CN112502900B - 基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法 - Google Patents

基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法 Download PDF

Info

Publication number
CN112502900B
CN112502900B CN202011106901.0A CN202011106901A CN112502900B CN 112502900 B CN112502900 B CN 112502900B CN 202011106901 A CN202011106901 A CN 202011106901A CN 112502900 B CN112502900 B CN 112502900B
Authority
CN
China
Prior art keywords
model
damping control
wind
torque
adopting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011106901.0A
Other languages
English (en)
Other versions
CN112502900A (zh
Inventor
傅雷
胥芳
张立彬
谭大鹏
朱添田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202011106901.0A priority Critical patent/CN112502900B/zh
Publication of CN112502900A publication Critical patent/CN112502900A/zh
Application granted granted Critical
Publication of CN112502900B publication Critical patent/CN112502900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/045Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with model-based controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/102Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法,通过采用非线性模型预测阻尼控制策略,增加传动链的阻尼,抑制风电齿轮箱瞬变载荷冲击,同时结合变增益补偿策略,引入梯度估计单元以及补偿增益单元,使得发电机转子电流、电磁转矩能快速跟随控制系统给定值,在高效利用风能的同时避免增加功率波动性,对风电机组载荷波动进行抑制。

Description

基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法
技术领域
本发明涉及一种基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法。
背景技术
大型风力发电机一般安装在沿海、戈壁、高山区域,运行环境恶劣。特别在海岛、海湾等沿海地区,岸线曲折,岛屿与峡湾众多,受地形、大气洋流影响,风场湍流分布复杂,机群排布欠优,机组间隔尾流影响较大,风机工作模式频繁切换,脱网故障频发。风电齿轮箱存在短时较大瞬变载荷冲击,应力集中区易受损伤,造成风机寿命降低。齿轮箱故障是影响发电机组安全可靠运行的重要瓶颈,也是风电领域的痛点问题。
现有研究中,对机电设备故障与损伤主要采用被动应对的手段,“被动防护”方法是基于故障识别给出维修决策,就风电齿轮箱故障与损伤而言,一旦发生,维修无论多么及时,均会导致停机状态,不可避免地产生经济损失,并对电网系统造成不利影响。因此,在风电齿轮箱未发生损伤前或在轻微损伤时,主动采取措施,避免载荷冲击导致齿轮箱失效,成为风力发电领域的迫切技术需求。
发明内容
针对上述问题,本发明提出了一种基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法,通过采用非线性模型预测阻尼控制策略,增加传动链的阻尼,抑制风电齿轮箱瞬变载荷冲击,同时结合变增益补偿策略,引入梯度估计单元以及补偿增益单元,使得发电机转子电流、电磁转矩能快速跟随控制系统给定值,在高效利用风能的同时避免增加功率波动性,对风电机组载荷波动进行抑制。
本发明解决其技术问题所采用的技术方案是:
一种基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法,包括以下步骤:
步骤1:确定预测模型:采用失效风险实时预测模型作为非线性阻尼控制(NMPC)控制算法的预测模型,在分析得到风电机组传动链的连续状态空间模型后,采用前向欧拉法,求解离散化状态空间模型,而后求得可得到传动链在未来预测步长的预测值;
步骤2:校正预测误差:通过未来的输出测量值与模型输出预测值进行比较,得出模型的预测误差,以此校正模型的预测值,降低模型参数不确定和模型失配等因素的影响,使阻尼控制策略对传动链状态空间模型参数摄动具有一定的鲁棒性,同时提高了其对瞬变载荷冲击的抑制能力;
步骤3:优化目标函数:采用滚动优化价值函数使控制器达到最优效果并确定未来预测的控制输出,不同于传统的离线优化方法,控制策略在一个采样周内实现在线优化,并重复向前滚动;此外,为避免作为控制输入的电磁转矩产生过大波动,优化函数目标包含了电磁转矩变化率的优化与扭转速度的优化;
步骤4:变增益最优转矩控制:采用梯度估计设计最优转矩补偿器,对经典OTC法给定的转矩值进行补偿,其中,最优转矩补偿器由机械功率估计单元、梯度估计单元以及补偿增益单元组成,通过对经典OTC给定转矩值进行补偿,使得发电机转子电流、电磁转矩能快速跟随控制系统给定值;为了综合利用风轮大惯量特性,在高效利用风能的同时避免增加功率波动性,采用变增益补偿策略对风电机组载荷波动进行抑制。
本发明的有益效果为:通过采用非线性模型预测阻尼控制策略,增加传动链的阻尼,抑制风电齿轮箱瞬变载荷冲击,同时结合变增益补偿策略,引入梯度估计单元以及补偿增益单元,使得发电机转子电流、电磁转矩能快速跟随控制系统给定值,在高效利用风能的同时避免增加功率波动性,对风电机组载荷波动进行抑制。
附图说明
图1是非线性模型预测阻尼控制与变增益最优转矩控制策略的流程图。
图2是非线性模型预测阻尼控制图。
具体实施方式
下面结合附图对本发明做进一步说明。
参照图1和图2,一种基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法,由风电机组的动力学特性分析可得,传动链模型为时变系统,基于固定参数的带通滤波器阻尼控制策略无法有效抑制风电齿轮箱的瞬变载荷冲击,而非线性模型预测控制算法对模型参数不确定及摄动失配等具有较强的鲁棒性。因此,如图1所示,采用非线性模型预测阻尼控制与变增益最优转矩控制策略,抑制风电齿轮箱瞬变载荷冲击,具体实现过程为:
步骤1:确定预测模型:采用失效风险实时预测模型作为NMPC控制算法的预测模型,在分析得到风电机组传动链的连续状态空间模型后,采用前向欧拉法,求解离散化状态空间模型,而后求得可得到传动链在未来预测步长的预测值;
步骤2:校正预测误差:通过未来的输出测量值与模型输出预测值进行比较,得出模型的预测误差,以此校正模型的预测值,降低模型参数不确定和模型失配等因素的影响,使阻尼控制策略对传动链状态空间模型参数摄动具有一定的鲁棒性,同时提高了其对瞬变载荷冲击的抑制能力;
步骤3:优化目标函数:采用滚动优化价值函数使控制器达到最优效果并确定未来预测的控制输出,不同于传统的离线优化方法,控制策略在一个采样周内实现在线优化,并重复向前滚动;此外,为避免作为控制输入的电磁转矩产生过大波动,优化函数目标包含了电磁转矩变化率的优化与扭转速度的优化;
步骤4:变增益最优转矩控制,传统的最优转矩控制(OTC)为了实现最大功率捕获跟踪(MPPT),其动态特性较差,且无法快速过渡暂态工况的缺点。因此,采用梯度估计设计最优转矩补偿器,对经典OTC法给定的转矩值进行补偿;其中,最优转矩补偿器由机械功率估计单元、梯度估计单元以及补偿增益单元组成,通过对经典OTC给定转矩值进行补偿,使得发电机转子电流、电磁转矩能快速跟随控制系统给定值;为了综合利用风轮大惯量特性,在高效利用风能的同时避免增加功率波动性,采用变增益补偿策略对风电机组载荷波动进行抑制。
本说明书的实施例所述的内容仅仅是对发明构思的实现形式的列举,仅作说明用途。本发明的保护范围不应当被视为仅限于本实施例所陈述的具体形式,本发明的保护范围也及于本领域的普通技术人员根据本发明构思所能想到的等同技术手段。

