CN112504900A - 一种模拟复合绝缘子内部发热的装置 - Google Patents

一种模拟复合绝缘子内部发热的装置 Download PDF

Info

Publication number
CN112504900A
CN112504900A CN202011396611.4A CN202011396611A CN112504900A CN 112504900 A CN112504900 A CN 112504900A CN 202011396611 A CN202011396611 A CN 202011396611A CN 112504900 A CN112504900 A CN 112504900A
Authority
CN
China
Prior art keywords
composite insulator
heating
induction heater
electromagnetic induction
simulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011396611.4A
Other languages
English (en)
Inventor
刘辉
张洋
梅红伟
周超
刘嵘
王黎明
贾然
刘传彬
漆照
李子岳
张皓
段玉兵
孙晓斌
黄振宁
黄新宇
张思远
李珊
高成成
沈庆河
沈浩
马国庆
李鹏飞
陈子龙
社斌祥
姚朋飞
陈文栋
陈星延
陈卯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Shandong Electric Power Co Ltd
State Grid Shandong Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Shandong Electric Power Co Ltd
State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Shandong Electric Power Co Ltd, State Grid Shandong Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202011396611.4A priority Critical patent/CN112504900A/zh
Publication of CN112504900A publication Critical patent/CN112504900A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/60Investigating resistance of materials, e.g. refractory materials, to rapid heat changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/27Control of temperature characterised by the use of electric means with sensing element responsive to radiation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/645Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
    • H05B6/6455Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors the sensors being infrared detectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0694Temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Clinical Laboratory Science (AREA)
  • Automation & Control Theory (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Insulators (AREA)

Abstract

为了解决现在模拟复合绝缘子内部发热的方法中存在的加热不均匀、无法控制加热位置等导致不能完美复制发热复合绝缘子的状况,本发明提出一种模拟复合绝缘子内部发热的装置,包括含有温度传感器的电磁感应加热器、与电磁感应加热器相连的水冷系统、热像仪和数据采集及处理系统,数据采集和处理系统连接并控制热像仪和电磁感应加热器的电磁激励源;数据采集及处理系统包括工控机、数字硅箱、控制盒和显示器及键盘。本发明基于涡流效应,实现了玻璃钢芯棒与硅橡胶护套界面上的局部加热,而非传统的绝缘子整体加热。通过温度传感器控制最终加热温度,调整电磁线圈输出功率及加热时间,可以得到不同老化程度的复合绝缘子。

Description

一种模拟复合绝缘子内部发热的装置
技术领域
本发明涉及电力系统安全领域,更具体涉及一种模拟复合绝缘子内部发热的装置。
背景技术
复合绝缘子因为其优良的憎水性能,从而有着较强的耐污闪能力,解决了长期困扰电力部门的绝缘子污闪问题。再加上复合绝缘子比强度高,安装维护方便等优点被广泛应用,起着保护电力系统和设备的作用。但近年来运行中的复合绝缘子出现了酥朽断裂的异常断裂现象,引发了极为恶劣的电网安全事故。初步的实验研究表明高温是导致复合绝缘子酥朽断裂的关键因素。因此,希望能够尽可能模拟现场复合绝缘子发热现象,进一步研究高温对于复合绝缘子酥朽断裂的影响,提出高温导致复合绝缘子酥朽断裂的机理,以此找到预防复合绝缘子酥朽断裂的有效措施。
实际运行中复合绝缘子酥朽断裂均发生在高压侧,首先发生在芯棒和绝缘护套的交界处,局部放电产生的能量在硅橡胶护套包裹的较为封闭的环境里产生高温,温升常常可以达到几十度。因此,复合绝缘子的异常发热现象产生于玻璃钢芯棒与绝缘护套的交界面处,通常位于高压端的前几个伞裙的某一部位。现有的实验室加热手段难以模拟界面处的发热,传统的方法是对绝缘子(包括绝缘护套)加热,热量传递由护套表面逐渐向内发展,或者是对芯棒加热,不再考虑绝缘护套的影响,且各种热老化模拟实验往往是对完整的样品加热,不符合现场复合绝缘子局部发热的特点,模拟出来的酥朽劣化形貌与现场酥朽断裂的绝缘子差别较大,难以在实验室中复现绝缘子热老化过程,对酥朽断裂的机理的进一步研究造成障碍。
发明内容
为了解决现在模拟复合绝缘子内部发热的方法中存在的加热不均匀、无法控制加热位置等导致不能完美复制发热复合绝缘子的状况,本发明提出以下解决方案。
一种模拟复合绝缘子内部发热的装置,包括含有温度传感器的电磁感应加热器、与电磁感应加热器相连的水冷系统、热像仪和数据采集及处理系统,数据采集和处理系统连接并控制热像仪和电磁感应加热器的电磁激励源。
进一步的,数据采集及处理系统包括工控机、数字硅箱、控制盒和显示器及键盘。
进一步的,还包括模拟复合绝缘子样品,模拟复合绝缘子样品为一个最外层为硅橡胶护套的圆柱形器件,内部为玻璃钢芯棒,芯棒和硅橡胶护套交界处埋藏小型金属材质的人工缺陷。
优选的,电磁感应加热器输入电压范围为180-240V,最大工作电流为1000A,最大输出功率为15kW,振荡频率控制范围为100-150kHz。
优选的,水冷系统的冷却水压为0.2-0.3MPa,用以对感应线圈进行冷却降温。
本发明的有益效果为:
电磁加热相比其他实验室加热手段,在模拟复合绝缘子异常发热方面有响应速度快、便于控制功率、逼近工程实际发热情况诸多优势。本发明基于涡流效应,实现了玻璃钢芯棒与硅橡胶护套界面上的局部加热,而非传统的绝缘子整体加热。通过温度传感器控制最终加热温度,调整电磁线圈输出功率及加热时间,可以得到不同老化程度的复合绝缘子。
本发明为研究高温对复合绝缘子的破坏作用提供了一种行之有效的实验手段。
附图说明
图1为本发明所述装置结构示意图,
其中,1-水冷系统,2-电磁感应加热器,3-热像仪,4-数据采集和处理系统,5-模拟复合绝缘子样品。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种模拟复合绝缘子内部发热的装置,包括含有温度传感器的电磁感应加热器(2)、与电磁感应加热器相连的水冷系统(1)、热像仪(3)和数据采集及处理系统(4),数据采集和处理系统连接并控制热像仪和电磁感应加热器的电磁激励源;数据采集及处理系统包括工控机、数字硅箱、控制盒和显示器及键盘。
电磁感应加热器输入电压范围为180-240V,最大工作电流为1000A,最大输出功率为15kW,振荡频率控制范围为100-150kHz,水冷系统的冷却水压为0.2-0.3MPa,用以对感应线圈进行冷却降温,红外热像仪型号为Telops FAST M200,红外图像分辨率可达640×512pixels,光谱响应波段范围为1.5μm~5.1μm,典型NETD为18mK,热像仪采集帧频可达210Hz,在窗口模式下最高帧频能达到5600Hz。
使用时,将模拟复合绝缘子样品(5)放入电磁感应加热器,所述模拟复合绝缘子样品为一个最外层为硅橡胶护套的圆柱形器件,内部为玻璃钢芯棒,所述芯棒和硅橡胶护套交界处埋藏小型金属材质的人工缺陷(如钢针或线圈)。
实验人员可以通过温度传感器实时监测模拟复合绝缘子的温度,调整电磁线圈的输出功率和加热时间来模拟不同复合绝缘子的老化程度;可以通过改变模拟复合绝缘子样品人工缺陷的位置来模拟不同位置异常发热的状况。
用本发明的模拟复合绝缘子内部发热的装置进行模拟老化的效果与真实的现场酥朽老化样品对比如下表所示。
Figure DEST_PATH_IMAGE002
综合上述老化结果对比,酥朽老化芯棒与本发明电磁加热老化芯棒外观极为相似,微观结构均能观察到环氧树脂基体分解、玻璃纤维裸露;化学组成上,环氧树脂基体中的苯环结构、甲基、芳香族结构、玻璃纤维中的Si-O键均被破坏;元素组成上,两者各元素质量占比相近,相似度达到95%以上。
实施例2
模拟复合绝缘子的人工缺陷使用曲率半径为1μm的镀金钨针及线圈,位于未打磨和涂覆偶联剂的芯棒和硅橡胶护套之间,紧贴针尖处有长径10mm,短径 2mm的半椭球面的空气间隙。
样品长度统一为50mm,芯棒直径24mm,护套厚度6mm,针尖距离底部(即距离护套最外层的最大垂直距离)20mm。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种模拟复合绝缘子内部发热的装置,其特征在于,包括含有温度传感器的电磁感应加热器(2)、与电磁感应加热器相连的水冷系统(1)、热像仪(3)和数据采集及处理系统(4),所述数据采集和处理系统连接并控制热像仪和电磁感应加热器的电磁激励源。
2.根据权利要求1所述的模拟复合绝缘子内部发热的装置,其特征在于,所述数据采集及处理系统包括工控机、数字硅箱、控制盒和显示器及键盘。
3.根据权利要求1所述的模拟复合绝缘子内部发热的装置,其特征在于,还包括模拟复合绝缘子样品(5),所述模拟复合绝缘子样品为一个最外层为硅橡胶护套的圆柱形器件,内部为玻璃钢芯棒,所述芯棒和硅橡胶护套交界处埋藏小型金属材质的人工缺陷。
4.根据权利要求1所述的模拟复合绝缘子内部发热的装置,其特征在于,所述电磁感应加热器输入电压范围为180-240V,最大工作电流为1000A,最大输出功率为15kW,振荡频率控制范围为100-150kHz。
5.根据权利要求1所述的模拟复合绝缘子内部发热的装置,其特征在于,所述水冷系统的冷却水压为0.2-0.3MPa,用以对感应线圈进行冷却降温。
CN202011396611.4A 2020-12-02 2020-12-02 一种模拟复合绝缘子内部发热的装置 Pending CN112504900A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011396611.4A CN112504900A (zh) 2020-12-02 2020-12-02 一种模拟复合绝缘子内部发热的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011396611.4A CN112504900A (zh) 2020-12-02 2020-12-02 一种模拟复合绝缘子内部发热的装置

Publications (1)

Publication Number Publication Date
CN112504900A true CN112504900A (zh) 2021-03-16

Family

ID=74968568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011396611.4A Pending CN112504900A (zh) 2020-12-02 2020-12-02 一种模拟复合绝缘子内部发热的装置

Country Status (1)

Country Link
CN (1) CN112504900A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507731A (zh) * 2011-10-08 2012-06-20 武汉大学 一种复合绝缘子界面缺陷检测方法
CN102680815A (zh) * 2012-04-16 2012-09-19 中国南方电网有限责任公司超高压输电公司天生桥局 一种复合绝缘子交界面的检测方法及系统
CN102706777A (zh) * 2012-06-18 2012-10-03 安徽省电力公司安庆供电公司 复合绝缘子憎水性便携式检测装置
CN103323760A (zh) * 2013-06-28 2013-09-25 云南电力试验研究院(集团)有限公司电力研究院 一种基于光纤复合绝缘子的输电状态评估系统
CN104713901A (zh) * 2015-01-23 2015-06-17 国家电网公司 基于红外精确测温的复合绝缘子绝缘缺陷检测方法
CN206781068U (zh) * 2017-06-05 2017-12-22 南阳中祥电力电子有限公司 一种自动加热的复合外套修补装置
CN108957165A (zh) * 2018-04-28 2018-12-07 国网山东省电力公司烟台供电公司 一种输电线路瓷绝缘子测温实验装置
CN110031511A (zh) * 2019-04-19 2019-07-19 清华大学深圳研究生院 缺陷检测装置、缺陷检测系统及缺陷检测方法
CN110806427A (zh) * 2019-11-27 2020-02-18 云南电网有限责任公司电力科学研究院 一种线路复合绝缘子内部缺陷的在线检测方法和系统
CN111999186A (zh) * 2020-07-15 2020-11-27 中国电力科学研究院有限公司 一种温度可控的复合绝缘子机械性能测试系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507731A (zh) * 2011-10-08 2012-06-20 武汉大学 一种复合绝缘子界面缺陷检测方法
CN102680815A (zh) * 2012-04-16 2012-09-19 中国南方电网有限责任公司超高压输电公司天生桥局 一种复合绝缘子交界面的检测方法及系统
CN102706777A (zh) * 2012-06-18 2012-10-03 安徽省电力公司安庆供电公司 复合绝缘子憎水性便携式检测装置
CN103323760A (zh) * 2013-06-28 2013-09-25 云南电力试验研究院(集团)有限公司电力研究院 一种基于光纤复合绝缘子的输电状态评估系统
CN104713901A (zh) * 2015-01-23 2015-06-17 国家电网公司 基于红外精确测温的复合绝缘子绝缘缺陷检测方法
CN206781068U (zh) * 2017-06-05 2017-12-22 南阳中祥电力电子有限公司 一种自动加热的复合外套修补装置
CN108957165A (zh) * 2018-04-28 2018-12-07 国网山东省电力公司烟台供电公司 一种输电线路瓷绝缘子测温实验装置
CN110031511A (zh) * 2019-04-19 2019-07-19 清华大学深圳研究生院 缺陷检测装置、缺陷检测系统及缺陷检测方法
CN110806427A (zh) * 2019-11-27 2020-02-18 云南电网有限责任公司电力科学研究院 一种线路复合绝缘子内部缺陷的在线检测方法和系统
CN111999186A (zh) * 2020-07-15 2020-11-27 中国电力科学研究院有限公司 一种温度可控的复合绝缘子机械性能测试系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘立帅 等: "基于频域热特征成像的复合绝缘子缺陷检测方法", 《中国电机工程学院》 *
律方成 等: "复合绝缘子故障检测方法的有效性分析", 《高压电器》 *
粟福珩 等: "陡波试验寻找合成绝缘子内部缺陷有效性的检验", 《电网技术》 *
陈熹: "合成绝缘子内部缺陷的探讨", 《山西电力》 *

Similar Documents

Publication Publication Date Title
Li et al. Surface functional graded spacer for compact HVDC gaseous insulated system
Hu et al. Flashover performance of pre-contaminated and ice-covered composite insulators to be used in 1000 kV UHV AC transmission lines
Zeng et al. Measurement of electric field distribution along composite insulators by integrated optical electric field sensor
CN101557095A (zh) 温度保护型干式空心电抗器及其测温方法
Ghassemi et al. A coupled computational fluid dynamics and heat transfer model for accurate estimation of temperature increase of an ice-covered FRP live-line tool
CN103904785B (zh) 多重组合感应的高压输电线路取电及变电装置
CN112504900A (zh) 一种模拟复合绝缘子内部发热的装置
Hao et al. Internal temperature detections of contaminated silicone rubber under discharge conditions based on fiber Bragg gratings
Mei et al. Detection of internal defects of full-size composite insulators based on microwave technique
Zhang et al. Study on decay‐like fracture of 500 kV composite insulators: Infrared, ultraviolet and electric field distribution detection
CN206574549U (zh) 一种光纤复合绝缘子
CN112432874B (zh) 一种模拟复合绝缘子内部发热的用具及方法
CN110703055B (zh) 一种零值绝缘子红外检测方法
Yan et al. An OH-PDMS-modified nano-silica/carbon hybrid coating for anti-icing of insulators part ii: Anti-icing performance
Jiang et al. Calculation and optimization of electric field of insulators with internal grading ring
Hao et al. Method of quasi-distributed interface fiber Bragg gratings monitoring dry band arc on the moist pollution layer of composite insulators
Joneidi et al. Electric field distribution under water droplet and effect of thickness and conductivity of pollution layer on polymer insulators using finite element method
Cheng et al. Study on electrical properties and field solutions of water related heating of composite insulators on 500kV AC transmission lines
Chen et al. Influence of Different Measuring Positions on Infrared Detection of Deteriorated Composite Insulators
Chunyan et al. Using ultraviolet imaging method to detect the external insulation faults of electric device
US5247147A (en) Method and apparatus for heating a silica optical fiber in a fiber-drawing installation
Zheng et al. Breaking cause analysis on a 110 kV overhead grounding wire (OGW)
Bi et al. A method for detecting conductive droplet deformation and flashover using interface temperature based on electrothermal synergistic mechanism
Ma et al. Analysis of Sheath Breakdown Induced by Air Gap at the Interface between Hardware and Sheath of Silicone Rubber Composite Insulator on the Roof of High-speed Trains
Huang et al. Experimental Study on Reducing Icing on Conductor Using Self-heating Ring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210316

RJ01 Rejection of invention patent application after publication