组件的、或者以任何适当的组合和位置来结合其它组件实施的功能实体。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储接种中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或者部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序的介质。
在上述实施例中,可以全部或者部分地通过软件、硬件、固件或者其任意组合来实现。
本实施例以上所述的电子设备,可以用于执行上述各方法实施例的技术方案,其实现原理和技术效果类似,其中各个器件的功能可以参考实施例中相应的描述,此处不再赘述。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (18)
1.一种用于地图的路面提取方法,其特征在于,包括:
基于原始激光点云,确定路面的多个候选路面点,其中所述原始激光点云是激光传感器采集的点云;
在相机采集的图像中确定路面的路面图像;
将所述多个候选路面点与所述路面图像进行融合,得到所述路面的多个第一路面点;
提取所述多个第一路面点的第一路面包络线,其中所述第一路面包络线包括所述多个第一路面点中的一组有序点,用于表征所述路面的轮廓;
基于所述原始激光点云和所述第一路面包络线,确定所述路面的第一路面点云。
2.根据权利要求1所述的提取方法,其特征在于,所述提取所述多个第一路面点的第一路面包络线包括:采用凹包提取方法提取所述多个第一路面点的第一路面包络线。
3.根据权利要求1或2所述的提取方法,其特征在于,所述基于原始激光点云,确定路面的多个候选路面点包括:
将所述原始激光点云划分为多个网格;
计算所述多个网格中的每一个网格的点云厚度,所述点云厚度为所述每一个网格中的最高高度的点与最低高度的点的高度差;
当所述点云厚度小于第一阈值时,确定该网格为候选网格;
确定所述多个候选路面点,所述多个候选路面点包括所述多个网格中的至少一个候选网格中的任一点或多个点。
4.根据权利要求1或2所述的提取方法,其特征在于,所述在相机采集的图像中确定所述路面的路面图像包括:
对所述相机采集的图像进行语义分割,确定所述路面图像。
5.根据权利要求1或2所述的提取方法,其特征在于,所述将所述多个候选路面点与所述路面图像进行融合,得到所述路面的多个第一路面点包括:
将所述多个候选路面点投影到所述路面图像上;
当所述多个候选路面点中的至少一个候选路面点能够投影到路面图像上,对所述至少一个候选路面点进行聚类,得到所述多个第一路面点。
6.根据权利要求1或2所述的提取方法,其特征在于,还包括:基于所述原始激光点云,确定所述路面的路面边沿点;
所述将所述多个候选路面点与所述路面图像进行融合,得到所述路面的多个第一路面点包括:将所述多个候选路面点、所述路面边沿点、与所述路面图像进行融合,得到所述路面的多个第一路面点。
7.根据权利要求6所述的提取方法,其特征在于,所述基于所述原始激光点云,确定所述路面的路面边沿点包括:
利用路面边沿模型处理所述原始激光点云,获取所述路面边沿点。
8.根据权利要求1或2所述的提取方法,其特征在于,所述基于所述原始激光点云和第一路面包络线,确定所述路面的第一路面点云包括:
将所述原始激光点云中位于所述第一路面包络线所包括的区域内的点,判定为第一路面点云。
9.一种用于地图的路面提取装置,其特征在于,包括:
候选点确定模块,基于原始激光点云,确定路面的多个候选路面点,其中所述原始激光点云是激光传感器采集的点云;
图像确定模块,在相机采集的图像中确定路面的路面图像;
路面点确定模块,将所述多个候选路面点与所述路面图像进行融合,得到所述路面的多个第一路面点;
包络线提取模块,提取所述多个第一路面点的第一路面包络线,其中所述第一路面包络线包括所述多个第一路面点中的一组有序点,用于表征所述路面的轮廓;
路面点云确定模块,基于所述原始激光点云和所述第一路面包络线,确定所述路面的第一路面点云。
10.根据权利要求9所述的提取装置,其特征在于,所述包络线提取模块具体用于:
采用凹包提取方法提取所述多个第一路面点的第一路面包络线。
11.根据权利要求9或10所述的提取装置,其特征在于,所述候选点确定模块具体用于:
将所述原始激光点云划分为多个网格;
计算所述多个网格中的每一个网格的点云厚度,所述点云厚度为所述每一个网格中的最高高度的点与最低高度的点的高度差;
当所述点云厚度小于第一阈值时,确定该网格为候选网格;
确定所述多个候选路面点,所述多个候选路面点包括所述多个网格中的至少一个候选网格中的任一点或多个点。
12.根据权利要求9或10所述的提取装置,其特征在于,所述图像确定模块具体用于:
对所述相机采集的图像进行语义分割,确定所述路面图像。
13.根据权利要求9或10所述的提取装置,其特征在于,所述路面点确定模块具体用于:
将所述候选路面点投影到所述路面图像上;
当所述多个候 选路面点中的至少一个候选路面点能够投影到路面图像上,对所述至少一个候选路面点进行聚类,得到所述多个第一路面点。
14.根据权利要求9或10所述的提取装置,其特征在于,还包括边沿点确定模块,具体用于:
基于所述原始激光点云,确定所述路面的路面边沿点;
所述路面点确定模块,具体用于:将所述多个候选路面点、所述路面边沿点、与所述路面图像进行融合,得到所述路面的多个第一路面点。
15.根据权利要求14所述的提取装置,其特征在于,所述边沿点确定模块,具体用于:
利用路面边沿模型处理所述原始激光点云,获取所述路面边沿点。
16.根据权利要求9或10所述的提取装置,其特征在于,所述路面点云确定模块具体用于:
将所述原始激光点云中位于所述第一路面包络线所包括的区域内的点,判定为第一路面点云。
17.一种电子设备,其特征在于,所述电子设备包括:
处理器;
用于存储所述处理器可执行指令的存储器;
所述处理器,用于执行上述权利要求1-8中任一所述的提取方法。
18.一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-8中任一所述的提取方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/113560 WO2022047744A1 (zh) | 2020-09-04 | 2020-09-04 | 一种用于地图的路面提取方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112513876A CN112513876A (zh) | 2021-03-16 |
CN112513876B true CN112513876B (zh) | 2022-01-11 |
Family
ID=74953029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080004150.3A Active CN112513876B (zh) | 2020-09-04 | 2020-09-04 | 一种用于地图的路面提取方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112513876B (zh) |
WO (1) | WO2022047744A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11999352B2 (en) | 2021-12-15 | 2024-06-04 | Industrial Technology Research Institute | Method and system for extracting road data and method and system for controlling self-driving car |
TWI790858B (zh) * | 2021-12-15 | 2023-01-21 | 財團法人工業技術研究院 | 路面資料萃取方法及系統與自駕車控制方法及系統 |
CN114627073B (zh) * | 2022-03-14 | 2024-06-04 | 一汽解放汽车有限公司 | 地形识别方法、装置、计算机设备和存储介质 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4220537A3 (en) * | 2015-05-10 | 2023-08-16 | Mobileye Vision Technologies Ltd. | Road profile along a predicted path |
CN105184852B (zh) * | 2015-08-04 | 2018-01-30 | 百度在线网络技术(北京)有限公司 | 一种基于激光点云的城市道路识别方法及装置 |
CN105551082B (zh) * | 2015-12-02 | 2018-09-07 | 百度在线网络技术(北京)有限公司 | 一种基于激光点云的路面识别方法及装置 |
KR102671067B1 (ko) * | 2016-04-08 | 2024-05-30 | 팅크웨어(주) | 도로면 생성 방법, 도로면 생성 장치, 포인트 클라우드 데이터 처리 방법, 포인트 클라우드 데이터 처리 장치, 컴퓨터 프로그램 및 컴퓨터 판독 가능한 기록 매체 |
KR102427980B1 (ko) * | 2017-12-20 | 2022-08-02 | 현대자동차주식회사 | 차량 및 그 위치 인식 방법 |
CN108519605B (zh) * | 2018-04-09 | 2021-09-07 | 重庆邮电大学 | 基于激光雷达和摄像机的路沿检测方法 |
CN110458854B (zh) * | 2018-05-02 | 2022-11-15 | 北京图森未来科技有限公司 | 一种道路边缘检测方法和装置 |
CN109407115B (zh) * | 2018-12-25 | 2022-12-27 | 中山大学 | 一种基于激光雷达的路面提取系统及其提取方法 |
CN109858460B (zh) * | 2019-02-20 | 2022-06-10 | 重庆邮电大学 | 一种基于三维激光雷达的车道线检测方法 |
CN111274976B (zh) * | 2020-01-22 | 2020-09-18 | 清华大学 | 基于视觉与激光雷达多层次融合的车道检测方法及系统 |
CN111291676B (zh) * | 2020-02-05 | 2020-12-11 | 清华大学 | 一种基于激光雷达点云和相机图像融合的车道线检测方法及装置和芯片 |
-
2020
- 2020-09-04 WO PCT/CN2020/113560 patent/WO2022047744A1/zh active Application Filing
- 2020-09-04 CN CN202080004150.3A patent/CN112513876B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112513876A (zh) | 2021-03-16 |
WO2022047744A1 (zh) | 2022-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110148144B (zh) | 点云数据的分割方法和装置、存储介质、电子装置 | |
CN112513876B (zh) | 一种用于地图的路面提取方法及装置 | |
CN114842438B (zh) | 用于自动驾驶汽车的地形检测方法、系统及可读存储介质 | |
CN108345822B (zh) | 一种点云数据处理方法及装置 | |
EP3343503B1 (en) | High-precision map data processing method and apparatus, storage medium and device | |
CN113792566B (zh) | 一种激光点云的处理方法及相关设备 | |
CN107850672B (zh) | 用于精确车辆定位的系统和方法 | |
CN112581612B (zh) | 基于激光雷达和环视摄像头融合的车载栅格地图生成方法及系统 | |
CN110648389A (zh) | 基于无人机和边缘车辆协同的城市街景3d重建方法和系统 | |
CN108073170A (zh) | 用于自主车辆的自动化协同驾驶控制 | |
EP4078535A1 (en) | Methods and systems for constructing map data using poisson surface reconstruction | |
CN108290521A (zh) | 一种影像信息处理方法及增强现实ar设备 | |
WO2024199122A1 (zh) | 基于数字孪生技术的无人驾驶环境感知与导航方法 | |
CN117576652B (zh) | 道路对象的识别方法、装置和存储介质及电子设备 | |
CN114255275A (zh) | 一种构建地图的方法及计算设备 | |
CN115775378A (zh) | 一种基于多传感器融合的车路协同目标检测方法 | |
CN109583312A (zh) | 车道线识别方法、装置、设备及存储介质 | |
CN114841910A (zh) | 车载镜头遮挡识别方法及装置 | |
CN115879060A (zh) | 基于多模态的自动驾驶感知方法、装置、设备和介质 | |
CN117612127B (zh) | 场景生成方法、装置和存储介质及电子设备 | |
CN116129553A (zh) | 一种基于多源车载设备的融合感知方法及系统 | |
CN115830254A (zh) | 地图更新方法、装置、无人车以及系统 | |
CN118489238A (zh) | 数据采集方法、装置、以及智能驾驶设备 | |
CN115359332A (zh) | 基于车路协同的数据融合方法、装置、电子设备及系统 | |
US11544899B2 (en) | System and method for generating terrain maps |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |