CN112504337B - 一种基于光栅光纤监测的软土降水与回灌模型试验装置 - Google Patents

一种基于光栅光纤监测的软土降水与回灌模型试验装置 Download PDF

Info

Publication number
CN112504337B
CN112504337B CN202011376283.1A CN202011376283A CN112504337B CN 112504337 B CN112504337 B CN 112504337B CN 202011376283 A CN202011376283 A CN 202011376283A CN 112504337 B CN112504337 B CN 112504337B
Authority
CN
China
Prior art keywords
water
grating
soft soil
water injection
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011376283.1A
Other languages
English (en)
Other versions
CN112504337A (zh
Inventor
王琼
董宇
苏薇
叶为民
刘笑天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202011376283.1A priority Critical patent/CN112504337B/zh
Publication of CN112504337A publication Critical patent/CN112504337A/zh
Application granted granted Critical
Publication of CN112504337B publication Critical patent/CN112504337B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本申请提供一种基于光栅光纤监测的软土降水和回灌模型试验装置,包括模型箱、水位控制与监测装置、光纤光栅监测装置。其中,模型箱由若干个分段圆形桶状结构组成,可根据需要自由拼装;水位控制与监测装置可模拟降水和回灌的过程,并实时监测土体内部的水位变化情况;光纤光栅监测装置包括光栅位移传感器、光栅温度传感器、光栅孔压传感器,光栅位移传感器监测土体在水位变化时的位移情况,光栅温度传感器监测温度变化实现温度补偿,光栅孔压传感器监测降水和回灌过程中土体孔压变化。本申请实现了利用光栅光纤技术观测软土在地下水降水和回灌过程中的位移、温度和孔压的变化。