Claims (1)

1.一种基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法,其特征在于,所述方法包括以下步骤:
步骤1:确定预测模型:采用失效风险实时预测模型作为NMPC控制算法的预测模型,在分析得到风电机组传动链的连续状态空间模型后,采用前向欧拉法,求解离散化状态空间模型,而后求得传动链在未来预测步长的预测值;
步骤2:校正预测误差:通过未来的输出测量值与模型输出预测值进行比较,得出模型的预测误差,以此校正模型的预测值,降低模型参数不确定和模型失配因素的影响,使阻尼控制策略对传动链状态空间模型参数摄动具有一定的鲁棒性,同时提高了其对瞬变载荷冲击的抑制能力;
步骤3:优化目标函数:采用滚动优化价值函数使控制器达到最优效果并确定未来预测的控制输出,不同于传统的离线优化方法,控制策略在一个采样周内实现在线优化,并重复向前滚动;此外,为避免作为控制输入的电磁转矩产生过大波动,优化函数目标包含了电磁转矩变化率的优化与扭转速度的优化;
步骤4:变增益最优转矩控制:采用梯度估计设计最优转矩补偿器,对经典OTC法给定的转矩值进行补偿,其中,最优转矩补偿器由机械功率估计单元、梯度估计单元以及补偿增益单元组成,通过对经典OTC给定转矩值进行补偿,使得发电机转子电流、电磁转矩能快速跟随控制系统给定值;为了综合利用风轮大惯量特性,在高效利用风能的同时避免增加功率波动性,采用变增益补偿策略对风电机组载荷波动进行抑制。
CN202011106901.0A 2020-10-16 2020-10-16 基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法 Active CN112502900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011106901.0A CN112502900B (zh) 2020-10-16 2020-10-16 基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011106901.0A CN112502900B (zh) 2020-10-16 2020-10-16 基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法

Publications (2)

Publication Number Publication Date
CN112502900A CN112502900A (zh) 2021-03-16
CN112502900B true CN112502900B (zh) 2021-10-15

Family

ID=74953782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011106901.0A Active CN112502900B (zh) 2020-10-16 2020-10-16 基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法

Country Status (1)

Country Link
CN (1) CN112502900B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4166782A1 (en) * 2021-10-14 2023-04-19 Vestas Wind Systems A/S Wind turbine model predictive control (mpc) with thrust and/or power correction
CN113783208B (zh) * 2021-11-10 2022-03-08 中国电力科学研究院有限公司 一种双馈型机组风电场虚拟惯量控制方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109038686A (zh) * 2018-08-28 2018-12-18 国网山东省电力公司聊城供电公司 一种基于风电出力预测误差的滚动优化调度方法
CN109067276A (zh) * 2018-07-27 2018-12-21 湖南大学 一种永磁同步电机高动态鲁棒预测电流控制方法
WO2019128038A1 (zh) * 2017-12-29 2019-07-04 北京金风科创风电设备有限公司 次同步抑制方法、装置及变流器的控制器
CN111173688A (zh) * 2020-01-13 2020-05-19 华北电力大学 基于自适应观测器的风力发电机故障诊断与隔离方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8912672B2 (en) * 2009-05-20 2014-12-16 Cummins Power Generator IP, Inc. Control of an engine-driven generator to address transients of an electrical power grid connected thereto

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019128038A1 (zh) * 2017-12-29 2019-07-04 北京金风科创风电设备有限公司 次同步抑制方法、装置及变流器的控制器
CN109067276A (zh) * 2018-07-27 2018-12-21 湖南大学 一种永磁同步电机高动态鲁棒预测电流控制方法
CN109038686A (zh) * 2018-08-28 2018-12-18 国网山东省电力公司聊城供电公司 一种基于风电出力预测误差的滚动优化调度方法
CN111173688A (zh) * 2020-01-13 2020-05-19 华北电力大学 基于自适应观测器的风力发电机故障诊断与隔离方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于F-B-S模型的SAM产品可重构模块涉及;胥芳等;《农业机械学报》;20061225;第37卷(第12期);第58-61页 *

Also Published As

Publication number Publication date
CN112502900A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
Mousavi et al. Sliding mode control of wind energy conversion systems: Trends and applications
CN112502900B (zh) 基于非线性阻尼控制的风电齿轮箱瞬变载荷主动抑制方法
Shi et al. An active fault tolerant control approach to an offshore wind turbine model
EP2807371B1 (en) Wind park with real time wind speed measurements
CN107508307B (zh) 用于抑制次同步振荡的自抗扰直流附加阻尼控制方法
Moodi et al. Wind turbine control using TS systems with nonlinear consequent parts
Aho et al. Active power control of wind turbines for ancillary services: A comparison of pitch and torque control methodologies
Mazare et al. Uncertainty estimator-based dual layer adaptive fault-tolerant control for wind turbines
JP2010506094A (ja) 風力タービンの制御システム
Zhang et al. Maximum power point tracking algorithms for wind power generation system: Review, comparison and analysis
Sami et al. Global wind turbine FTC via TS fuzzy modelling and control
Khan et al. New trends and future directions in load frequency control and flexible power system: A comprehensive review
Sami et al. Wind turbine power maximisation based on adaptive sensor fault tolerant sliding mode control
Zeghdi et al. Improved backstepping control of a DFIG based wind energy conversion system using ant lion optimizer algorithm
Habibi et al. Power improvement of non-linear wind turbines during partial load operation using fuzzy inference control
CN117662370A (zh) 一种智能风力发电机组控制方法及系统
Sami et al. Wind turbine sensor fault tolerant control via a multiple-model approach
Toumi et al. Robust variable step P&O algorithm based MPPT for PMSG wind generation system using estimated wind speed compensation technique
Fischer et al. Balancing rotor speed regulation and drive train loads of floating wind turbines
JP2014202190A (ja) 制御装置、制御方法及びプログラム
CN116011332A (zh) 一种基于gan-qp特征迁移模型的风电机组状态监测方法
CN113031440B (zh) 基于反馈线性化与预测控制的风力机变桨距控制方法
Shu et al. A wind farm coordinated controller for power optimization
Li et al. A novel primary frequency regulation strategy of wind farm based on wind turbine health condition
Naidu et al. A review on PMSG based wind energy conversion system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant