CN112488948B - 一种基于黑色像素点估计后向散射的水下图像复原方法 - Google Patents

一种基于黑色像素点估计后向散射的水下图像复原方法 Download PDF

Info

Publication number
CN112488948B
CN112488948B CN202011407151.0A CN202011407151A CN112488948B CN 112488948 B CN112488948 B CN 112488948B CN 202011407151 A CN202011407151 A CN 202011407151A CN 112488948 B CN112488948 B CN 112488948B
Authority
CN
China
Prior art keywords
image
depth
representing
underwater
black pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011407151.0A
Other languages
English (en)
Other versions
CN112488948A (zh
Inventor
张维石
周景春
杨彤雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN202011407151.0A priority Critical patent/CN112488948B/zh
Publication of CN112488948A publication Critical patent/CN112488948A/zh
Application granted granted Critical
Publication of CN112488948B publication Critical patent/CN112488948B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)

Abstract

本发明提供一种基于黑色像素点估计后向散射的水下图像复原方法。本发明方法,包含以下步骤:首先,使用基于自监督的单目深度估计模型估计退化图像的相对深度。根据该相对深度,选择合适的深度上限和下限进行深度归一化操作,从而得到退化图像的绝对深度图。然后,将图像像素点按其深度等分成多个区间,在各区间中搜索退化图像的潜在黑色像素点。使用水下图像成像模型,将
Figure DDA0002815113450000011
看作常数,分通道拟合参数
Figure DDA0002815113450000012
以估计后向散射Bc。最后,引入自定义亮度值t调整图像整体亮度,实现水下图像复原。

Description

一种基于黑色像素点估计后向散射的水下图像复原方法
技术领域
本发明涉及图像处理技术领域,具体而言,尤其涉及一种基于黑色像素点估计后向散射的水下图像复原方法。
背景技术
由于水和悬浮颗粒物对光的吸收和散射作用,水下图像和视频普遍存在低对比度、低清晰度和低色度等问题。退化的水下图像和视频在视觉质量上很少能够达到预期效果,进一步影响水下场景感知、关键特征提取以及视觉理解的准确性。为了有效去除后向散射对水下图像质量的影响,水下图像增强方法和水下图像复原方法是常用的两种方法。
其中,水下图像增强方法主要使用滤波器、直方图均衡化等方法恢复图像颜色和饱和度。这类方法虽然可以有效改善图像的视觉效果,但是却没有考虑水下光学成像模型,忽略了退化程度与景深之间的关系。因此,无法恢复场景的真实色彩特征。水下图像复原方法主要通过水下成像模型来逆转水下图像的退化过程。该方法可以分为:基于硬件的水下图像复原方法和基于软件的水下图像复原方法。基于硬件的水下图像复原方法不需要考虑先验知识等问题,主要依靠硬件设备直接复原水下图像,或是尽可能准确地测量水下光学信息,并利用这些信息和成像模型复原水下图像。这些设备主要包括偏振器、激光器、深海水下相机、立体相机等。但大型硬件设备往往价格昂贵且难以操作。基于软件的水下图像复原方法常根据水下成像模型和先验知识复原水下图像。但基于先验的水下图像复原方法存在采用先验和目标场景不匹配的问题。这会导致严重的估计误差,出现复原结果失真等问题。基于深度学习的水下图像复原技术仍然也存在许多问题。一方面,基于深度学习的方法在经过训练后参数估计值固定,因此在处理复杂的水下环境时缺乏足够的灵活性。当新的水下图像类型与训练集的水下环境类型不同,训练后的模型可能无法输出满意的结果。另一方面,深度学习自身的局限性,如:需要大量的参数来学习复杂的映射函数以及能否找到合适的训练集等问题,也会限制深度学习方法在实际应用中的潜在价值。
发明内容
根据上述提出的技术问题,提供一种基于黑色像素点估计后向散射的水下图像复原方法。本发明主要使用细化后的深度图和黑色像素点,根据水下成像物理模型估计并去除后向散射,调整图像整体亮度以获得色彩鲜艳的水下图像。
本发明采用的技术手段如下:
一种基于黑色像素点估计后向散射的水下图像复原方法,其特征在于,包括以下步骤:
步骤S01:读入原始RGB图像,根据基于自监督的单目深度估计方法估算所述原始RGB图像的相对深度;
步骤S02:选择深度上下限进行深度归一化处理,获取所述原始RGB图像的绝对深度图;
步骤S03:将所述绝对深度图按深度值大小划分为多个深度区间,每个区间的深度上下限之差保持一致,将所述原始RGB图像的各像素点按对应的深度分别归类到不同的深度区间中;
步骤S04:在每个区间深度内,搜索潜在的黑色像素点,并在三个不同颜色通道下用其深度信息和RGB值,根据水下图像成像模型,分别拟合
Figure BDA0002815113430000021
J′c,
Figure BDA0002815113430000022
的值,其中Bc 表示大气光;
Figure BDA0002815113430000023
表示后向散射系数;J′c表示未经退化的水下图像;
Figure BDA0002815113430000024
表示带宽系数,为关于距离z的函数;
步骤S05:通过所述水下图像成像模型和参数
Figure BDA0002815113430000025
J′c,
Figure BDA0002815113430000026
值,估算并去除后向散射Bc
步骤S06:通过自定义亮度值t调整图像整体亮度,获取复原后的水下图像。
进一步,所述S02中的深度归一化公式为:
Figure BDA0002815113430000027
其中,a和b分别表示图像相对深度范围内的最小值和最大值,c和d分别表示图像绝对深度范围内的最小值和最大值。x表示相对深度图,y表示经过映射后的绝对深度图。
进一步地,所述步骤S04中的水下图像成像模型为:
Ic=Dc+Bc
其中,c∈{R,G,B}表示红绿蓝三种颜色通道;Ic表示相机捕获的真实图像;Dc表示直接反射光,即水下场景的直接反射光中未被散射的部分到达相机的光;Bc表示后向散射光,即大气光被水中微小悬浮物散射后,进入拍摄装置的光;Dc,Bc进一步由以下公式表示:
Figure BDA0002815113430000031
其中,Jc表示未经退化的水下图像;z表示场景与相机间的距离;
Figure BDA0002815113430000032
表示带宽系数,为关于距离z的函数;
Figure BDA0002815113430000033
表示后向散射系数;Bc 表示大气光。由此,可以得到拍摄图像和未经退化的水下图像之间的关系:
Figure BDA0002815113430000034
其中,
Figure BDA0002815113430000035
Figure BDA0002815113430000036
的表达式如下所示:
Figure BDA0002815113430000037
其中,λ12表示对可见光波长的限制;Sc表示相机成像系统的光谱响应,ρ表示场景反射率,β表示水体的光束衰减系数,三者均依赖于光的波长λ;E(d,λ)表示照明光的在水深d处,波长为λ的光的光谱;
Figure BDA0002815113430000038
其中,B表示环境光。
当未退化的图像中包含纯黑像素点时,即该处:ρc→0或E→0,此时,后向散射分量与捕获图像存在如下关系:
Figure BDA0002815113430000039
因此,采用如下物理模型,使用所得纯黑像素点对
Figure BDA00028151134300000310
J′c,
Figure BDA00028151134300000311
进行拟合。
Figure BDA0002815113430000041
此处暂时忽略
Figure BDA0002815113430000042
对z的依赖关系。将拟合后的参数带入所述物理模型,根据深度值z,得到整幅图像的后向散射值
Figure BDA0002815113430000043
进一步地,所述步骤S05中的水下图像成像模型为:
Figure BDA0002815113430000044
其中,a,b,c,d分别表示对
Figure BDA0002815113430000045
J′c,
Figure BDA0002815113430000046
拟合后的参数值。对Ic分通道去除后向散射的公式如下:
Figure BDA0002815113430000047
其中,D′c表示退化图像去散射后的结果。
进一步地,所述步骤S06中自定义亮度t调整图像整体亮度的公式如下:
Figure BDA0002815113430000048
其中,t表示亮度系数,范围在0~1之间,J′表示调整亮度后的复原图像。
较现有技术相比,本发明具有以下优点:
1、对于图像增强方法出现的颜色失真和传统基于DCP方法出现的透射率估计偏差大的问题,本发明从水下图像退化机制方面考虑,使用了新型水下物理成像模型估计后向散射,去散射效果明显,复原结果接近真实的未退化水下场景。
2、本发明仅需要获得图像的深度图,而不需要估计图像的透射率和背景光,相比于传统复原方法,本发明具有更低的复杂度。
基于上述理由本发明可在图像处理等领域广泛推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的流程示意图。
图2为本发明与其他水下图像复原方法在偏蓝场景中的对比效果图。其中,图2-1为水下采集图像原图(鱼);图2-2 Drews et al.UDCP方法处理效果图;图2-3 Peng etal.GDCP方法处理效果图;图2-4Peng et al.IBLA方法处理效果图;图2-5为本发明方法处理效果图。
图3为本发明与其他水下图像方法的在浑浊水体中的对比效果图。其中,图3-1为水下采集图像原图(海龟);图3-2 Drews et al.UDCP方法处理效果图;图3-3 Peng etal.GDCP方法处理效果图;图3-4 Peng et al.IBLA方法处理效果图;图3-5为本发明方法处理效果图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了验证本发明去散射的有效性,选取不同场景的水下图像作为测试集,同时与Drews et al.UDCP,Peng et al.GDCP,Peng et al.IBLA算法的实验结果从定性和定量两方面进行对比分析。具体步骤和原理如下:
如图1所示,本发明提供了一种基于黑色像素点估计后向散射的水下图像复原方法,包括以下步骤:
步骤S01:读入原始RGB图像,根据基于自监督的单目深度估计方法估算所述原始RGB图像的相对深度;
步骤S02:根据场景的实际深度选择选择合适的深度上下限作为优选的可以选择0~80米范围内,进行深度归一化处理,获取所述原始RGB图像的绝对深度图;其深度归一化公式为:
Figure BDA0002815113430000061
其中,a和b分别表示图像相对深度范围内的最小值和最大值,c和d分别表示图像绝对深度范围内的最小值和最大值。x表示相对深度图,y表示经过映射后的绝对深度图;
步骤S03:
将所述绝对深度图按按深度值大小划分多个深度区间,每个区间的深度上下限之差保持一致,将所述原始RGB图像的各像素点按对应的深度分别归类到不同的深度区间中;
步骤S04:
在每个区间深度内,搜索潜在的黑色像素点,并在三个不同颜色通道下用其深度信息和RGB值,根据水下图像成像模型,分别拟合
Figure BDA0002815113430000062
J′c,
Figure BDA0002815113430000063
的值,其中Bc 表示大气光;
Figure BDA0002815113430000064
表示后向散射系数;J′c表示未经退化的水下图像;
Figure BDA0002815113430000065
表示带宽系数,为关于距离z的函数;
其水下水下图像成像模型为:
Ic=Dc+Bc
其中,c∈{R,G,B}表示红绿蓝三种颜色通道;Ic是相机捕获的真实图像;Dc表示直接反射光,它表示水下场景的直接反射光中未被散射的部分到达相机的光;Bc表示后向散射光,它表示大气光被水中微小悬浮物散射后,进入拍摄装置的光;Dc,Bc可进一步由以下公式表示:
Figure BDA0002815113430000066
其中,Jc表示未经退化的水下图像;z表示场景与相机间的距离;
Figure BDA0002815113430000067
表示带宽系数,是关于距离z的函数;
Figure BDA0002815113430000068
表示后向散射系数;Bc 表示大气光。由此,可以得到拍摄图像和未经退化的水下图像之间的关系:
Figure BDA0002815113430000069
其中,
Figure BDA0002815113430000071
Figure BDA0002815113430000072
的表达式如下所示:
Figure BDA0002815113430000073
其中,λ12表示对可见光波长的限制;Sc表示相机成像系统的光谱响应,ρ表示场景反射率,β表示水体的光束衰减系数,三者均依赖于光的波长λ;E(d,λ)表示照明光的在水深d处,波长为λ的光的光谱;
Figure BDA0002815113430000074
其中,B是环境光。
当未退化的图像中包含纯黑像素点时,即该处:ρc→0或E→0,此时,后向散射分量与捕获图像存在如下关系:
Figure BDA0002815113430000075
因此,采用如下物理模型,使用所得纯黑像素点对
Figure BDA0002815113430000076
J′c,
Figure BDA0002815113430000077
进行拟合。
Figure BDA0002815113430000078
此处暂时忽略
Figure BDA0002815113430000079
对z的依赖关系。将拟合后的参数带入该物理模型,根据深度值z,得到整幅图像的后向散射值
Figure BDA00028151134300000710
步骤S05:通过所述水下图像成像模型和参数
Figure BDA00028151134300000711
J′c,
Figure BDA00028151134300000712
值,估算并去除后向散射Bc其水下图像成像模型为:
Figure BDA00028151134300000713
其中,a,b,c,d分别表示对
Figure BDA00028151134300000714
J′c,
Figure BDA00028151134300000715
拟合后的参数值。对Ic分通道去除后向散射的公式如下:
Figure BDA00028151134300000716
其中,D′c是退化图像去散射后的结果。
步骤S06:通过自定义亮度值t调整图像整体亮度,获取复原后的水下图像。自定义亮度t调整图像整体亮度的公式如下:
Figure BDA00028151134300000717
其中,t表示亮度系数,范围在0~1之间,J′表示调整亮度后的复原图像。
实施例
如图2所示,本发明提供与其他水下图像复原方法在偏蓝场景(鱼)中的对比效果图。通过对比可以看出,本发明方法处理后的效果图中,图像颜色更加鲜艳,且优于其他方法(Drews et al.UDCP,Peng et al.GDCP,Peng et al.IBLA)。因此本发明方法能够校正颜色和增强图像对比度,提升图像视觉效果。
如图3所示,本发明提供与其他算法在浑浊水体中(海龟)的实验效果对比图。通过与(Drews et al.UDCP,Peng et al.GDCP,Peng et al.IBLA)方法进行对比分析,本文处理后海龟的颜色复原效果明显优于其他方法,并且图像清晰度更高。因此本发明方法能够校正颜色和增强图像对比度,提升图像视觉效果。
本实施例为了验证本发明的鲁棒性,无参考图像质量评价指标UIQM和UCIQE进行对比分析,具体数据参见表1和表2。无参考图像质量评价指标越大,表明该方法生成图像的色度、饱和度以及对比度越好,越能获得良好的视觉效果。本发明方法处理后的图像的两个指标数据值优于其他方法。证明本发明方法可以有效提升图像的色彩以及对比度。
表1本发明算法和其他算法处理结果的无参考图像质量评价指标(UIQM)
Raw image UDCP GDCP IBLA Our
0.3755 1.1729 0.6913 0.7937 1.2291
0.6224 0.6891 0.8895 1.1078 1.2551
表2本发明算法和其他算法处理结果的无参考图像质量评价指标(UCIQE)
Figure BDA0002815113430000081
Figure BDA0002815113430000091
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的范围。

Claims (5)

1.一种基于黑色像素点估计后向散射的水下图像复原方法,其特征在于,包括以下步骤:
步骤S01:读入原始RGB图像,根据基于自监督的单目深度估计方法估算所述原始RGB图像的相对深度;
步骤S02:选择深度上下限进行深度归一化处理,获取所述原始RGB图像的绝对深度图;
步骤S03:将所述绝对深度图按深度值大小划分为多个深度区间,每个区间的深度上下限之差保持一致,将所述原始RGB图像的各像素点按对应的深度分别归类到不同的深度区间中;
步骤S04:在每个区间深度内,搜索潜在的黑色像素点,并在三个不同颜色通道下用其深度信息和RGB值,根据水下图像成像模型,分别拟合
Figure FDA0002815113420000016
J′c,
Figure FDA0002815113420000014
的值,其中Bc 表示大气光;
Figure FDA0002815113420000011
表示后向散射系数;J′c表示未经退化的水下图像;
Figure FDA0002815113420000012
表示带宽系数,为关于距离z的函数;
步骤S05:通过所述水下图像成像模型和参数
Figure FDA0002815113420000017
J′c,
Figure FDA0002815113420000015
值,估算并去除后向散射Bc
步骤S06:通过自定义亮度值t调整图像整体亮度,获取复原后的水下图像。
2.根据权利要求1所述的基于黑色像素点估计后向散射的水下图像复原方法,其特征在于,所述步骤S02中的深度归一化公式为:
Figure FDA0002815113420000013
其中,a和b分别表示图像相对深度范围内的最小值和最大值,c和d分别表示图像绝对深度范围内的最小值和最大值;x表示相对深度图,y表示经过映射后的绝对深度图。
3.根据权利要求1所述的基于黑色像素点估计后向散射的水下图像复原方法,其特征在于,所述步骤S04中的水下图像成像模型为:
Ic=Dc+Bc
其中,c∈{R,G,B}表示红绿蓝三种颜色通道;Ic表示相机捕获的真实图像;Dc表示直接反射光,即水下场景的直接反射光中未被散射的部分到达相机的光;Bc表示后向散射光,即大气光被水中微小悬浮物散射后,进入拍摄装置的光;Dc,Bc进一步由以下公式表示:
Figure FDA0002815113420000021
其中,Jc表示未经退化的水下图像;z表示场景与相机间的距离;
Figure FDA0002815113420000022
表示带宽系数,为关于距离z的函数;
Figure FDA0002815113420000023
表示后向散射系数;Bc 表示大气光;由此,可以得到拍摄图像和未经退化的水下图像之间的关系:
Figure FDA0002815113420000024
其中,
Figure FDA0002815113420000025
Figure FDA0002815113420000026
的表达式如下所示:
Figure FDA0002815113420000027
其中,λ12表示对可见光波长的限制;Sc表示相机成像系统的光谱响应,ρ表示场景反射率,β表示水体的光束衰减系数,三者均依赖于光的波长λ;E(d,λ)表示在水深d处,波长为λ的光的光谱;
Figure FDA0002815113420000028
其中,B表示环境光;
当未退化的图像中包含纯黑像素点时,即该处:ρc→0或E→0,此时,后向散射分量与捕获图像存在如下关系:
Figure FDA0002815113420000029
因此,采用如下物理模型,使用所得纯黑像素点对
Figure FDA00028151134200000217
J′c,
Figure FDA00028151134200000216
进行拟合:
Figure FDA00028151134200000210
此处暂时忽略
Figure FDA00028151134200000211
对z的依赖关系,将拟合后的参数带入所述物理模型,根据深度值z,得到整幅图像的后向散射值
Figure FDA00028151134200000212
4.根据权利要求1所述的基于黑色像素点估计后向散射的水下图像复原方法,特征在于,所述步骤S05中的水下图像成像模型为:
Figure FDA00028151134200000213
其中,a,b,c,d分别表示对
Figure FDA00028151134200000214
J′c,
Figure FDA00028151134200000215
拟合后的参数值;对Ic分通道去除后向散射的公式如下:
Figure FDA0002815113420000031
其中,D′c表示退化图像去散射后的结果。
5.根据权利要求1所述的基于黑色像素点估计后向散射的水下图像复原方法,其特征在于,所述步骤S06中自定义亮度t调整图像整体亮度的公式如下:
Figure FDA0002815113420000032
其中,t表示亮度系数,范围在0~1之间,J′表示调整亮度后的复原图像。
CN202011407151.0A 2020-12-03 2020-12-03 一种基于黑色像素点估计后向散射的水下图像复原方法 Active CN112488948B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011407151.0A CN112488948B (zh) 2020-12-03 2020-12-03 一种基于黑色像素点估计后向散射的水下图像复原方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011407151.0A CN112488948B (zh) 2020-12-03 2020-12-03 一种基于黑色像素点估计后向散射的水下图像复原方法

Publications (2)

Publication Number Publication Date
CN112488948A CN112488948A (zh) 2021-03-12
CN112488948B true CN112488948B (zh) 2023-05-16

Family

ID=74939371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011407151.0A Active CN112488948B (zh) 2020-12-03 2020-12-03 一种基于黑色像素点估计后向散射的水下图像复原方法

Country Status (1)

Country Link
CN (1) CN112488948B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113012254B (zh) * 2021-04-20 2022-04-26 中国科学院自动化研究所 基于像素级自监督训练的水下图像合成方法
CN113269763B (zh) * 2021-06-03 2023-07-21 大连海事大学 基于深度图复原和亮度估计的水下图像清晰度恢复方法
CN113538276A (zh) * 2021-07-15 2021-10-22 大连海事大学 基于复杂水下成像模型的水下图像颜色校正方法
CN113936237A (zh) * 2021-09-30 2022-01-14 中国矿业大学 基于对比自监督的无参考视频质量评估预测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227951A (ja) * 2007-03-13 2008-09-25 Ichikawa Soft Laboratory:Kk 画像処理装置
CN106897972A (zh) * 2016-12-28 2017-06-27 南京第五十五所技术开发有限公司 一种白平衡与暗原色的自适应直方图水下图像增强方法
CN108596853A (zh) * 2018-04-28 2018-09-28 上海海洋大学 基于背景光统计模型和传输地图优化的水下图像增强方法
CN111210395A (zh) * 2020-01-09 2020-05-29 大连海事大学 基于灰度值映射的Retinex水下图像增强方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227951A (ja) * 2007-03-13 2008-09-25 Ichikawa Soft Laboratory:Kk 画像処理装置
CN106897972A (zh) * 2016-12-28 2017-06-27 南京第五十五所技术开发有限公司 一种白平衡与暗原色的自适应直方图水下图像增强方法
CN108596853A (zh) * 2018-04-28 2018-09-28 上海海洋大学 基于背景光统计模型和传输地图优化的水下图像增强方法
CN111210395A (zh) * 2020-01-09 2020-05-29 大连海事大学 基于灰度值映射的Retinex水下图像增强方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于背景光估计与暗通道先验的水下图像复原;谢昊伶;彭国华;王凡;杨成;;光学学报(01);全文 *

Also Published As

Publication number Publication date
CN112488948A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
CN112488948B (zh) 一种基于黑色像素点估计后向散射的水下图像复原方法
Ancuti et al. Enhancing underwater images and videos by fusion
CN111047530B (zh) 基于多特征融合的水下图像颜色校正和对比度增强方法
Muniraj et al. Underwater image enhancement by combining color constancy and dehazing based on depth estimation
TWI808406B (zh) 圖像去霧方法和使用圖像去霧方法的圖像去霧設備
CN110689490A (zh) 一种基于纹理颜色特征和优化透射率的水下图像复原方法
Barros et al. Single-shot underwater image restoration: A visual quality-aware method based on light propagation model
Mohan et al. Underwater image enhancement based on histogram manipulation and multiscale fusion
Ueda et al. Underwater image synthesis from RGB-D images and its application to deep underwater image restoration
Peng et al. Single image restoration using scene ambient light differential
Hashim et al. No reference Image Quality Measure for Hazy Images.
Tan et al. Image haze removal based on superpixels and Markov random field
CN115205713A (zh) 一种无人机遥感图像阴影区景物颜色与纹理细节恢复方法
Mageshwari et al. Underwater image re-enhancement with blend of simplest colour balance and contrast limited adaptive histogram equalization algorithm
CN113269763B (zh) 基于深度图复原和亮度估计的水下图像清晰度恢复方法
Sathya et al. Enhancement of underwater images using wavelength compensation method
CN115937021A (zh) 基于频率域特征分离和迭代优化大气光的偏振去雾方法
Gautam et al. An advanced visibility restoration technique for underwater images
Guodong et al. Underwater image enhancement and detection based on convolutional DCP and YOLOv5
Jayanthi et al. Underwater haze removal using contrast boosted grayscale image
US20240169569A1 (en) Determining depth maps from images
Achddou et al. Learning Raw Image Denoising Using a Parametric Color Image Model
Yin et al. Color Shifting-Aware Image Dehazing
Ghate et al. Recent trends and challenges in Image Enhancement Techniques for Underwater Photography
Saxena et al. Survey Paper on Visibility Restoration of Underwater Optical Images and Enhancement Techniques

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant