CN112494665A - 一种荧光NP-Au靶向造影剂及其制备方法和应用 - Google Patents

一种荧光NP-Au靶向造影剂及其制备方法和应用 Download PDF

Info

Publication number
CN112494665A
CN112494665A CN202011489623.1A CN202011489623A CN112494665A CN 112494665 A CN112494665 A CN 112494665A CN 202011489623 A CN202011489623 A CN 202011489623A CN 112494665 A CN112494665 A CN 112494665A
Authority
CN
China
Prior art keywords
fluorescent
contrast agent
targeted contrast
solution
targeted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011489623.1A
Other languages
English (en)
Inventor
黄瑛
王博
庄连婷
史婧文
朱天彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shengjing Hospital of China Medical University
Original Assignee
Shengjing Hospital of China Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shengjing Hospital of China Medical University filed Critical Shengjing Hospital of China Medical University
Priority to CN202011489623.1A priority Critical patent/CN112494665A/zh
Publication of CN112494665A publication Critical patent/CN112494665A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0058Antibodies

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明属生物医用材料和造影剂制备的技术领域,涉及一种荧光NP‑Au靶向造影剂及其制备方法和应用。一种荧光NP‑Au靶向造影剂,该靶向造影剂以TAMs标志物CD163/MMR/Arg‑1为靶点,所述荧光NP‑Au靶向造影剂在制备肿瘤靶向造影剂中的应用。本发明采用多孔纳米新材料荧光NP‑Au,利用分子生物学等技术深入研究荧光NP‑Au靶向造影剂在组织细胞中的成像能力,该造影剂能够对肿瘤中的TAMs进行靶向显影。

Description

一种荧光NP-Au靶向造影剂及其制备方法和应用
技术领域
本发明属生物医用材料和造影剂制备的技术领域,涉及一种荧光NP-Au靶向造影剂及其制备方法和应用。
背景技术
在肿瘤发生机制的研究中,其发生发展不但是由于肿瘤细胞自身的恶变,同时与肿瘤微环境关系密切。肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)是肿瘤微环境中最丰富的免疫细胞,是免疫抑制细胞中重要的一员。TAMs通过创造促变异的炎性环境,分泌免疫抑制因子、细胞因子和生长因子,抑制T细胞的增殖和活化,调节并促进Th2型免疫应答,促进肿瘤细胞侵袭、参与肿瘤血管新生和促进肿瘤的浸润和转移。研究表明,TAMs存在于肿瘤发展的所有阶段,其数量与肿瘤的恶性程度和不良预后相关,在肿瘤的侵袭和转移过程中起到了促进作用,而靶向抑制TAMs可减少肿瘤生长、增殖和转移。在结肠癌小鼠模型中,使用CSF-1R抗体靶向调控TAMs极化导致小鼠肿瘤体积显著减少和长期生存,表明TAMs可以作为肿瘤治疗研究中强有力的靶标。
发明内容
鉴于现有技术存在的问题,本发明目的在于提供一种荧光NP-Au靶向造影剂及其制备方法和应用,本发明采用多孔纳米新材料荧光NP-Au,利用分子生物学等技术深入研究荧光NP-Au靶向造影剂在组织细胞中的成像能力,该造影剂能够对肿瘤中的TAMs进行靶向显影。
为实现上述目的,本发明采用以下技术方案。
一种荧光NP-Au靶向造影剂,该靶向造影剂以TAMs标志物CD163/MMR/Arg-1为靶点。
进一步地,所述荧光NP-Au靶向造影剂的制备方法,具体包括以下步骤。
步骤1、将1M HEPES用dd水稀释为20mmol缓冲液,分别取5μl、6μl、7μl、8μl、9μlCD163抗体溶于20mmolHEPES缓冲液中,得到50μl混合液。
步骤2、将不同浓度的CD163抗体溶液分别与1ml金纳米棒溶液作用,30分钟后测量各溶液的吸光度;当金纳米棒溶液最大吸收峰值不变时,进入吸收峰平台的初始浓度即为所需最佳CD163抗体浓度。
步骤3、取该浓度混合物溶液1ml加入50μl聚乙二醇作用10分钟后,在4℃下以15000rmb的转速离心15分钟,得到mAb-CD163/Au共轭物;然后弃去上清液,加入PBS缓冲液,得到分散良好稳定的溶液,4℃下保存。
进一步地,所述荧光NP-Au靶向造影剂在制备肿瘤靶向造影剂中的应用。
与现有技术相比,本发明的有益效果如下。
本发明提供的荧光NP-Au靶向造影剂,采用荧光NP-Au利用分子生物学等技术,深入研究靶向性NP-Au在组织细胞中的成像能力。向微环境中非肿瘤细胞的优势是荧光NP-Au靶向造影剂的基因更稳定,更不容易形成耐药。从肿瘤微环境相关的巨噬细胞着手,研究TAMs在肿瘤中的靶向显像。实验证明mAb-CD163/Au在M2型巨噬细胞内的聚集明显多于M1型巨噬细胞,说明M2型巨噬细胞表面高表达CD163分子,因此可以吞噬更多的mAb-CD163/Au;随着纳米颗粒浓度的增加,存活细胞越少。当浓度相同时,mAb-CD163/Au+NIR组细胞被杀伤的情况最明显;通过靶向杀伤瘤周组织内CD163(+)巨噬细胞,可以抑制肿瘤的生长。
附图说明
图1是金纳米棒溶液的流式图像。
图2是mAb-CD163/Au的流式图像。流式图像峰值明显右移,说明制备的mAb-CD163/Au表明含有CD163抗体。
图3是金纳米棒溶液吸收峰。
图4是经CD163抗体包裹后,mAb-CD163/Au的吸收峰略右移。经CD163抗体包裹的金纳米颗粒,光学性质没有明显改变,其在1064nm附近仍具有吸收峰。
图5是双光子显微镜观察mAb-CD163/Au在巨噬细胞内的聚集情况结果,其中,图5a为经PMA诱导后,mAb-CD163/Au在M1型巨噬细胞内的聚集情况;图5b为经PMA、IL-4诱导后,mAb-CD163/Au在M2型巨噬细胞内的聚集情况。
图6是经1064nm激光照射后,分别于0min、1min、2min、3min、4min、5min时,各组溶液温度变化的情况。
图7是经近红外激光处理后各组细胞被杀伤的情况。
图8a-8f是荧光NP-Au靶向造影剂的体内细胞实验结果。其中,图8a为照射15天后,各组裸鼠成瘤情况;图8b为各组裸鼠肿瘤生长曲线;图8c、8d、8e分别为各组瘤周组织CD163(+)巨噬细胞免疫组化;图8f为显示各组瘤周组织CD163(+)巨噬细胞免疫组化具有统计学差异。
具体实施方式
下面结合具体实施例和附图详细介绍本发明的技术方案和技术效果。未注明具体条件的实验方法,通常按照常规条件,例如教科书和实验指南中所述的条件,或按照制造厂商所建议的条件,为本领域普通技术人员熟知或易于获知,以下实施例仅为本发明的优选实施例,并不限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
实施例1荧光NP-Au靶向造影剂的制备方法。
1、材料和试剂。
HEPES:pH7.2-7.4;H1095(100ml):1M,Solarbio;聚乙二醇(PEG200);P8490:500ml,Solarbio;APC anti-human CD163(monoclonal),Biolegend;金纳米棒,NR-9-1064,OD 2,上海羧菲生物医药科技有限公司。
2、制备方法。
所述荧光NP-Au靶向造影剂的制备方法包括以下具体步骤。
步骤1、将1M HEPES用双蒸水(dd水)稀释为20mmol缓冲液。分别取5μl、6μl、7μl、8μl、9μlCD163抗体溶于20mmolHEPES缓冲液中,得到50μl混合液。
步骤2、将不同浓度的CD163抗体溶液分别与1ml金纳米棒溶液作用,30分钟后测量各溶液的吸光度。当金纳米棒溶液最大吸收峰值不变时,进入吸收峰平台的初始浓度即为所需最佳CD163抗体浓度。
步骤3、取该浓度混合物溶液1ml加入50μl聚乙二醇作用10分钟后,在4℃下离心(15000x)15分钟,得到mAb-CD163/Au共轭物。然后弃去上清液,加入PBS缓冲液,得到分散良好稳定的溶液,4℃下保存。
实施例2荧光NP-Au靶向造影剂的表征及体外细胞实验。
1、金纳米颗粒表面CD163抗体的检测。
1)实验材料。
实施例1制备好的mAb-CD163/Au溶液。
2)实验方法。
使用紫外—可见光分光光度计测量溶液吸收峰;使用马尔文粒径仪测量溶液物理属性;使用流式细胞仪验证金纳米颗粒表面包裹CD163抗体。
3)实验结果。
实验结果如图1-4所示。图1为金纳米棒溶液的流式图像;图2为mAb-CD163/Au的流式图像,图2流式图像峰值明显右移,说明制备的mAb-CD163/Au表明含有CD163抗体。图3为金纳米棒溶液吸收峰,图4显示经CD163抗体包裹后,mAb-CD163/Au的吸收峰略右移。经CD163抗体包裹的金纳米颗粒,光学性质没有明显改变,其在1064nm附近仍具有吸收峰。
2、双光子显微镜观察mAb-CD163/Au在巨噬细胞内的聚集情况。
1)实验材料。
实施例1制备好的mAb-CD163/Au溶液,人THP-1单核细胞,PMA(佛波酯),IL-4。
2)实验方法。
将细胞爬片玻片置入24孔板内,将1mlTHP-1细胞悬液移入孔板。经PMA及IL-4诱导后,THP-1细胞分化成M2型巨噬细胞。然后向每孔滴入10ulmAb-CD163/Au,孵育45min。使用双光子显微镜观察mAb-CD163/Au在巨噬细胞内的聚集情况。
3)实验结果。
实验结果如图5所示,图5a为经PMA诱导后,mAb-CD163/Au在M1型巨噬细胞内的聚集情况。图5b为经PMA、IL-4诱导后,mAb-CD163/Au在M2型巨噬细胞内的聚集情况。mAb-CD163/Au在M2型巨噬细胞内的聚集明显多于M1型巨噬细胞,说明M2型巨噬细胞表面高表达CD163分子,因此可以吞噬更多的mAb-CD163/Au。
3、mAb-CD163/Au在光热条件下对M2型巨噬细胞的杀伤。
1)实验材料。
近红外激光(1064nm,Ligenesis,武汉),制备好的mAb-CD163/Au溶液,人THP-1单核细胞,PMA(佛波酯),IL-4,CCK-8。
2)实验方法。
M2型巨噬细胞诱导同前。将mAb-CD163/Au溶液稀释成15%、25%、35%浓度,分别加入各组M2型巨噬细胞内。另设一对照组,不加入mAb-CD163/Au。然后用1064nm激光分别照射各组细胞溶液,观察各组溶液温度的变化。
将金纳米棒溶和mAb-CD163/Au溶液分别制成15%、25%、35%浓度,然后加入各组M2型巨噬细胞内。然后各组细胞分别经1064nm激光(6W/cm2)照射5min。NIR组细胞只接受激光照射。然后弃去上清液,加入CCK-8试剂,计算各组细胞被杀伤的情况。
3)实验结果。
实验结果如图6-7所示,图6表明经1064nm激光照射后,分别于0min、1min、2min、3min、4min、5min时,各组溶液温度变化的情况。在照射时间相同时,溶液温度随纳米颗粒浓度增加而增高。图7表明经近红外激光处理后各组细胞被杀伤的情况。OD值越小,存活细胞越少。随着纳米颗粒浓度的增加,存活细胞越少。当浓度相同时,mAb-CD163/Au+NIR组细胞被杀伤的情况最明显。
实施例3荧光NP-Au靶向造影剂的体内细胞实验。
1、人乳腺癌MCF-7细胞荷瘤裸鼠模型建立。
1)实验材料。
人乳腺癌MCF-7细胞,BALB/c裸鼠(雌性)。
2)实验方法。
人乳腺癌MCF-7细胞(5x106/ml)在无菌条件下于裸鼠背侧靠腋窝皮下接种0.1ml/只。裸鼠分成3组,每组6只。当肿瘤平均直径达到5mm时,于肿瘤上下左右4个部位分别注入mAb-CD163/Au及PBS溶液。每部位注射0.1mL。然后对mAb-CD163/Au组及对照组分别给予1064nm近红外激光(6W/cm2)1min照射;PBS组不接受激光照射。15天后处死各组裸鼠,测量各组肿瘤大小,并进行免疫组化分析。
3)实验结果。
实验结果如图8a-8f所示,图8a为照射15天后,各组裸鼠成瘤情况。图8b为各组裸鼠肿瘤生长曲线。mAb-CD163/Au组肿瘤平均体积最小。图8c、8d、8e分别为各组瘤周组织CD163(+)巨噬细胞免疫组化。图8f显示各组瘤周组织CD163(+)巨噬细胞免疫组化具有统计学差异。该实验说明通过靶向杀伤瘤周组织内CD163(+)巨噬细胞,可以抑制肿瘤的生长。

Claims (4)

1.一种荧光NP-Au靶向造影剂,其特征在于,所述荧光NP-Au靶向造影剂以TAMs标志物CD163/MMR/Arg-1为靶点。
2.如权利要求1所述的荧光NP-Au靶向造影剂的制备方法,其特征在于,具体包括以下步骤:
步骤1、将1M HEPES用水稀释为20mmol缓冲液,分别取5μl、6μl、7μl、8μl、9μlCD163抗体溶于20mmolHEPES缓冲液中,得到50μl混合液;
步骤2、将不同浓度的CD163抗体溶液分别与1ml金纳米棒溶液作用,30分钟后测量各溶液的吸光度;当金纳米棒溶液最大吸收峰值不变时,进入吸收峰平台的初始浓度即为所需最佳CD163抗体浓度;
步骤3、取该浓度混合物溶液1ml加入50μl聚乙二醇作用10分钟后,在4℃下以15000rmb的转速离心15分钟,得到mAb-CD163/Au共轭物;然后弃去上清液,加入PBS缓冲液,得到分散良好稳定的溶液,4℃下保存。
3.如权利要求1所述的荧光NP-Au靶向造影剂的制备方法,其特征在于,所述的水为双蒸水。
4.如权利要求1所述的荧光NP-Au靶向造影剂在制备肿瘤靶向造影剂中的应用。
CN202011489623.1A 2020-12-16 2020-12-16 一种荧光NP-Au靶向造影剂及其制备方法和应用 Pending CN112494665A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011489623.1A CN112494665A (zh) 2020-12-16 2020-12-16 一种荧光NP-Au靶向造影剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011489623.1A CN112494665A (zh) 2020-12-16 2020-12-16 一种荧光NP-Au靶向造影剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112494665A true CN112494665A (zh) 2021-03-16

Family

ID=74972821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011489623.1A Pending CN112494665A (zh) 2020-12-16 2020-12-16 一种荧光NP-Au靶向造影剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112494665A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107469081A (zh) * 2017-08-15 2017-12-15 西安交通大学 靶向PEG修饰的金纳米棒与AlpcS4偶联的结合体及其制备、应用和抗肿瘤组合物
US20180271788A1 (en) * 2015-12-11 2018-09-27 The United States of America, as represented by the Secretary, Department of Health and Vesicle containing metallic nanoparticle and method for production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180271788A1 (en) * 2015-12-11 2018-09-27 The United States of America, as represented by the Secretary, Department of Health and Vesicle containing metallic nanoparticle and method for production thereof
CN107469081A (zh) * 2017-08-15 2017-12-15 西安交通大学 靶向PEG修饰的金纳米棒与AlpcS4偶联的结合体及其制备、应用和抗肿瘤组合物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BO WANG,ET AL.: "Antitumor effects of targeted killing of tumor-associated macrophages under photothermal conditions", 《LASERS IN MEDICAL SCIENCE》 *
HUANG YANG,ET AL.: "The impact of size and surface ligand of gold nanorods on liver cancer accumulation and photothermal therapy in the second near-infrared window", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
赵小彬,等: "纳米载体特异性靶向TAMs治疗肿瘤的研究进展", 《中国临床药理学与治疗学》 *

Similar Documents

Publication Publication Date Title
Zhang et al. A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy
Feng et al. Advances in smart mesoporous carbon nanoplatforms for photothermal–enhanced synergistic cancer therapy
Zhang et al. Tumor microenvironment responsive FePt/MoS 2 nanocomposites with chemotherapy and photothermal therapy for enhancing cancer immunotherapy
Jiao et al. Engineering oxygen-deficient ZrO2-x nanoplatform as therapy-activated “immunogenic cell death (ICD)” inducer to synergize photothermal-augmented sonodynamic tumor elimination in NIR-II biological window
Hu et al. Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag 2 S quantum dot-based theranostic nanoplatform
Chen et al. Indocyanine green loaded reduced graphene oxide for in vivo photoacoustic/fluorescence dual-modality tumor imaging
Liu et al. Photothermal-triggered immunogenic nanotherapeutics for optimizing osteosarcoma therapy by synergizing innate and adaptive immunity
Liu et al. Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection
Wu et al. Chlorin e6 and polydopamine modified gold nanoflowers for combined photothermal and photodynamic therapy
Zhao et al. Transferrin modified ruthenium nanoparticles with good biocompatibility for photothermal tumor therapy
Cherukuri et al. Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells
Cui et al. Fluorescent silicon nanorods-based nanotheranostic agents for multimodal imaging-guided photothermal therapy
Cheng et al. Microwave-triggered/HSP-targeted gold nano-system for triple-negative breast cancer photothermal therapy
CN110893237B (zh) 铜钯合金纳米颗粒和自噬抑制剂在制备基于光热效应杀伤肿瘤的药物或试剂盒中的应用
Villaverde et al. Targeted Chemo‐Photothermal Therapy: A Nanomedicine Approximation to Selective Melanoma Treatment
Wang et al. Plasmonic microgels of Au nanorods: self-assembly and applications in chemophotothermo-synergistic cancer therapy
Zhao et al. Acidity-responsive nanocages as robust reactive oxygen species generators with butterfly effects for maximizing oxidative damage and enhancing cancer therapy
Wu et al. Immunoadjuvant nanoparticles as trojan horses for enhanced photo-immunotherapy in the treatment of triple-negative breast cancer
Park et al. Multifunctional nanocomposite clusters enabled by amphiphilic/bioactive natural polysaccharides
Du et al. A biomimetic nanoplatform for precise reprogramming of tumor-associated macrophages and NIR-II mediated antitumor immune activation
He et al. Integration of gold nanodendrites and immune checkpoint blockers to achieve highly efficient photothermal immunotherapy for eradicating primary and distant metastatic osteosarcoma
Dai et al. GM-CSF augmented the photothermal immunotherapeutic outcome of self-driving gold nanoparticles against a mouse CT-26 colon tumor model
Liu et al. A triple enhanced permeable gold nanoraspberry designed for positive feedback interventional therapy
Xu et al. Thermoresponsive injectable self-healing hydrogel containing polydopamine-coated Fe/Mo-doped TiO2 nanoparticles for efficient synergistic sonodynamic-chemodynamic-photothermal-chemo therapy
CN112494665A (zh) 一种荧光NP-Au靶向造影剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210316

RJ01 Rejection of invention patent application after publication