Description

一种基于光栅光纤监测的软土降水与回灌模型试验装置
技术领域
本申请属于地质工程与光纤感测领域,尤其涉及一种基于光栅光纤监测的软土降水与回灌模型试验装置。
技术背景
软土的典型特点包括不均匀、压缩性高、强度弱、透水性差以及较强的流变和触变性等。在建筑工程实践,软土地基的特点主要包括:较大的地基沉降量、较长的沉降时间、固结速度缓慢、沉降不均以及抗剪性较差等。传统的沉降变形监测系统存在工作量大、需要人员合作、易受天气因素影响,以及监测精度低等缺点,不能全面获取软土地基的沉降变形情况。而光纤光栅作为一种新型的材料,具有耐腐蚀和及高精度的特点,现已应用于土木工程、水利交通、地质工程和航天等各个工程领域。
对于土体变形的监测,常用的分布式光纤监测技术有布里渊散射光时域反射技术(BOTDR)、布里渊散射光时域分析技术(BOTDA)和布拉格光纤光栅(FBG)等分布式技术,FBG测量精度明显高于BOTDR和BOTDA,动态响应灵敏和复用性好。且对于软土,全分布式光纤并不适用,因为土体和全分布光纤耦合性差,点式感测技术由于工作量巨大,因此,相比之下,准分布式感测技术最适合软土变形沉降的监测。
发明内容
本申请的目的在于:弥补现有软土降水与回灌模型试验研究的不足,提供一种可以全面、快速、有效、准确监测软土在降水和回灌条件下的位移和孔压变化的实验装置。
为实现上述目的,本申请提供了如下技术方案:
一种基于光栅光纤监测的软土降水与回灌模型试验装置,其特征在于,包括模型箱、水位控制与监测装置、光纤光栅监测装置。
所述的模型箱由若干个分段模型桶组成,分段模型桶为顶底开口的圆形管状结构,具有较高的透光度和机械强度,各分段模型桶之间通过若干个法兰盘密封连接,可根据需要自由拼装;模型箱底部为不透水的圆形底座,与最下层分段模型桶之间通过法兰盘密封连接;模型箱底部设有砂层加土工布的透水结构,用以防止软土材料流失并向其均匀送水;模型箱内透水结构上可分层填筑软土材料;模型箱一侧设有若干个不同高度的测压孔用于连接测压管,测压孔处设置有透水石和土工布,防止软土材料流入测压管;模型箱底部透水结构处侧面设有进/排水口用于供水。
所述的水位控制与监测装置包括水位控制装置和水位监测装置;
进一步,所述的水位控制装置包括水箱、蠕动泵、注水瓶、三根注水管、升降支架;所述的水箱用于盛放去离子水,通过注水管依次与蠕动泵、注水瓶连接,利用蠕动泵将水箱中的水输送至注水瓶;所述的注水瓶通过升降支架固定于水箱正上方,注水瓶高度可通过升降支架调节;所述的注水瓶一侧设有溢流口,当注水瓶内水位高于溢流口时,水将从溢流口流出并落入水箱,保证注水瓶内水位始终处于溢流口高度;注水瓶和模型箱的进/排水口之间通过注水管连接,注水瓶内水在重力作用下沿注水管流入进/排水口,注水的水位高度由注水瓶溢流口高度决定,通过升降支架调节注水瓶高度可控制注水的水位高度;
所述的水位监测装置由若干根塑料软管和若干根测压管组成;若干根测压管通过若干根塑料软管与模型箱的若干个测压孔连接,用于观测模型箱中不同高度软土材料内水位变化。
所述的光纤光栅监测装置包括若干个光栅位移传感器、若干个光栅温度传感器、若干个光栅孔压传感器、若干根传导光纤、光纤解调器;所述的若干个光栅位移传感器通过若干根传导光纤串联,分层布置在软土材料内部,用于感知软土材料内部位移;所述的若干个光栅温度传感器通过若干根传导光纤串联,分层布置在软土材料内部,用于感知软土材料内部温度;所述的若干个光栅孔压传感器通过若干根传导光纤串联,分层布置在软土材料内部,用于感知软土材料内部孔压;所述的若干根传导光纤可将若干个光栅位移传感器、若干个光栅温度传感器、若干个光栅孔压传感器和光纤解调器连接,用于传输光信号;所述的光纤解调器用于将传导光纤传输回来的光信号解调为电信号。
与现有技术相比,本申请提供的技术方案,作为举例而非限定,具有如下有益效果:可以全面、快速、有效、准确监测软土在降水和回灌条件下的位移和孔压变化。
附图说明
图1为本申请实施例提供的试验装置中装置整体结构示意图;
图2为本申请实施例提供的试验装置中传感器平面布置图。
附图标记说明
1为模型箱、2为水位控制与监测装置、3为光纤光栅监测装置;
11为分段模型桶、12为圆形底座、13为法兰盘、14为砂层、15为土工布、16为测压孔、17为透水石、18为进/排水口;
21为水位控制装置、22为水位监测装置;
211为水箱、212为蠕动泵、213为注水瓶、214为注水管、215为升降支架、216为溢流口;
221为塑料软管、222为测压管;
31为光栅位移传感器、32为光栅温度传感器、33为光栅孔压传感器、34为传导光纤、35为光纤解调器。
具体实施方式
下面将结合具体实施例及其附图对本申请提供的技术方案作进一步说明。结合下面说明,本申请的优点和特征将更加清楚。
需要说明的是,本申请的实施例有较佳的实施性,并非是对本申请任何形式的限定。本申请实施例中描述的技术特征或者技术特征的组合不应当被认为是孤立的,它们可以被相互组合从而达到更好的技术效果。本申请优选实施方式的范围也可以包括另外的实现,且这应被本申请实施例所属技术领域的技术人员所理解。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述的技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限定。因此,示例性实施例的其它示例可以具有不同的值。
本申请的附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本申请实施例的目的,并非是限定本申请可实施的限定条件。任何结构的修饰、比例关系的改变或大小的调整,在不影响本申请所能产生的效果及所能达成的目的下,均应落在本申请所揭示的技术内容所能涵盖的范围内。且本申请各附图中所出现的相同标号代表相同的特征或者部件,可应用于不同实施例中。
如图1所示,一种基于光栅光纤监测的软土降水与回灌模型试验装置,包括模型箱1、水位控制与监测装置2、光纤光栅监测装置3;
模型箱1由三个分段模型桶11组成,三个分段模型桶11之间通过四个法兰盘13密封连接;模型箱1底部为不透水的圆形底座12,与最下层分段模型桶11之间通过法兰盘13密封连接;模型箱1底部设有砂层14加土工布15的透水结构;模型箱1内透水结构上分四层填筑软土材料;模型箱1一侧设有七个不同高度的测压孔16用于连接测压管222,测压孔16处设置有透水石17和土工布15;模型箱1底部砂层14处侧面设有进/排水口18;
水位控制与监测装置2包括水位控制装置21和水位监测装置22;
水位控制装置21包括水箱211、蠕动泵212、注水瓶213、三根注水管214、升降支架215;水箱211用于盛放去离子水,通过注水管214依次与蠕动泵212、注水瓶213连接,利用蠕动泵212将水箱211中的水输送至注水瓶213;注水瓶213通过升降支架215固定于水箱211正上方,注水瓶213高度可通过升降支架215调节;注水瓶213一侧设有溢流口216,当注水瓶213内水位高于溢流口216时,水将从溢流口216流出并落入水箱211,保证注水瓶213内水位始终处于溢流口216高度;注水瓶213和模型箱1的进/排水口18之间通过注水管214连接,注水瓶213内水在重力作用下沿注水管214流入进/排水口18,注水的水位高度由注水瓶213溢流口216高度决定,通过升降支架215调节注水瓶213高度可控制注水的水位高度;
水位监测装置22由七根塑料软管221和七根测压管222组成;七根测压管222通过七根塑料软管221与模型箱1的七个测压孔16连接。
结合图2所示,光纤光栅监测装置3包括六个光栅位移传感器31、三个光栅温度传感器32、三个光栅孔压传感器33、传导光纤34、光纤解调器35;六个光栅位移传感器31、三个光栅温度传感器32、三个光栅孔压传感器33分层布置在软土材料内部,通过传导光纤34串联并与光纤解调器35连接,用于感知软土材料内部位移、温度、孔压;光纤解调器35用于将传导光纤34传输回来的光信号解调为电信号。
在优选的实施方式中,可以将蠕动泵212、光纤解调器35与外部连电源连接,通过控制外接电源的开关为蠕动泵212、光纤解调器35通电或断电。
本申请提供的一种基于光栅光纤监测的软土降水与回灌模型试验装置,其工作方式如下:
1)利用五个法兰盘13将三个分段模型桶11、圆形底座12连接组成模型箱1,在模型箱1底部铺设砂层14和土工布15形成透水结构;利用七根塑料软管221将七个测压管222和模型箱1的测压孔16连接;
2)利用注水管214依次将水箱211、蠕动泵212、注水瓶213连接,调节升降支架215使注水瓶213到指定高度;利用注水管214将注水瓶213和模型箱1的进/排水口18连接;
3)在模型箱1透水结构上分四层填筑软土材料,每层之间埋设两个光栅位移传感器31、一个光栅温度传感器32、一个光栅孔压传感器33;利用传导光纤34将上述传感器串联并与光纤解调器35连接;
4)控制外接电源开关为蠕动泵212通电,水箱211内水通过注水管214依次流经注水瓶213、模型箱1的进/排水口18进入砂层14,逐步向上渗透进入软土材料直至七个测压管222中水位稳定;
5)降水工况:控制外接电源开关为光纤解调器35通电,调节升降支架215使注水瓶213降低10cm,实时采集光栅位移传感器31、光栅温度传感器32、光栅孔压传感器33测量数据直至数据稳定;
6)回灌工况:控制外接电源开关为光纤解调器35通电,调节升降支架215使注水瓶213升高20cm,实时采集光栅位移传感器31、光栅温度传感器32、光栅孔压传感器33测量数据直至数据稳定。

Claims (3)

1.一种基于光栅光纤监测的软土降水与回灌模型试验装置,其特征在于:包括模型箱(1)、水位控制与监测装置(2)、光纤光栅监测装置(3),模拟软土降水与回灌试验工况,利用光栅光纤监测技术全面、快速、有效、准确监测软土在降水和回灌条件下的位移和孔压变化;
所述的模型箱(1)由若干个分段模型桶(11)组成;模型箱(1)底部为不透水的圆形底座(12);模型箱(1)底部设有砂层(14)加土工布(15)的透水结构,用以防止软土材料流失并向其均匀送水;
所述的光纤光栅监测装置(3)包括若干个光栅位移传感器(31)、若干个光栅温度传感器(32)、若干个光栅孔压传感器(33)、若干根传导光纤(34)、光纤解调器(35);所述的若干个光栅位移传感器(31)通过若干根传导光纤(34)串联,分层布置在软土材料内部,用于感知软土材料内部位移;所述的若干个光栅温度传感器(32)通过若干根传导光纤(34)串联,分层布置在软土材料内部,用于感知软土材料内部温度;所述的若干个光栅孔压传感器(33)通过若干根传导光纤(34)串联,分层布置在软土材料内部,用于感知软土材料内部孔压;所述的若干根传导光纤(34)分别将若干个光栅位移传感器(31)、若干个光栅温度传感器(32)、若干个光栅孔压传感器(33)和光纤解调器(35)连接,用于传输光信号;所述的光纤解调器(35)用于将传导光纤(34)传输回来的光信号解调为电信号。
2.根据权利 要求1所述的模型试验装置,其特征在于:分段模型桶(11)为顶底开口的圆形管状结构,具有较高的透光度和机械强度,各分段模型桶(11)之间通过若干个法兰盘(13)密封连接,可根据需要自由拼装;圆形底座(12)与最下层分段模型桶(11)之间通过法兰盘(13)密封连接;模型箱(1)内透水结构上可分层填筑软土材料;模型箱(1)一侧设有若干个不同高度的测压孔(16)用于连接测压管(222),测压孔(16)处设置有透水石(17)和土工布(15),防止软土材料流入测压管(222);模型箱(1)底部透水结构处侧面设有进/排水口(18)用于供水。
3.根据权利 要求1所述的模型试验装置,其特征在于:所述的水位控制与监测装置(2)包括水位控制装置(21)和水位监测装置(22);
所述的水位控制装置(21)包括水箱(211)、蠕动泵(212)、注水瓶(213)、三根注水管(214)、升降支架(215);所述的水箱(211)用于盛放去离子水,通过注水管(214)依次与蠕动泵(212)、注水瓶(213)连接,利用蠕动泵(212)将水箱(211)中的水输送至注水瓶(213);所述的注水瓶(213)通过升降支架(215)固定于水箱(211)正上方,注水瓶(213)高度可通过升降支架(215)调节;所述的注水瓶(213)一侧设有溢流口(216),当注水瓶(213)内水位高于溢流口(216)时,水将从溢流口(216)流出并落入水箱(211),保证注水瓶(213)内水位始终处于溢流口(216)高度;注水瓶(213)和模型箱(1)的进/排水口(18)之间通过注水管(214)连接,注水瓶(213)内水在重力作用下沿注水管(214)流入进/排水口(18),注水的水位高度由注水瓶(213)溢流口(216)高度决定,通过升降支架(215)调节注水瓶(213)高度可控制注水的水位高度;
所述的水位监测装置(22)由若干根塑料软管(221)和若干根测压管(222)组成;若干根测压管(222)通过若干根塑料软管(221)与模型箱(1)的若干个测压孔(16)连接,用于观测模型箱(1)中不同高度软土材料内水位变化。
CN202011376283.1A 2020-11-30 2020-11-30 一种基于光栅光纤监测的软土降水与回灌模型试验装置 Active CN112504337B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011376283.1A CN112504337B (zh) 2020-11-30 2020-11-30 一种基于光栅光纤监测的软土降水与回灌模型试验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011376283.1A CN112504337B (zh) 2020-11-30 2020-11-30 一种基于光栅光纤监测的软土降水与回灌模型试验装置

Publications (2)

Publication Number Publication Date
CN112504337A CN112504337A (zh) 2021-03-16
CN112504337B true CN112504337B (zh) 2022-05-13

Family

ID=74969482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011376283.1A Active CN112504337B (zh) 2020-11-30 2020-11-30 一种基于光栅光纤监测的软土降水与回灌模型试验装置

Country Status (1)

Country Link
CN (1) CN112504337B (zh)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122323A (ja) * 2009-12-09 2011-06-23 Taiheiyo Soil Corp 軟弱土の処理方法
CN102636391A (zh) * 2012-02-15 2012-08-15 中山大学 一种全过程连续精细跟踪的软土动力特性试验系统
CN102635122A (zh) * 2012-04-10 2012-08-15 上海广联建设发展有限公司 一种基坑工程降水回灌一体化装置和工艺
KR101336333B1 (ko) * 2013-08-16 2013-12-03 (주)에스엔건설 격자형 유리섬유에 부직포를 부착한 보강재 및 이를 이용한 특이구간 (연약지반, 교면포장, 콘크리트 포장)도로의 조기파손 방지를 위한 포장 보강 공법
CN103835277A (zh) * 2012-11-22 2014-06-04 同济大学 一种用于软土地层的气胀式多点位移计锚头
CN203821369U (zh) * 2014-03-21 2014-09-10 王仕勇 一种双通道可变极真空电渗加速超软土固结装置
CN104790442A (zh) * 2015-05-05 2015-07-22 温州大学 真空预压法处理软土地基的大型模型试验测试装置及其试验测试的方法
CN204758591U (zh) * 2015-06-12 2015-11-11 济南轨道交通集团有限公司 模拟承压水地层的室内回灌模型试验系统
CN106092042A (zh) * 2016-06-28 2016-11-09 江西公路开发总公司 一种基于光纤光栅传感技术的软土地基沉降传感器
CN106198341A (zh) * 2016-06-25 2016-12-07 西安科技大学 降水入渗土柱模拟系统及非饱和渗透系数测定方法
CN106324226A (zh) * 2016-11-03 2017-01-11 山东大学 监测地下水渗流、沉降的灌注一体室内试验装置与方法
CN109085323A (zh) * 2018-08-20 2018-12-25 中国矿业大学 一种可分层控制水位的分层沉降模型试验装置及试验方法
CN109307622A (zh) * 2018-11-05 2019-02-05 浙江工业大学 侧向压力和真空预压相结合的沉降柱试验仪及试验方法
CN109827873A (zh) * 2019-02-28 2019-05-31 温州大学 考虑温度影响的多功能软土流变试验仪
CN110631549A (zh) * 2019-10-31 2019-12-31 广州万构建筑工程设计有限公司 一种基于光纤光栅的路基沉降监测装置
CN110761325A (zh) * 2019-10-25 2020-02-07 中铁第四勘察设计院集团有限公司 一种软土地区泥水平衡沉井车站自动化控制系统及方法
CN111337409A (zh) * 2020-04-01 2020-06-26 中南大学 一种模拟降水对岩溶隧道渗流动态影响的试验装置及方法
CN211122294U (zh) * 2019-09-11 2020-07-28 中国电建集团华东勘测设计研究院有限公司 一种用于研究软黏土热固结效应的模型试验装置
CN211523271U (zh) * 2019-10-25 2020-09-18 中铁第四勘察设计院集团有限公司 一种软土地区泥水平衡沉井车站自动化控制系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053437A (ja) * 2002-07-22 2004-02-19 Taisei Corp 変位測定装置
CN105865365B (zh) * 2016-06-01 2018-04-17 南京大学 土体变形分布式光纤监测标定与试验方法及其装置
CN207760898U (zh) * 2018-01-09 2018-08-24 中南大学 多含水层条件下基坑动态降水室内模型试验装置
CN109469125B (zh) * 2019-01-11 2024-01-30 深圳宏业基岩土科技股份有限公司 一种光纤光栅传感检测的桩基荷载试验装置及其检测方法
CN109961683A (zh) * 2019-03-20 2019-07-02 中国地质大学(武汉) 一种人工增湿边坡足尺模型试验系统及方法
CN210073108U (zh) * 2019-03-20 2020-02-14 中国地质大学(武汉) 一种人工增湿边坡足尺模型试验系统
CN111623812B (zh) * 2020-06-28 2021-08-10 河海大学 一种基于光纤光栅的水平测试装置及测试方法
CN111896370B (zh) * 2020-07-24 2023-11-14 中交第二公路勘察设计研究院有限公司 一种基于3d打印的土工离心模型试验装置及试验方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122323A (ja) * 2009-12-09 2011-06-23 Taiheiyo Soil Corp 軟弱土の処理方法
CN102636391A (zh) * 2012-02-15 2012-08-15 中山大学 一种全过程连续精细跟踪的软土动力特性试验系统
CN102635122A (zh) * 2012-04-10 2012-08-15 上海广联建设发展有限公司 一种基坑工程降水回灌一体化装置和工艺
CN103835277A (zh) * 2012-11-22 2014-06-04 同济大学 一种用于软土地层的气胀式多点位移计锚头
KR101336333B1 (ko) * 2013-08-16 2013-12-03 (주)에스엔건설 격자형 유리섬유에 부직포를 부착한 보강재 및 이를 이용한 특이구간 (연약지반, 교면포장, 콘크리트 포장)도로의 조기파손 방지를 위한 포장 보강 공법
CN203821369U (zh) * 2014-03-21 2014-09-10 王仕勇 一种双通道可变极真空电渗加速超软土固结装置
CN104790442A (zh) * 2015-05-05 2015-07-22 温州大学 真空预压法处理软土地基的大型模型试验测试装置及其试验测试的方法
CN204758591U (zh) * 2015-06-12 2015-11-11 济南轨道交通集团有限公司 模拟承压水地层的室内回灌模型试验系统
CN106198341A (zh) * 2016-06-25 2016-12-07 西安科技大学 降水入渗土柱模拟系统及非饱和渗透系数测定方法
CN106092042A (zh) * 2016-06-28 2016-11-09 江西公路开发总公司 一种基于光纤光栅传感技术的软土地基沉降传感器
CN106324226A (zh) * 2016-11-03 2017-01-11 山东大学 监测地下水渗流、沉降的灌注一体室内试验装置与方法
CN109085323A (zh) * 2018-08-20 2018-12-25 中国矿业大学 一种可分层控制水位的分层沉降模型试验装置及试验方法
CN109307622A (zh) * 2018-11-05 2019-02-05 浙江工业大学 侧向压力和真空预压相结合的沉降柱试验仪及试验方法
CN109827873A (zh) * 2019-02-28 2019-05-31 温州大学 考虑温度影响的多功能软土流变试验仪
CN211122294U (zh) * 2019-09-11 2020-07-28 中国电建集团华东勘测设计研究院有限公司 一种用于研究软黏土热固结效应的模型试验装置
CN110761325A (zh) * 2019-10-25 2020-02-07 中铁第四勘察设计院集团有限公司 一种软土地区泥水平衡沉井车站自动化控制系统及方法
CN211523271U (zh) * 2019-10-25 2020-09-18 中铁第四勘察设计院集团有限公司 一种软土地区泥水平衡沉井车站自动化控制系统
CN110631549A (zh) * 2019-10-31 2019-12-31 广州万构建筑工程设计有限公司 一种基于光纤光栅的路基沉降监测装置
CN111337409A (zh) * 2020-04-01 2020-06-26 中南大学 一种模拟降水对岩溶隧道渗流动态影响的试验装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
施工对土体扰动及其检测技术研究进展;叶为民 等;《地下空间与工程学报》;20090430;第5卷(第2期);第312-319页 *

Also Published As

Publication number Publication date
CN112504337A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN107131862B (zh) 一种堆石坝面板变形监测装置及施工方法
CN103868569A (zh) 测量真空排水预压密封膜下地下水位的设备及其设置方法
CN107478196B (zh) 岩土分层沉降测量方法及测量系统
CN208266894U (zh) 一种用于土质边坡的智能土工格栅
CN206594160U (zh) 应用于边坡土体水分迁移及变形的试验装置
CN112378774B (zh) 基于光纤光栅测量的软土地基多向大应变模型试验系统
CN104020047A (zh) 一种固结渗透联合试验装置和方法
CN109709308B (zh) 一种采水型地裂缝物理模型试验装置及试验方法
CN103207136B (zh) 水力—电力渗透系数测量装置及测量方法
CN110749304A (zh) 基于弱光栅的变电站地面沉降监测装置及方法
CN102564676A (zh) 贯入—拉伸式孔隙水压力测量装置及其测量方法
CN112504336A (zh) 一种滑坡区管道变形监测系统
CN102269578A (zh) 空间结构竖向变形测量装置
CN113418647B (zh) 一种围岩中盾构管片的上浮力试验装置和试验方法
CN105862933A (zh) 动态承压水作用的地基模型试验装置
CN104020092A (zh) 一种固结孔隙水压力联合试验装置和方法
CN113720880A (zh) 污染物地下三维迁移过程的电阻率监测系统及监测方法
CN206862946U (zh) 电阻率监测LNAPLs三维运移的装置
CN114136824B (zh) 一种土料冲蚀试验装置及方法
CN112504337B (zh) 一种基于光栅光纤监测的软土降水与回灌模型试验装置
CN201876257U (zh) 超大量程大坝坝基沉降仪
CN210833509U (zh) 基于弱光栅的变电站地面沉降监测装置
CN103697332A (zh) 埋地输水管道在线渗漏检测装置及检测方法
CN105785068B (zh) 水工结构体渗流流速分布式光纤监测系统及监测方法
CN208254420U (zh) 采用分布式光纤测量土体变形的设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant