CN112491373A - 一种v频段160w固态功率合成放大器 - Google Patents
一种v频段160w固态功率合成放大器 Download PDFInfo
- Publication number
- CN112491373A CN112491373A CN202011296741.0A CN202011296741A CN112491373A CN 112491373 A CN112491373 A CN 112491373A CN 202011296741 A CN202011296741 A CN 202011296741A CN 112491373 A CN112491373 A CN 112491373A
- Authority
- CN
- China
- Prior art keywords
- pin
- power amplifier
- power
- module
- output end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18517—Transmission equipment in earth stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
本发明公开了一种V频段160W固态功率合成放大器,属于卫星通信技术领域。它由输入隔离器、控制衰减器、预失真模块、驱动放大器、固态功放模块、波导耦合器、检波器、监控单元、温度传感器、电源模块、风机等组成。本发明采用空间功率合成方式将八个功率芯片进行合成,构成一个功放小模块,再采用四路波导E‑T型结构的二进制功率分配/合成网络将四个功放小模块进行合成,最后采用魔T结构的功率分配/合成网络将信号合成达到160W的功率输出。该功率放大器具有频段高、体积小、重量轻、集成化程度高、性能稳定可靠、易维护、工作温度范围宽的特点,特别适用于卫星通信微波信道的功率放大业务。
Description
技术领域
本发明涉及卫星通信技术领域,特别是指一种V频段160W固态功率合成放大器,可用于卫星通信微波信道的功率放大设备。
背景技术
近年来,随着卫星通信系统的快速发展,对于高频率、高效率、宽频带大功率固态功放的需求与日俱增。然而,单个固态器件在微波毫米波频段输出的功率有限,不能满足系统的需求。为了获得更大的输出功率,常常需要采用功率合成措施。例如,将多个功率器件集中在一个功率合成放大器中。另一方面,出于经济和可靠性等方面的考虑,通常采用较小的功率源进行合成,而不直接采用一个大的功率源。这样,除了能够产生较高的功率外,还能在一个或几个源失效的情况下保证系统继续工作而不会完全失效,但是系统性能有所下降。
目前,应用最多的功率合成技术是电路合成和空间功率合成。在V频段,电路合成由于传输损耗以及电路结构随器件数量增加成非线性增长,其合成路数受到限制,不能满足V频段固态功率放大器的要求。而空间功率合成最大的优点是合成效率基本与固态器件数量无关,更适合多器件的大功率输出。但是,现有技术中还缺少针对V频段的有效的空间功率合成方案。
发明内容
本发明的目的在于避免上述背景技术中的不足之处而提供一种V频段160W固态功率合成放大器,其采用空间功率合成方式,具有合成效率高、频率高、重量轻、体积小、性能稳定可靠等特点,能够满足卫星通信地面站的需求。
本发明的目的是这样实现的:
一种V频段160W固态功率合成放大器,其包括输入隔离器101、控制衰减器102、预失真模块103、驱动放大器104、固态功率放大器105、波导耦合器106、检波器107、监控单元108、电源模块109和风机110;输入隔离器101入端1脚与外部V频段入端口A连接,输入隔离器101入端2脚与控制衰减器1021脚连接;控制衰减器1032脚与预失真模块104入端1脚连接,控制衰减器102出入端3脚与监控单元108出入端3脚连接;预失真模块103出端2脚与驱动放大器104入端1脚连接;驱动放大器104出端2脚与固态功率放大器105入端1脚连接;固态功率放大器105出端2脚与波导耦合器106入端1脚连接,固态功率放大器105出端3脚与监控单元108入端4脚连接;波导耦合器106出端2脚与功放输出端口B连接,波导耦合器106出端3脚与检波器107入端1脚连接;检波器107出端2脚与监控单元108入端1脚连接;监控单元108入端2脚与电源模块109入端1脚连接,监控单元108出入端5脚与风机110出端2脚连接,监控单元108出入端6脚与功放控制端口C连接;电源模块109入端2脚与外部220V交流电源端口D连接,电源模块109出端5脚与风机110入端1脚连接,电源模块109出端3脚V+、出端4脚V-电压端与各部件相应电源端并接;
V频段输入小信号通过外部V频段入端口A进入输入隔离器101,输入隔离器101对V频段以外的信号进行隔离衰减,减少其他信号的干扰影响,经过输入隔离后V频段信号进入控制衰减器102;控制衰减器102内数控衰减器和压控衰减器通过监控单元实现对整个链路的增益调节和控制功能,经过增益调整以后的信号进入预失真模块103;预失真模块103用于调整固态功率放大器105的幅频特性,补偿功率输出过程中引入的非线性,保证信号的线性输出,经过预失真模块103调整后的信号进入驱动放大器104;驱动放大器104对信号进行初步放大后用以驱动后面的固态功率放大器105,经过驱动放大器放大的信号进入固态功率放大器105;固态功率放大器105实现功率合成放大,达到所需要的功率输出,并将检测到的温度和电流上报给监控单元108;经过功率放大的模块进入波导耦合器106,波导耦合器106的出端口2脚将主信号传输给外部的功放输出端口B,波导耦合器106通过出端口3脚将耦合的小信号输入检波器107,检波器107将检测到的射频信号转换为直流信号输入给监控单元108,监控单元108将检波器输入的直流信号处理成输出功率显示值,监控单元108同时对固态功率放大器105的温度、电流、电源模块的控制进行处理,从而实现对整机功放的过温保护、电流检测、功率监测功能,监控单元108出端6脚与外部端口C通过串口总线连接实现外部对功放的控制,电源模块109入端4脚与外部220V交流电源端口D连接实现整机的供电,电源模块109出端4脚与风机110连接,提供风机110供电电压,电源模块109出端1脚V+、出端2脚V-电压端给各部件供电。
进一步的,所述的固态功率放大器105包括魔T功分器301、波导滤波器A302、波导滤波器B303、四分路器A304、四分路器B305、功放小模块A306、功放小模块B307、功放小模块C308、功放小模块D309、功放小模块E310、功放小模块F311、功放小模块G312、功放小模块H313、四合路器A314、四合路器B315、魔T功放器316和波导滤波器C317;驱动放大器104出端2脚与魔T功分器301入端1脚连接,魔T功分器301出端2脚、3脚分别与波导滤波器A入端1脚、波导滤波器B入端1脚对应连接;波导滤波器A出端2脚与四分路器A入端1脚连接,波导滤波器B出端2脚与四分路器B入端1脚连接;四分路器A出端2脚、3脚、4脚、5脚分别与功放小模块A入端1脚、功放小模块B入端1脚、功放小模块C入端1脚、功放小模块D入端1脚一一对应连接;四分路器B出端2脚、3脚、4脚、5脚分别与功放小模块E入端1脚、功放小模块F入端1脚、功放小模块G入端1脚、功放小模块H入端1脚一一对应连接;功放小模块A出端2脚、功放小模块B出端2脚、功放小模块C出端2脚、功放小模块D出端2脚分别与四合路器A出端2脚、3脚、4脚、5脚一一对应连接;功放小模块E出端2脚、功放小模块F出端2脚、功放小模块G出端2脚、功放小模块H出端2脚分别与四合路器B出端2脚、3脚、4脚、5脚一一对应连接;四合路器A出端1脚、四合路器B出端1脚分别与魔T功放器入端2脚、3脚对应连接;魔T功放器出端1脚与波导滤波器C入端1脚连接;波导滤波器C出端2脚与波导耦合器106入端1脚连接;
驱动放大器104将初步放大的V频段信号经过魔T功分器301,分成两路等幅信号分别经过波导滤波器A302、波导滤波器B303输入到四分路器A304、四分路器B305,四分路器A304将信号等分为四路等幅信号分别输入至功放小模块A306、功放小模块B307、功放小模块C308、功放小模块D309,信号经过四个功率放大器放大后通过四合路器A314进行合成输出到魔T功放器316;四分路器B305将信号等分为四路等幅信号分别输入至功放小模块E310、功放小模块F311、功放小模块G312、功放小模块H313,信号经过四个功率放大器放大后通过四合路器B315进行合成输出到魔T功放器316,魔T功放器316将信号进行合成并输出经过波导滤波器C317传输至波导耦合器106。
进一步的,所述的功放小模块A~H306~313的结构相同;
每一功放小模块均包括八路功率分配器318、八路功率合成器327以及固态功放芯片A~H319~326;八路功率分配器318入端与四分路器A304出端连接,八路功率合成器327出端与四合路器A314入端连接,八路功率分配器318出端2、3、4、5、6、7、8、9脚通过波导探针过渡结构分别与固态功放芯片A~H319~326的各入端1脚一一对应连接,固态功放芯片A~H319~326的各输出端2脚通过波导探针过渡结构分别与八路功率合成器318的入端2、3、4、5、6、7、8、9脚一一对应连接,固态功放芯片A~H319~326入端3脚均通过各自的一个电阻与电压V-连接,并通过各自的另一个电阻接地,固态功放芯片A~H319~326入端4脚均与电压V+连接,固态功放芯片A319所连的电压V-处还通过一对并联电容C1、C2接地;
V频段信号经过八路功率分配器318后,信号等幅地分为八份,八路功率分配器318输出的八路V频段信号分别进入第一至第八固态功率单片319~326,八路经过放大的功率信号通过八路功率合成器327进行功率合成后输出至八合路器327的输入端,固态功放芯片A~H319~326入端3脚所连的各电阻R1~R16用于实现对固态功放芯片栅极的偏置调节,固态功放芯片A319所连的并联电容C1、C2为栅极偏置电压的旁路滤波电容,电压V-和V+分别为固态功放芯片A~H319~326供电。
本发明与背景技术相比具有以下优点:
1.本发明采用魔T功分器和四分路器结合的方式实现功率分配,同样地,采用魔T功放器和四合路器结合的方式实现功率合成,在V频段内具有低损耗、相位一致性好、输出端口间隔离度高的优点,提高了合成效率。此外,本发明中四分路器和四合路器采用基于二进制E-T结构的功率合成方式,具有低损耗、相位一致性好的优点,提高了合成效率。
2. 本发明的功放小模块A采用基于波导到石英探针过渡的空间功率合成结构,使用宽带行波天线来改进系统在波传播方向的性能,每一个托盘都包含了波导到石英单探针转换结构,它采用石英单探针作为收发天线,而石英单探针过渡经过系统的优化设计后,能够保证良好的宽带性能和良好的系统输入输出端的隔离度,这些石英单探针把电磁波从波导内耦合到第一至第八固态功率单片的输入端,经过芯片放大后再把功率通过石英单探针和波导输出。该功率放大器的突出优点是通过天线辐射的方式是在完成波导-微带过渡的同时实现了八路功分,使该功率合成放大器在很小的空间内实现了八路放大,且合成效率与固态器件数量无关;采用砷化镓场效应管,具有较高的放大增益,减少了功率合成放大器之间级联的数目,这些都有利于减小功率合成放大器模块的体积和重量。
3. 本发明的固态功率放大器将功放小模块A作为一个基础单元,可以将多个该模块进行统一测试,将测试结果进行排序,挑选相位、幅度一致的功放小模块进行组合,这样可以大大提高合成的功率及效率;
4. 本发明结构简单、各模块布局清晰明确、可维护性高、性能可靠,能够在恶劣环境(-40℃ ~ 55℃)条件下正常工作,性价比高,具有推广应用价值。
附图说明
图1是本发明实施例的电原理方框图。
图2是本发明实施例中固态功率放大器的电原理方框图。
图3是本发明实施例中功放小模块A的电原理方框图。
具体实施方式
下面结合附图和具体实施方式对本发明的技术方案做进一步的详细说明。
参照图1~3,一种V频段160W固态功率合成放大器,其由输入隔离器101、控制衰减器102、预失真模块103、驱动放大器104、固态功率放大器105、波导耦合器106、检波器107、监控单元108、电源模块109和风机110组成。图1是本实施例的原理方框图,实施例按图1连接线路。
本例中,输入隔离器101入端1脚通过V频段同轴电缆与外部端口A连接,实现V频段信号输入,输入隔离器101出端2脚通过V频段同轴电缆与控制衰减器102入端1脚连接,实现V频段信号输入,控制衰减器102入端3脚通过数据线与监控单元108出端3脚连接,可根据系统要求实现设备增益的步进调节,控制衰减器102入端4脚通过数据线与监控单元107出端2脚连接,监控单元108根据固态功率放大器105上报的温度信息进行综合处理,使系统在温度变化时增益波动控制在较小范围内,控制衰减器102的出端2脚通过V频段同轴电缆输出到预失真模块103入端1脚,预失真模块103对信号进行预失真校准,调整信号的幅频特性,改善系统信号的线性度,预失真模块103的出端2脚通过V频段弯波导输出到驱动放大器104入端1脚,驱动放大器104对信号进行初步放大,驱动放大器104出端2将初步放大的信号传输到固态功率放大器105入端1脚,固态功率放大器105将64路芯片进行功率合成后输出,固态功率放大器105将其温度和电流通过DS18B20及MAX4173TEUT芯片上报给监控单元108,固态功率放大器105将合成后的功率信号传输给波导耦合器106入端1脚,主路功率信号通过波导耦合器106出端2脚传输给外部波导口B,波导耦合器106通过波导内探针耦合的方式通过出端口3脚将耦合的小信号输入检波器107入端1脚,检波器107的出端2脚将检测到的射频信号转换为直流信号输入给监控单元108入端1脚,监控单元108将检波器107输入的直流信号处理成输出功率显示值,监控单元108同时对固态功放模块105上报的温度、电流、进行处理,从而实现对整机功放的过温保护、电流检测、功率监测等功能,监控单元108出端6脚与外部端口C通过串口总线连接实现外部对功放的控制,波导耦合器106采用市售CP47-51GW-2730制作,检波器107采用市售W55-001C50G25B制作。电源模块109提供各级部件直流工作电压,采用市售型号为SFM3880-220Q24C1的开关电源,其输出V+电压为+24伏、输出V-电压为-5伏,电源模块109入端3脚可接受监控单元108的控制,在非正常情况下关断输出电压,实现自我保护功能,风机110采用市售9WV0848P1H001型结构,电源模块109为其提供+48V供电电压。
预失真模块与驱动放大器104由小信号放大器、驱动放大器组成,实施例采用HMC1144和NC116210C-4651P5制作。所述的固态功率放大器104由魔T功分器301、波导滤波器A302、波导滤波器B303、四分路器A304、四分路器B305、功放小模块A306、功放小模块B307、功放小模块C308、功放小模块D309、功放小模块E310、功放小模块F311、功放小模块G312、功放小模块H313、四合路器A314、四合路器B315、魔T功放器316、波导滤波器C317组成,四分路器A304和四分路器B305、四合路器A314、四合路器B315结构完全一致,采用基于波导E-T结的二进制空间合成结构;
魔T功分器301出端2脚、3脚分别与波导滤波器A302入端1脚、波导滤波器B303入端1脚对应连接;波导滤波器A302出端2脚、波导滤波器B303出端2脚分别与四分路器A304入端1脚、四分路器B305入端1脚连接;四分路器A304出端2脚、3脚、4脚、5脚分别与功放小模块A306入端1脚、功放小模块B307入端1脚、功放小模块C308入端1脚、功放小模块D309入端1脚一一对应连接;四分路器B305出端2脚、3脚、4脚、5脚分别与功放小模块E310入端1脚、功放小模块F311入端1脚、功放小模块G312入端1脚、功放小模块H313入端1脚一一对应连接;功放小模块A306出端2脚、功放小模块B307出端2脚、功放小模块C308出端2脚、功放小模块D309出端2脚分别与四合路器A314出端2脚、3脚、4脚、5脚一一对应连接;功放小模块E310出端2脚、功放小模块F311出端2脚、功放小模块G312出端2脚、功放小模块H313出端2脚分别与四合路器B315出端2脚、3脚、4脚、5脚一一对应连接;四合路器A314出端1脚、四合路器B315出端1脚分别与魔T功放器316入端2脚、3脚对应连接;魔T功放器316出端1脚与波导滤波器C317入端1脚连接;波导滤波器C317出端2脚与波导耦合器入端1脚连接;功放小模块A-H八个模块结构功能完全相同。
功放小模块A306由八路功率分配器、八路功率合成器、第一至第八固态功率单片、第一至第十六电阻、电容C1、电容C2组成;八路功率分配器入端与八分路器出端连接,八路功率分配器出端与八合路器入端连接,八路功率分配器出端2、3、4、5、6、7、8通过波导石英探针过渡分别与第一至第八固态功率单片的各入端1一一对应连接,第一至第八固态功率单片的各输出端2通过波导石英探针过渡分别与八路功率合成器的入端2、3、4、5、6、7、8、9一一对应;V频段信号经过八路功率分配器后,信号等幅地分为八份,八路功率分配器输出的八路V频段信号分别进入第一至第八固态功率单片,八路经过放大的功率信号通过八路功率合成器进行功率合成后输出至八合路器的输入端,第一至第八固态功率单片入端4脚与电压V+连接第一至第十六电阻R1至R16、用于实现对第一至第八固态功率单片栅极的偏置调节,电容C1,电容C2是栅极偏置电压的旁路滤波电容,电压V+分别对第一至第八固态功率单片供电。实施例和功放盒体一起用铝合金进行加工,表面镀镍金。功率单片(319至326)采用相同的电路结构形式,各路放大器的入端3脚分别通过相同的分压电阻获得负压输入,入端4脚均与模块电源107输出+7V电压连接,各路放大器的作用均是提供功率增益,获得单管电路的最大输出功率,实施例每个功率单片各采用一只市售NC116210C-4651P5制作。
上述固态功率合成放大器的简要工作原理如下:
V频段160W固态功率合成放大器由输入隔离器101、控制衰减器102、预失真模块103、驱动放大器104、固态功率放大器105、波导耦合器106、检波器107、监控单元108、电源模块109和风机110组成。V频段输入小信号首先进入输入隔离器101再输出至控制衰减器102,通过监控单元108控制实现整机的增益步进调节和对整机增益波动调节。经过增益调整以后的信号进入预失真模块;预失真模块对信号进行线性化调整后输出到驱动放大器;驱动放大器对信号进行初步放大,经过驱动放大器放大的信号进入固态功率放大器,固态功率放大器实现功率合成放大,达到所需要的功率输出,并将检测到的温度和电流上报给监控单元;经过功率放大的模块进入波导耦合器,波导耦合器的将主信号传输给外部波导口B,波导耦合器将耦合的小信号输入检波器,检波器将检测到的射频信号转换为直流信号输入给监控单元。
上述固态功率合成放大器的安装结构如下:
把图1中输入隔离器101、控制衰减器102、预失真模块103、驱动放大器104、固态功率放大器105、波导耦合器106、检波器107、监控单元108和电源109共同安装在一个长×宽×高为3450毫米×335毫米×145毫米的密闭机箱内,风机110安装在机箱底部散热翅片上,V频段信号在不同部件之间的传输通过同轴射频电缆和V频段波导连接,控制信号通过软导线与监控单元连接,机箱加工采用屏蔽结构,可实现电磁信号的空间隔离,组装成本发明。
总之,本发明采用了一种波导内空间64路功率合成方式,基于波导探针过渡结构将八个功率芯片进行合成,构成一个功放小模块,再采用四路波导E-T型结构的二进制功率分配/合成网络将四个功放小模块进行合成,最后采用魔T结构的功率分配/合成网络将信号合成达到160W的功率输出。该功率放大器在V频段将64路功率芯片进行合成,具有合成效率高、频率高、重量轻、体积小、集成化程度高、性能稳定可靠、易维护、工作温度范围宽(-40℃~55℃)等特点,特别适用于卫星通信微波信道的功率放大业务。
Claims (3)
1.一种V频段160W固态功率合成放大器,其特征在于,包括输入隔离器(101)、控制衰减器(102)、预失真模块(103)、驱动放大器(104)、固态功率放大器(105)、波导耦合器(106)、检波器(107)、监控单元(108)、电源模块(109)和风机(110);输入隔离器(101)入端1脚与外部V频段入端口(A)连接,输入隔离器(101)入端2脚与控制衰减器(102)1脚连接;控制衰减器(103)2脚与预失真模块(104)入端1脚连接,控制衰减器(102)出入端3脚与监控单元(108)出入端3脚连接;预失真模块(103)出端2脚与驱动放大器(104)入端1脚连接;驱动放大器(104)出端2脚与固态功率放大器(105)入端1脚连接;固态功率放大器(105)出端2脚与波导耦合器(106)入端1脚连接,固态功率放大器(105)出端3脚与监控单元(108)入端4脚连接;波导耦合器(106)出端2脚与功放输出端口(B)连接,波导耦合器(106)出端3脚与检波器(107)入端1脚连接;检波器(107)出端2脚与监控单元(108)入端1脚连接;监控单元(108)入端2脚与电源模块(109)入端1脚连接,监控单元(108)出入端5脚与风机(110)出端2脚连接,监控单元(108)出入端6脚与功放控制端口(C)连接;电源模块(109)入端2脚与外部220V交流电源端口(D)连接,电源模块(109)出端5脚与风机(110)入端1脚连接,电源模块(109)出端3脚V+、出端4脚V-电压端与各部件相应电源端并接;
V频段输入小信号通过外部V频段入端口(A)进入输入隔离器(101),输入隔离器(101)对V频段以外的信号进行隔离衰减,减少其他信号的干扰影响,经过输入隔离后V频段信号进入控制衰减器(102);控制衰减器(102)内数控衰减器和压控衰减器通过监控单元实现对整个链路的增益调节和控制功能,经过增益调整以后的信号进入预失真模块(103);预失真模块(103)用于调整固态功率放大器(105)的幅频特性,补偿功率输出过程中引入的非线性,保证信号的线性输出,经过预失真模块(103)调整后的信号进入驱动放大器(104);驱动放大器(104)对信号进行初步放大后用以驱动后面的固态功率放大器(105),经过驱动放大器放大的信号进入固态功率放大器(105);固态功率放大器(105)实现功率合成放大,达到所需要的功率输出,并将检测到的温度和电流上报给监控单元(108);经过功率放大的模块进入波导耦合器(106),波导耦合器(106)的出端口2脚将主信号传输给外部的功放输出端口(B),波导耦合器(106)通过出端口3脚将耦合的小信号输入检波器(107),检波器(107)将检测到的射频信号转换为直流信号输入给监控单元(108),监控单元(108)将检波器输入的直流信号处理成输出功率显示值,监控单元(108)同时对固态功率放大器(105)的温度、电流、电源模块的控制进行处理,从而实现对整机功放的过温保护、电流检测、功率监测功能,监控单元(108)出端6脚与外部端口C通过串口总线连接实现外部对功放的控制,电源模块(109)入端4脚与外部220V交流电源端口(D)连接实现整机的供电,电源模块(109)出端4脚与风机(110)连接,提供风机(110)供电电压,电源模块(109)出端1脚V+、出端2脚V-电压端给各部件供电。
2.根据权利要求1所述的一种V频段160W固态功率合成放大器,其特征在于,所述的固态功率放大器(105)包括魔T功分器(301)、波导滤波器A(302)、波导滤波器B(303)、四分路器A(304)、四分路器B(305)、功放小模块A(306)、功放小模块B(307)、功放小模块C(308)、功放小模块D(309)、功放小模块E(310)、功放小模块F(311)、功放小模块G(312)、功放小模块H(313)、四合路器A(314)、四合路器B(315)、魔T功放器(316)和波导滤波器C(317);驱动放大器(104)出端2脚与魔T功分器(301)入端1脚连接,魔T功分器(301)出端2脚、3脚分别与波导滤波器A入端1脚、波导滤波器B入端1脚对应连接;波导滤波器A出端2脚与四分路器A入端1脚连接,波导滤波器B出端2脚与四分路器B入端1脚连接;四分路器A出端2脚、3脚、4脚、5脚分别与功放小模块A入端1脚、功放小模块B入端1脚、功放小模块C入端1脚、功放小模块D入端1脚一一对应连接;四分路器B出端2脚、3脚、4脚、5脚分别与功放小模块E入端1脚、功放小模块F入端1脚、功放小模块G入端1脚、功放小模块H入端1脚一一对应连接;功放小模块A出端2脚、功放小模块B出端2脚、功放小模块C出端2脚、功放小模块D出端2脚分别与四合路器A出端2脚、3脚、4脚、5脚一一对应连接;功放小模块E出端2脚、功放小模块F出端2脚、功放小模块G出端2脚、功放小模块H出端2脚分别与四合路器B出端2脚、3脚、4脚、5脚一一对应连接;四合路器A出端1脚、四合路器B出端1脚分别与魔T功放器入端2脚、3脚对应连接;魔T功放器出端1脚与波导滤波器C入端1脚连接;波导滤波器C出端2脚与波导耦合器(106)入端1脚连接;
驱动放大器(104)将初步放大的V频段信号经过魔T功分器(301),分成两路等幅信号分别经过波导滤波器A(302)、波导滤波器B(303)输入到四分路器A(304)、四分路器B(305),四分路器A(304)将信号等分为四路等幅信号分别输入至功放小模块A(306)、功放小模块B(307)、功放小模块C(308)、功放小模块D(309),信号经过四个功率放大器放大后通过四合路器A(314)进行合成输出到魔T功放器(316);四分路器B(305)将信号等分为四路等幅信号分别输入至功放小模块E(310)、功放小模块F(311)、功放小模块G(312)、功放小模块H(313),信号经过四个功率放大器放大后通过四合路器B(315)进行合成输出到魔T功放器(316),魔T功放器(316)将信号进行合成并输出经过波导滤波器C(317)传输至波导耦合器(106)。
3.根据权利要求2所述的一种V频段160W固态功率合成放大器,其特征在于,所述的功放小模块A~H(306~313)的结构相同;
每一功放小模块均包括八路功率分配器(318)、八路功率合成器(327)以及固态功放芯片A~H(319~326);八路功率分配器(318)入端与四分路器A(304)出端连接,八路功率合成器(327)出端与四合路器A(314)入端连接,八路功率分配器(318)出端2、3、4、5、6、7、8、9脚通过波导探针过渡结构分别与固态功放芯片A~H(319~326)的各入端1脚一一对应连接,固态功放芯片A~H(319~326)的各输出端2脚通过波导探针过渡结构分别与八路功率合成器(318)的入端2、3、4、5、6、7、8、9脚一一对应连接,固态功放芯片A~H(319~326)入端3脚均通过各自的一个电阻与电压V-连接,并通过各自的另一个电阻接地,固态功放芯片A~H(319~326)入端4脚均与电压V+连接,固态功放芯片A(319)所连的电压V-处还通过一对并联电容(C1、C2)接地;
V频段信号经过八路功率分配器(318)后,信号等幅地分为八份,八路功率分配器(318)输出的八路V频段信号分别进入第一至第八固态功率单片(319~326),八路经过放大的功率信号通过八路功率合成器(327)进行功率合成后输出至八合路器(327)的输入端,固态功放芯片A~H(319~326)入端3脚所连的各电阻(R1~R16)用于实现对固态功放芯片栅极的偏置调节,固态功放芯片A(319)所连的并联电容(C1、C2)为栅极偏置电压的旁路滤波电容,电压V-和V+分别为固态功放芯片A~H(319~326)供电。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011296741.0A CN112491373B (zh) | 2020-11-18 | 2020-11-18 | 一种v频段160w固态功率合成放大器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011296741.0A CN112491373B (zh) | 2020-11-18 | 2020-11-18 | 一种v频段160w固态功率合成放大器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112491373A true CN112491373A (zh) | 2021-03-12 |
CN112491373B CN112491373B (zh) | 2022-08-12 |
Family
ID=74931589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011296741.0A Active CN112491373B (zh) | 2020-11-18 | 2020-11-18 | 一种v频段160w固态功率合成放大器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112491373B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113702916A (zh) * | 2021-06-24 | 2021-11-26 | 北京无线电测量研究所 | 一种紧凑型2-18GHz固态超宽带发射机 |
CN115242200A (zh) * | 2022-09-15 | 2022-10-25 | 成都国盛军通科技有限公司 | 一种c波段射频信号功率放大装置和方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102355207A (zh) * | 2011-09-29 | 2012-02-15 | 中国电子科技集团公司第五十四研究所 | 一种Ka频段固态功率放大器 |
US20150358051A1 (en) * | 2007-09-06 | 2015-12-10 | Vt Idirect, Inc. | Highly integrated very small aperture terminal (vsat) apparatus and method |
CN105306132A (zh) * | 2015-11-18 | 2016-02-03 | 南京中网卫星通信股份有限公司 | 一种带有自动监控的闭环控制便携站及其控制方法 |
CN105356928A (zh) * | 2015-09-28 | 2016-02-24 | 四川九洲电器集团有限责任公司 | 一种Ku频段卫星通信变频终端设备 |
US20170317654A1 (en) * | 2016-04-27 | 2017-11-02 | California Institute Of Technology | Spatial power combining mechanism (spcm) for the generation and amplification of electromagnetic radiation |
US10374852B1 (en) * | 2018-09-10 | 2019-08-06 | United States Of America As Represented By The Administrator Of Nasa | Ka-band modulator and transmitter |
CN210578441U (zh) * | 2019-12-20 | 2020-05-19 | 成都菲斯洛克电子技术有限公司 | 一种新型Ka频段固态功率放大器 |
-
2020
- 2020-11-18 CN CN202011296741.0A patent/CN112491373B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150358051A1 (en) * | 2007-09-06 | 2015-12-10 | Vt Idirect, Inc. | Highly integrated very small aperture terminal (vsat) apparatus and method |
CN102355207A (zh) * | 2011-09-29 | 2012-02-15 | 中国电子科技集团公司第五十四研究所 | 一种Ka频段固态功率放大器 |
CN105356928A (zh) * | 2015-09-28 | 2016-02-24 | 四川九洲电器集团有限责任公司 | 一种Ku频段卫星通信变频终端设备 |
CN105306132A (zh) * | 2015-11-18 | 2016-02-03 | 南京中网卫星通信股份有限公司 | 一种带有自动监控的闭环控制便携站及其控制方法 |
US20170317654A1 (en) * | 2016-04-27 | 2017-11-02 | California Institute Of Technology | Spatial power combining mechanism (spcm) for the generation and amplification of electromagnetic radiation |
US10374852B1 (en) * | 2018-09-10 | 2019-08-06 | United States Of America As Represented By The Administrator Of Nasa | Ka-band modulator and transmitter |
CN210578441U (zh) * | 2019-12-20 | 2020-05-19 | 成都菲斯洛克电子技术有限公司 | 一种新型Ka频段固态功率放大器 |
Non-Patent Citations (3)
Title |
---|
XIAOBING KOU: "A C-band 1KW Power Amplifier Design Based on Waveguide Magic T Synthesis", 《2020 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT)》 * |
刘立浩等: "室内型Ku频段150W功率放大器设计", 《无线电工程》 * |
张东: "小型化高功率微波功率放大器的实现", 《电子技术与软件工程》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113702916A (zh) * | 2021-06-24 | 2021-11-26 | 北京无线电测量研究所 | 一种紧凑型2-18GHz固态超宽带发射机 |
CN115242200A (zh) * | 2022-09-15 | 2022-10-25 | 成都国盛军通科技有限公司 | 一种c波段射频信号功率放大装置和方法 |
CN115242200B (zh) * | 2022-09-15 | 2023-01-06 | 成都国盛军通科技有限公司 | 一种c波段射频信号功率放大装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112491373B (zh) | 2022-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110915174B (zh) | 校正装置和校正方法 | |
US8423028B2 (en) | Active antenna array with multiple amplifiers for a mobile communications network and method of providing DC voltage to at least one processing element | |
CN112491373B (zh) | 一种v频段160w固态功率合成放大器 | |
CN102281113B (zh) | 通信中继装置及其驻波比检测装置和方法 | |
CN102355207B (zh) | 一种Ka频段固态功率放大器 | |
CN109088679A (zh) | 有源阵列天线校准系统、方法、装置及有源阵列天线系统 | |
CN206993063U (zh) | 一种Ku频段固态功率合成放大器 | |
CN108448219A (zh) | 一种e波段波导e-t分支和多探针耦合结构功率合成放大器 | |
CN114421978B (zh) | 一种超宽带大功率高效率的多波段发射分系统 | |
CN216252696U (zh) | 一种超宽带大功率高效率的多波段发射分系统 | |
CN107248848A (zh) | 一种ehf频段高线性固态大功率放大器装置 | |
CN110988814B (zh) | X频段2000瓦固态发射机及系统 | |
CN111147159A (zh) | 校准电路、校准网络和智能天线 | |
CN113364417A (zh) | 一种可调节的负载平衡功放结构 | |
US11212016B1 (en) | Distribution of inter/intra calibration signals for antenna beamforming signals | |
CN107171046A (zh) | 一种新型组合式波导功率合成器 | |
CN111082817B (zh) | 一种提高线性度的相位补偿方法及系统 | |
CN210323204U (zh) | 一种多通道k波段辐射计接收机 | |
CN117013970A (zh) | 一种基于异构集成工艺的宽带高功率放大器及其设计方法 | |
CN217428131U (zh) | 一种校准设备、基站天线及天线系统 | |
CN113938146B (zh) | 一种Ka频段高集成超低噪声瓦片式接收组件 | |
CN109361362A (zh) | 一种固态高功率放大器 | |
CN116014402A (zh) | 一种基于e面的径向功率合成器 | |
CN203288755U (zh) | 适用于FDD系统的RoF型相控有源一体化天线阵列 | |
CN109510608B (zh) | 用于25GHz以下频段通信系统的功率合成分配器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |