CN112508108B - 一种基于字根的零样本汉字识别方法 - Google Patents

一种基于字根的零样本汉字识别方法 Download PDF

Info

Publication number
CN112508108B
CN112508108B CN202011455952.4A CN202011455952A CN112508108B CN 112508108 B CN112508108 B CN 112508108B CN 202011455952 A CN202011455952 A CN 202011455952A CN 112508108 B CN112508108 B CN 112508108B
Authority
CN
China
Prior art keywords
images
chinese character
training
model
chinese characters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011455952.4A
Other languages
English (en)
Other versions
CN112508108A (zh
Inventor
王鹏
高丽颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202011455952.4A priority Critical patent/CN112508108B/zh
Publication of CN112508108A publication Critical patent/CN112508108A/zh
Application granted granted Critical
Publication of CN112508108B publication Critical patent/CN112508108B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/62Text, e.g. of license plates, overlay texts or captions on TV images
    • G06V20/63Scene text, e.g. street names
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Character Discrimination (AREA)

Abstract

本发明公开了一种基于字根的零样本汉字识别方法,首先在CTW汉字数据集的基础上构建训练集和测试集;然后构建汉字识别嵌入模型,该模型由两个并行分支组成,包括由CNN模型构成的图像处理分支和由循环神经网络构成的属性信息处理分支;采用训练集图像对汉字识别嵌入模型进行训练,得到最终模型;再采用测试集对模型进行测试。本发明大大降低了对训练数据的要求,且符合自然场景下文本数据分布的规律,并取得了可行的识别率,为自然场景下的汉字识别提供了一种新思路。

Description

一种基于字根的零样本汉字识别方法
技术领域
本发明属于机器人技术领域,具体涉及一种汉字识别方法。
背景技术
传统的基于机器学习的自然场景下汉字图像识别通过标注大量该场景下汉字图像的样本学习汉字图像和类别标签之间的对应关系,但是自然场景下的汉字频率作为长尾分布的典型代表,常用汉字和生僻字在自然场景下的分布数量差异显著,对很多不常用的汉字难以收集等量的训练样本,这样在训练过程中会出现严重的样本不均衡问题,不能达到很好的识别效果。而使用手写汉字来弥补这一数量上的差异,显然没有考虑自然场景下复杂背景和字体、颜色等因素,因此可行性不高。
近年来,零样本学习的提出和发展为解决上述问题提供了一个新的解决思路。零样本学习在训练阶段对测试类别的样本没有要求,因此可以用频率高的汉字做训练,在频率低的汉字或者所有类别的汉字(广义零样本学习)上做测试,可以按照现实生活中汉字的使用情况收集数据,无须刻意根据汉字的类别收集数据。零样本学习在训练时不需要提供测试样本,但需要属性信息来共享可见类与未见类之间的关系。
发明内容
为了克服现有技术的不足,本发明提供了一种基于字根的零样本汉字识别方法,首先在CTW汉字数据集的基础上构建训练集和测试集;然后构建汉字识别嵌入模型,该模型由两个并行分支组成,包括由CNN模型构成的图像处理分支和由循环神经网络构成的属性信息处理分支;采用训练集图像对汉字识别嵌入模型进行训练,得到最终模型;再采用测试集对模型进行测试。本发明大大降低了对训练数据的要求,且符合自然场景下文本数据分布的规律,并取得了可行的识别率,为自然场景下的汉字识别提供了一种新思路。
本发明解决其技术问题所采用的技术方案包括以下步骤:
步骤1:构建训练集和测试集;
步骤1-1:将CTW汉字数据集中的只包含单个汉字的图像按照同一个汉字出现的频率从高到低进行排序,取出现频率排序在前A1的汉字对应的只包含单个汉字的图像为训练集;出现频率排序在前A1个之后取A2个汉字对应的只包含单个汉字的图像为测试集;
步骤1-2:将训练集和测试集中图像包含的汉字作为类别标签;
步骤1-3:采集训练集和测试集中图像包含的汉字的字根,并对所有字根进行编码,每个字根有唯一的编码;
步骤2:构建文字识别嵌入模型;
文字识别嵌入模型包括两个并行分支,一个是图像处理分支,另一个是属性信息处理分支;
所述图像处理分支由CNN模型构成,输入为只包含单个汉字的图像,输出为视觉特征向量,用φ(Ii)表示,Ii为第i幅只包含单个汉字的图像;
所述属性信息处理分支由循环神经网络构成;对训练集和测试集中图像包含的任一汉字,采集该汉字的字根,再用步骤1的字根编码方法将该汉字变为字根编码组合;使用递归神经网络,将训练集和测试集中图像包含的所有汉字的字根编码组合再次编码为固定长度语义向量;循环神经网络的输入为固定长度语义向量,输出为语义特征向量,输出表示如下:
其中,表示前向最终隐藏状态,/>表示反向的最终隐藏状态,f(·)是ReLU激活函数,/>是/>的权重,/>是/>的权重;
步骤3:定义目标函数为最小化L(W1,W2):
其中,N为训练集中图像数量;
步骤4:使用训练集对文字识别嵌入模型进行训练,当目标函数最小时结束,得到最终的文字识别嵌入模型;
步骤5:将测试集中的图像输入最终的文字识别嵌入模型,得到输入图像的视觉特征向量和语义特征向量,采用最近邻算法,找到与输入图像的视觉特征向量最接近的语义特征向量,然后得到该语义特征向量对应的类别标签,即为输入图像的类别标签;采用公式表示为:
其中,Labeli为类别标签,D(·)是最近邻算法的距离函数,v是测试集中的类别标签。
优选地,所述A1=1000,A2=1028。
优选地,所述CNN模型为在ImageNet上预训练的Inception v4卷积神经网络。
优选地,所述循环神经网络为双向LSTM。
有益效果:
本发明针对自然场景下汉字识别数据收集困难、识别率不高的问题,采用了零样本学习的思路,大大降低了对训练数据的要求,且符合自然场景下文本数据分布的规律;利用汉字这一象形字的特点,利用字根作为视觉属性,采用机器学习的方法进行模型训练和参数优化,取得了可行的识别率,为自然场景下的汉字识别提供了一种新思路。
附图说明
图1为本发明方法的文字识别嵌入模型结构示意图。
图2为本发明CTW数据集样本示例图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
本发明提供一种基于字根的零样本汉字识别方法,使用字根信息作为已知汉字类别和未见汉字类别之间知识迁移的媒介对未见类别的汉字图片进行识别。
如图1所示,一种基于字根的零样本汉字识别方法,包括如下步骤:
步骤1:构建训练集和测试集;
步骤1-1:将CTW汉字数据集中的只包含单个汉字的图像按照同一个汉字出现的频率从高到低进行排序,取出现频率排序在前1000的汉字对应的只包含单个汉字的图像为训练集;出现频率排序在前1000个之后取1028个汉字对应的只包含单个汉字的图像为测试集;
步骤1-2:将训练集和测试集中图像包含的汉字作为类别标签;
步骤1-3:采集训练集和测试集中图像包含的汉字的字根,并对所有字根进行编码,每个字根有唯一的编码;
步骤2:构建文字识别嵌入模型;
文字识别嵌入模型包括两个并行分支,一个是图像处理分支,另一个是属性信息处理分支;
所述图像处理分支由CNN模型构成,输入为只包含单个汉字的图像,输出为视觉特征向量,用φ(Ii)表示,Ii为第i幅只包含单个汉字的图像;
所述属性信息处理分支由循环神经网络构成;对训练集和测试集中图像包含的任一汉字,采集该汉字的字根,再用步骤1的字根编码方法将该汉字变为字根编码组合;使用递归神经网络,将训练集和测试集中图像包含的所有汉字的字根编码组合再次编码为固定长度语义向量;循环神经网络的输入为固定长度语义向量,输出为语义特征向量,输出表示如下:
其中,表示前向最终隐藏状态,/>表示反向的最终隐藏状态,f(·)是ReLU激活函数,/>是/>的权重,/>是/>的权重;
步骤3:定义目标函数为最小化L(W1,W2):
其中,N为训练集中图像数量;
步骤4:使用训练集对文字识别嵌入模型进行训练,当目标函数最小时结束,得到最终的文字识别嵌入模型;
步骤5:将测试集中的图像输入最终的文字识别嵌入模型,得到输入图像的视觉特征向量和语义特征向量,采用最近邻算法,找到与输入图像的视觉特征向量最接近的语义特征向量,然后得到该语义特征向量对应的类别标签,即为输入图像的类别标签;采用公式表示为:
其中,Labeli为类别标签,D(·)是最近邻算法的距离函数,v是测试集中的类别标签。
优选地,所述CNN模型为在ImageNet上预训练的Inception v4卷积神经网络。
优选地,所述循环神经网络为双向LSTM。
具体实施例:
1、数据收集
自然场景下的汉字图像数据使用了自然场景下的汉字数据集(Chinese TextDataset in the Wild,简称CTW)中包含的32,285个高分辨率街景图像。汉字图像包含平面文本、凸起文本、不良照明下的文本、远程文本、部分遮挡文本等,具有多样性和一定的挑战性。对于每个字符,标注包括其基础字符、边界框和六个外形属性。属性表示角色的背景复杂性、外观、风格等。这个数据集是迄今为止最大的汉字数据集,也是唯一包含详细注释的数据集。本实施例使用其中的单个汉字的图像和类别标签,共3650个类别。如图2所示,在自然场景下收集的数据集中的样本有不同的背景、字体和颜色等多种形态,包括有遮挡,复杂背景,发生形变和艺术字等,增加了识别难度。但是人能识别出这些汉字在于它们的字根、结构是相同的。
由于数据集是在自然场景下收集的,所以汉字的频率有所不同,且差异较大;频率最高的是“中”字,达到17500以上;频率最低的汉字只出现过几次。按照这些汉字在数据集中的出现频率由高到低排序,并统计出数据分布情况,如表1所示,有严重的数据不均衡情况。
表1 CTW中数据分布情况
由于在CTW测试集中,频率较低的一些类别汉字并未出现,因此规定在CTW的训练集中频率最高的前1000类作为可见类,形成本实施例的训练集;CTW的测试集中除了这1000类剩余的1028类作为不可见类,形成本实施例的测试集。
使用网站(http://www.chaiwubi.com/bmcx/)收集了训练集中1000类汉字和测试集中1028类汉字的字根,作为属性信息。
2、模型设计
针对汉字图像和字根属性的零样本学习任务,开发了一种简单而有效的跨模态学习模型,该方法很灵活,并且能够实现语义空间表示的端到端学习。
模型有两个分支,一个分支是汉字图像经过的CNN子模型得到视觉特征向量,另一个分支是图片汉字对应的字根属性编码后经过双向LSTM得到语义特征向量,与视觉特征向量求第二范式作为目标函数,在训练阶段更新模型参数。
在本实施例中,使用在ImageNet上预训练的Inception v4卷积神经网络部分作为此模型中的CNN模型。
在属性信息处理分支中,使用递归神经网络将字根属性(可变长度字根组合)的内容编码为固定长度语义向量。再输入双向LSTM模型,LSTM是一种特殊的循环神经网络,引入了门控的概念来控制不同时间步之间的消息传递。通过这种方式,LSTM可以模拟长期依赖关系。模型有两种状态来跟踪历史记录:单元状态c和隐藏状态h。对于特定时间步长t,通过对当前输入xt和先前状态进行积分计算。在集成期间,使用三种类型的门来控制消息传递:输入门it,遗忘门ft和输出门ot
首先为了提取汉字图片的特征,在训练集上训练一个神经网络分类模型,这里我本实施例采用在ImageNet数据集上预训练的Inception v4作为分类模型。
按照训练类别数将神经网络分类模型定义为C1,C2和C3;将根据分类模型训练类别数的不同,将文字识别嵌入模型也分为对应的三种模型,G1,G2和G3。其中,分类训练类别数为1001时,将训练集中出现频率最高的1000类作为1000类,剩余的所有类别样本数只占整个训练集的7.7%,作为第1001类。
在分类模型的训练时,训练集分别一共有1000、1001和3650个类别,由于不同类别的样本数差异较大,在每个批处理时用了两种训练方式。第一种是在每个批处理中,按照类别数随机选择,然后在每个类别中随机选出图像样本,这样每个汉字图像类别训练次数是平均的,但是每个图像样本的训练次数是不平均的;第二种是在每个批处理中随机选择一定数量的样本,这样每个图像样本的训练次数是平均的,类别训练次数是不平均的。对于这两种训练方式,也会有不同的结果。表2为第一种训练方式,表3为第二种训练方式。
表2按照类别数抽取训练数据的模型定义
表3按照样本数抽取训练数据的模型定义
分类模型使用预训练的Inception v4,预训练部分的初始学习率为0.01,最后一层的初始学习率为0.1,使用指数衰减方式迭代100000次,weight_decay=4e-5,batchsize=312;嵌入模型的学习率为0.001,训练周期为100,batch size设为256,LSTM的隐含层为512。
在训练好分类模型后,再用训练集的前1000类作为可见类,在嵌入模型上训练,在测试集上测试,其中在后1028类上的结果为零样本实验的测试结果。不同模型的准确率展示在表4中。
表4嵌入模型在测试集上的准确率
从表中可以分析出:
1.Top 5准确率普遍高于Top 1准确率。
2.有不可见类参与分类模型的训练的准确率明显高于没有不可见类参与的模型。不可见类参与分类模型的训练,使得文本图像经过分类模型得到的特征根据有辨别性,在后面的嵌入模型中更容易与其他类别进行分别,因此,G2、G3和Gb、Gc的准确率明显高于G1和G2的准确率。
3.Gb、Gc比G2、G3的准确率有所提升。这同样是因为在Cb、Cc模型中可以按照样本平均地参与训练,分类模型的识别效果好,文本图像经过分类模型得到的特征根据更具有辨别性,因此识别率有提升。

Claims (3)

1.一种基于字根的零样本汉字识别方法,其特征在于,包括以下步骤:
步骤1:构建训练集和测试集;
步骤1-1:将CTW汉字数据集中的只包含单个汉字的图像按照同一个汉字出现的频率从高到低进行排序,取出现频率排序在前A1的汉字对应的只包含单个汉字的图像为训练集;出现频率排序在前A1个之后取A2个汉字对应的只包含单个汉字的图像为测试集;A1=1000,A2=1028;
步骤1-2:将训练集和测试集中图像包含的汉字作为类别标签;
步骤1-3:采集训练集和测试集中图像包含的汉字的字根,并对所有字根进行编码,每个字根有唯一的编码;
步骤2:构建文字识别嵌入模型;
文字识别嵌入模型包括两个并行分支,一个是图像处理分支,另一个是属性信息处理分支;
所述图像处理分支由CNN模型构成,输入为只包含单个汉字的图像,输出为视觉特征向量,用Φ(Ii)表示,Ii为第i幅只包含单个汉字的图像;
所述属性信息处理分支由循环神经网络构成;对训练集和测试集中图像包含的任一汉字,采集该汉字的字根,再用步骤1的字根编码方法将该汉字变为字根编码组合;使用递归神经网络,将训练集和测试集中图像包含的所有汉字的字根编码组合再次编码为固定长度语义向量;循环神经网络的输入为固定长度语义向量,输出为语义特征向量,输出表示如下:
其中,表示前向最终隐藏状态,/>表示反向的最终隐藏状态,f(·)是ReLU激活函数,是/>的权重,/>是/>的权重;
步骤3:定义目标函数为最小化L(W1,W2):
其中,N为训练集中图像数量;
步骤4:使用训练集对文字识别嵌入模型进行训练,当目标函数最小时结束,得到最终的文字识别嵌入模型;
步骤5:将测试集中的图像输入最终的文字识别嵌入模型,得到输入图像的视觉特征向量和语义特征向量,采用最近邻算法,找到与输入图像的视觉特征向量最接近的语义特征向量,然后得到该语义特征向量对应的类别标签,即为输入图像的类别标签;采用公式表示为:
其中,Labeli为类别标签,D(·)是最近邻算法的距离函数,v是测试集中的类别标签。
2.根据权利要求1所述的一种基于字根的零样本汉字识别方法,其特征在于,所述CNN模型为在ImageNet上预训练的Inception v4卷积神经网络。
3.根据权利要求1所述的一种基于字根的零样本汉字识别方法,其特征在于,所述循环神经网络为双向LSTM。
CN202011455952.4A 2020-12-10 2020-12-10 一种基于字根的零样本汉字识别方法 Active CN112508108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011455952.4A CN112508108B (zh) 2020-12-10 2020-12-10 一种基于字根的零样本汉字识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011455952.4A CN112508108B (zh) 2020-12-10 2020-12-10 一种基于字根的零样本汉字识别方法

Publications (2)

Publication Number Publication Date
CN112508108A CN112508108A (zh) 2021-03-16
CN112508108B true CN112508108B (zh) 2024-01-26

Family

ID=74973468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011455952.4A Active CN112508108B (zh) 2020-12-10 2020-12-10 一种基于字根的零样本汉字识别方法

Country Status (1)

Country Link
CN (1) CN112508108B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113723421B (zh) * 2021-09-06 2023-10-17 华南理工大学 基于匹配类别嵌入的零样本的汉字识别方法
CN117218667B (zh) * 2023-11-07 2024-03-08 华侨大学 一种基于字根的中文文字识别方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200323A (ja) * 1998-10-26 2000-07-18 Matsushita Electric Ind Co Ltd オンライン手書き漢字認識装置
CN110533057A (zh) * 2019-04-29 2019-12-03 浙江科技学院 一种单样本与少样本场景下的汉字验证码识别方法
CN110689012A (zh) * 2019-10-08 2020-01-14 山东浪潮人工智能研究院有限公司 一种端到端的自然场景文本识别方法及系统
CN111126160A (zh) * 2019-11-28 2020-05-08 天津瑟威兰斯科技有限公司 基于五笔输入法构建的智能汉字结构评价方法及系统
CN111626287A (zh) * 2019-02-27 2020-09-04 北京奇虎科技有限公司 一种识别场景内中文的识别网络的训练方法和装置
CN111814508A (zh) * 2019-04-10 2020-10-23 阿里巴巴集团控股有限公司 一种文字识别方法、系统及设备
CN111832546A (zh) * 2020-06-23 2020-10-27 南京航空航天大学 一种轻量级自然场景文本识别方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200323A (ja) * 1998-10-26 2000-07-18 Matsushita Electric Ind Co Ltd オンライン手書き漢字認識装置
CN111626287A (zh) * 2019-02-27 2020-09-04 北京奇虎科技有限公司 一种识别场景内中文的识别网络的训练方法和装置
CN111814508A (zh) * 2019-04-10 2020-10-23 阿里巴巴集团控股有限公司 一种文字识别方法、系统及设备
CN110533057A (zh) * 2019-04-29 2019-12-03 浙江科技学院 一种单样本与少样本场景下的汉字验证码识别方法
CN110689012A (zh) * 2019-10-08 2020-01-14 山东浪潮人工智能研究院有限公司 一种端到端的自然场景文本识别方法及系统
CN111126160A (zh) * 2019-11-28 2020-05-08 天津瑟威兰斯科技有限公司 基于五笔输入法构建的智能汉字结构评价方法及系统
CN111832546A (zh) * 2020-06-23 2020-10-27 南京航空航天大学 一种轻量级自然场景文本识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Street View Text Recognition With Deep Learningfor Urban Scene Understanding in IntelligentTransportation Systems;chongsheng Zhang et al.;IEEE Transactions on Intelligent Transportation;第22卷(第7期);全文 *
基于字符编码与卷积神经网络的汉字识别;刘正琼;丁力;凌琳;李学飞;周文霞;;电子测量与仪器学报(02);全文 *

Also Published As

Publication number Publication date
CN112508108A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN110334705B (zh) 一种结合全局和局部信息的场景文本图像的语种识别方法
CN109447140B (zh) 一种基于神经网络深度学习的图像识别并推荐认知的方法
CN108960409B (zh) 标注数据生成方法、设备及计算机可读存储介质
CN110083700A (zh) 一种基于卷积神经网络的企业舆情情感分类方法及系统
CN109544524A (zh) 一种基于注意力机制的多属性图像美学评价系统
CN105205448B (zh) 基于深度学习的文字识别模型训练方法和识别方法
CN108108355A (zh) 基于深度学习的文本情感分析方法和系统
CN107609460A (zh) 一种融合时空双重网络流和attention机制的人体行为识别方法
CN107808132A (zh) 一种融合主题模型的场景图像分类方法
CN110533737A (zh) 基于结构引导汉字字体生成的方法
CN110008338A (zh) 一种融合gan和迁移学习的电商评价情感分析方法
CN106920243A (zh) 改进的全卷积神经网络的陶瓷材质件序列图像分割方法
CN109741341A (zh) 一种基于超像素和长短时记忆网络的图像分割方法
CN110097095B (zh) 一种基于多视图生成对抗网络的零样本分类方法
CN112508108B (zh) 一种基于字根的零样本汉字识别方法
CN103942571B (zh) 一种基于遗传规划算法的图形图像分类方法
CN109711426A (zh) 一种基于gan和迁移学习的病理图片分类装置及方法
CN108596243A (zh) 基于分级注视图和条件随机场的眼动注视图预测方法
CN107679110A (zh) 结合文本分类与图片属性提取完善知识图谱的方法及装置
CN111143615B (zh) 一种短视频情感类别的识别装置
CN112308115A (zh) 一种多标签图像深度学习分类方法及设备
CN110263164A (zh) 一种基于模型融合的情感倾向分析方法
CN107463996A (zh) 自步‑协同训练学习方法
CN109508640A (zh) 一种人群情感分析方法、装置和存储介质
CN101604451A (zh) 一种基于形状语法的个人汉字手写字体自动仿写方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant