CN112487640A - 一种内河航道整治工程生态影响模拟预测方法 - Google Patents

一种内河航道整治工程生态影响模拟预测方法 Download PDF

Info

Publication number
CN112487640A
CN112487640A CN202011362507.3A CN202011362507A CN112487640A CN 112487640 A CN112487640 A CN 112487640A CN 202011362507 A CN202011362507 A CN 202011362507A CN 112487640 A CN112487640 A CN 112487640A
Authority
CN
China
Prior art keywords
habitat
sand
regulation
dimensional
river
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011362507.3A
Other languages
English (en)
Other versions
CN112487640B (zh
Inventor
吕彪
邢岩
陈春梅
陈艳梅
王晓
周敬林
曾敏
马殿光
李华国
康苏海
李少希
章日红
王常红
于广年
赵家强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Research Institute for Water Transport Engineering MOT
Original Assignee
Tianjin Research Institute for Water Transport Engineering MOT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Research Institute for Water Transport Engineering MOT filed Critical Tianjin Research Institute for Water Transport Engineering MOT
Priority to CN202011362507.3A priority Critical patent/CN112487640B/zh
Publication of CN112487640A publication Critical patent/CN112487640A/zh
Application granted granted Critical
Publication of CN112487640B publication Critical patent/CN112487640B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/40Protecting water resources
    • Y02A20/402River restoration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

本发明公开了一种内河航道整治工程生态影响模拟预测方法,确定整治河段的指示水生生物以及构成该水生生物的生境因子及生境因子的时空分布,建立该水生生物栖息地的适宜度模型;建立整治河段的三维水沙数学模型,并预测整治河段在不同航道整治措施参数下的水深、流速、流态及含沙量三维时空分布数据;在内河航道整治工程设计阶段,通过调整三维水沙数学模型中不同整治措施参数,将预测的生境因子三维时空分布数据,输入适宜度模型中,预测在不同航道整治参数下对生境的影响,达到航道整治目标和水生境保护的有机融合。本发明内河航道整治工程对指示性生物栖息地条件的三维空间影响,在开发河流通航功能的同时,兼顾河流生态功能的保护与修复。

Description

一种内河航道整治工程生态影响模拟预测方法
技术领域
本发明涉及一种内河航道整治领域,特别涉及一种内河航道整治工程生态影响模拟 预测方法。
背景技术
目前,河流水文情势和动力条件等水文机制的改变是河流生态系统退化的主要驱动 力。内河航道整治工程(疏浚、清礁、筑坝、护滩、护岸等)改变了航道水位、流态、 流速在三维空间上的显著变化及河床变形与冲淤分布特征,进而导致河流水生生物栖息 地的时空分布发生不同程度的变化。目前的水生态模拟理论构筑起了水力学计算与生态 学特征表述间的理论联系,能够依据特有鱼类的栖息、产卵习性通过对水文过程的调节, 人工提供出适宜的栖息环境。水生生物,特别是指示鱼类及其关键生境,是航道整治工 程生态影响预测和后评估的关注焦点,当前基于河道内流量增加方法开展了内河航道整 治工程对物理栖息地影响的模拟和评估研究,仍多采用一、二维模型,因物理栖息地三 维空间特性对生物多样性有重要影响,上述模拟方法仍有一定的局限性,因此合理科学 预测内河航道整治工程对物理栖息地的影响是十分必要的。
发明内容
针对内河航道整治工程建设对河流栖息地条件的影响预测难题,本发明基于不同通 航条件下的物理栖息地指示性物种的特征与变化趋势,建立三维水流泥沙数学模型水力 参量与栖息地特征量间的响应过程,为科学评价内河航道工程方案生态影响提供一种更 加科学有效的模拟预测方法。本发明为解决公知技术中存在的技术问题而提供一种三维 的内河航道整治工程生态影响模拟预测方法。
本发明为解决公知技术中存在的技术问题所采取的技术方案是:一种内河航道整治 工程生态影响模拟预测方法,调查统计整治河段指示水生生物在流速、水深、底质和含沙量的某个区间范围的出现频次,采用多元线性回归建立整治河段指示性水生生物响应与栖息地生境因子变量之间的关系,建立该水生生物栖息地的适宜度模型;建立整治河 段的三维水沙数学模型,由三维水沙数学模型,预测整治河段在不同航道整治措施参数 下水深、流速、流态及含沙量的三维时空分布数据;将预测得到的水深、流速、流态及 含沙量三维时空分布数据,输入适宜度模型中,预测整治河段在不同航道整治措施参数 下的该水生生物栖息地的适宜度的变化,通过指示生物栖息地生境因子适宜度的分布范 围和适宜生境面积的大小,优化航道整治措施参数和平面布局。
进一步地,根据整治河段水生生物状况的历史资料,以及通过渔获物和鱼探仪相结 合的生态调查与监测方法,确定整治河段的指示水生生物以及构成该水生生物栖息地生 境因子及生境因子的时空分布。
进一步地,指示水生生物为指示鱼类。
进一步地,该水生生物的生境因子包括栖息地流速、流态、水深、含沙量。
进一步地,由三维水沙控制方程,建立整治河段的三维水沙数学模型。
进一步地,三维水沙控制方程包括流体连续性方程、流体动量方程、标准k-ε紊流方程以及泥沙输移控制方程。
进一步地,三维水沙数学模型,采用有限体积法进行离散求解,三维计算域在平面上采用三角形网格离散、沿水深方向进行分层离散。
本发明具有的优点和积极效果是:本发明着重考虑了内河航道整治工程对河流生态 系统中指示性生物关键生境要素的三维分布影响,采用生态学、水力学及河流动力学、计算水力学等多种方法科学合理确定内河航道整治工程对指示性生物栖息地条件的三维分布影响,在开发河流通航功能的同时,兼顾河流生态功能的保护与修复。
本发明建立的内河航道整治工程生态影响模拟预测方法对内河航道生态化建设具有 通用性,通过本发明可准确模拟预测分析不同整治参数条件下鱼类栖息环境三维分布变 化,在实现河流通航功能前提下,为水生生物提供多样性的栖息条件,实现河流通航-- 生态功能的融合,预测内河航道整治工程措施参数条件下整治位点水文变化和河道物理 结构改变对指示性物种生境的影响。内河航道整治布置方案时,统筹考虑航道整治效果 和河流生态功能的保护,既注重航道尺度的满足,同时又关注对河流洪水边滩、河湾、汊道、江心洲、沙洲等浅水生境的保留与营造。
附图说明
图1为本发明步骤流程图;
图2为模型计算网格剖分示意图;
图3为本发明实施例中一种指示水生生物的流速适宜度曲线;
图4为本发明实施例中指示水生生物的水深适宜度曲线;
图5为本发明实施例中指示水生生物的含沙量适宜度曲线;
图6为本发明实施例中整治河段中指示水生生物对应流速的适宜性指数分布图;
图7为本发明实施例中整治河段中指示水生生物对应水深的适宜性指数分布图;
图8为本发明实施例中整治河段中指示水生生物综合适宜度因子分布图。
图中,uHSI表示指示水生生物对应流速的适宜性指数;hHSI表示指示水生生物对应 水深的适宜性指数;CSF表示指示水生生物对应综合适宜度因子指数。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹列举以下实施例,并配合附图详细说明如下:
请参见图1至图8,一种内河航道整治工程生态影响模拟预测方法,调查统计整治河 段指示水生生物在流速、水深、底质和含沙量的某个区间范围的出现频次,采用多元线性回归建立整治河段指示性水生生物响应与栖息地生境因子变量之间的关系,建立该水生生物栖息地的适宜度模型;建立整治河段的三维水沙数学模型,由三维水沙数学模型,预测整治河段在不同航道整治措施参数下水深、流速、流态及含沙量的三维时空分布数据;将预测得到的水深、流速、流态及含沙量三维时空分布数据,输入适宜度模型中, 预测整治河段在不同航道整治措施参数下的该水生生物栖息地的适宜度的变化,通过指 示生物栖息地生境因子适宜度的分布范围和适宜生境面积的大小,优化航道整治措施参 数和平面布局。
上述指示水生生物可为指示鱼类。上述水生生物的生境因子可包括栖息地流速、流 态、水深、含沙量等。
可根据整治河段水生生物状况的历史资料,以及通过渔获物和鱼探仪相结合的生态 调查与监测方法,确定整治河段的指示水生生物以及构成该水生生物栖息地生境因子及 生境因子的时空分布。
优选地,采用渔获物、生物学、早期资源和鱼探仪等多种技术手段,探明整治工程建设前后受影响河段的鱼类资源变化情况、产卵场位置、规模大小,尤其是特有鱼类资 源现状。同时,结合资源量、受威胁程度及其对环境敏感度,综合确定整治河段的指示 性生种,一般可选择鱼类作为指示性生种。鱼类在水生生态系统处于食物链顶端,对其 他种群的存在和丰度有着重大影响,且对水环境的变化敏感,如以单一鱼类物种作为指 示物种的研究案例达47%,以鱼类种群作指示物种的案例达25%,以底栖动物的达20%。
可通过渔获物、鱼探仪相等监测方法确定指示鱼类出现的位置,采用整治河段的三 维水沙数学模型反演指示鱼类流速流态、水深、含沙量及覆盖物生境因子的时空分布特征。
可采用多元线性回归建立整治河段指示性物种响应与栖息地变量水深、流速及含沙 量等生境因子之间的关系,获得水生生物对应单个生境因子的适宜性指数。统计整治河段指示鱼类在某一流速、水深、底质和含沙量等区间范围的出现的频次作为该区间的适 宜度,即指示水生生物对应生境因子的相对丰度,认为出现频次最高的区间适宜度为1, 采用归一化处理即得到该指示生物对应水深、流速以及含沙量等各个生境因子的适宜度 曲线,如图3~5。
划分区间采用Sturge计算最佳间隔:
Figure BDA0002804403780000041
式中,I为最佳间隔;R为指标变化范围;N为观察到的指示性生物的数量。
进一步地,根据三维水沙模型计算出整治河段的水深、流速及含沙量分布,结合整治河段指示性物种的栖息地生境因子适宜度曲线,该指示生物栖息地的适宜度模型建立如下:
Figure BDA0002804403780000042
HSIi=min(Vi,Di,Si)
式中,WUA为整治河段区域指示水生生物的加权栖息地面积;Ai为第i单元的表面积;HSIi为第i单元的栖息地生境因子综合适宜性,综合适宜度因子(CombinedSuitability Factor,CSF)也可采用最小值法确定;Vi为第i单元的流速适宜性指数; Di为第i单元的水深适宜性指数;Si为第i单元的含沙量适宜性指数。
进一步地,采用指示生物栖息地的适宜度模型和三维水沙数学模型,预测整治河段 在不同航道整治措施参数下的指示生物栖息地的生境因子适宜度的分布和适宜生境面积 的大小和分布范围,如图6和图7分别为本发明实施例中整治河段中指示生物对应水深和流速的适宜性指数分布图,图8为本发明实施例中整治河段中指示生物综合适宜度因 子分布图。
优选地,可由三维水沙控制方程,建立整治河段的三维水沙数学模型。三维水沙控制方程可包括流体连续性方程、流体动量方程、标准k-ε紊流方程以及泥沙输移控制方 程。
基于Navier-Stokes建立流体动量方程、标准k-ε紊流方程,Navier-Stokes,即纳维- 斯托克斯方程,纳维-斯托克斯方程描述粘性不可压缩流体动量守恒的运动方程,简称N-S方程。N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律。
其中:
流体连续性方程为:
Figure BDA0002804403780000051
流体动量方程为:
Figure BDA0002804403780000052
Figure BDA0002804403780000053
Figure BDA0002804403780000054
标准k-ε紊流方程为:
Figure BDA0002804403780000055
Figure BDA0002804403780000056
泥沙输移控制方程为:
Figure BDA0002804403780000057
Figure BDA0002804403780000058
上式中:η为水位;u,v,w分别为速度矢量沿三个坐标轴x,y,z的分量;g为 重力加速度;ρ为水体密度;pa为大气压;q表示非静压项;ρ0为参考密度;f为科式 力系数;vt为涡粘系数,取
Figure BDA0002804403780000061
Cμ为常数,取Cu=0.09,νH为水平方向的涡 粘系数;νV为垂直方向的涡粘系数;Gk为由于平均速度梯度引起的紊动能生成项,
Figure BDA0002804403780000062
其中xi或xj(i,j=1,2,3)为x、y、z三个坐标轴 分量,x1为x坐标轴分量;x2为y坐标轴分量;x3为z坐标轴分量,ui或uj(i,j=1,2,3) 分别为流速矢量沿x、y、z坐标轴的分量,u1为流速矢量沿x坐标轴的分量,u2为流 速矢量沿y坐标轴的分量,u3为流速矢量沿z坐标轴的分量;k为紊动动能;ε为紊动耗 散率;xk(k=1,2,3)为x、y、z三个坐标轴分量,其中x1为x坐标轴分量;x2为y 坐标轴分量;x3为z坐标轴分量;常数项:Cε1=1.44,Cε2=1.92,σk=1.0,σε=1.3; S为含沙量;p′为床沙质的孔隙率;ws为泥沙沉降速度;Kh为水平方向的泥沙扩散系数; Kv为垂直方向的泥沙扩散系数;zb为河床总变形。qsx为x方向上的悬移质输沙率;qsy为 y方向上的悬移质输沙率;qbx为x方向上的推移质输沙率;qby为y方向上的推移质输沙 率。
三维水沙数学模型,可采用有限体积法进行离散求解,三维计算域在平面上可采用 三角形网格离散、沿水深方向进行分层离散。
计算在整治河段的水深、流速以及流速的分布,将整治河段的河床地形文件网格化, 基于连续性方程、Navier-Stokes、泥沙输移方程建立研究河段三维水沙模型,采用三角形 网格离散平面计算域和水位函数法捕捉自由表面,提高模型适应复杂边界的能力和计算 效率。
采用三角形离散平面计算域,沿水深方向采用垂向分层离散,三维计算域被剖分为 若干棱柱形单元,如图2,由于这种剖分方式不会产生杂乱的四面体等结构,采用分开来定义变量的水平和垂向的空间布置,水平速度项定义在棱柱形网格的垂向面上,垂向速 度定在棱柱形网格的上下面上,水位、非静压项、紊动动能、紊动耗散率等标量定义在 棱柱形网格的中心(详见:吕彪.基于非结构化网格的具有自由表面水波流动数值模拟研 究[D].大连:大连理工大学,2010)。
采用水位函数法捕捉自由表面,即沿水深方向积分连续方程,并利用自由表面的运 动学边界条件和不可穿透底面边界条件,由莱布尼茨公式可得到的沿水深积分的连续方 程,称为水位演化方程,求解该方程即可得到自由表面的位置。沿水深方向积分连续性方程有:
Figure BDA0002804403780000071
上式由Leibniz和微积分定理可得:
Figure BDA0002804403780000072
不可穿透底面边界条件:
Figure BDA0002804403780000073
自由表面的运动学边界条件:
Figure BDA0002804403780000074
可得水位演化方程
Figure BDA0002804403780000075
上式中:η为水位;u,v,w分别为速度矢量沿三个坐标轴x,y,的分量;h为 水深;ub为底层流速矢量沿x坐标轴的分量;us为表层流速矢量沿x坐标轴的分量;vb为 底层流速矢量沿y坐标轴的分量;vs为表层流速矢量沿y坐标轴的分量;wb为底层流速 矢量沿z坐标轴的分量;ws为表层流速矢量沿z坐标轴的分量。
由上述方程求解得到的整治河段的水深、流速、流态及含沙量(详见:吕彪.基于非结构化网格的具有自由表面水波流动数值模拟研究[D].大连:大连理工大学,2010)。
由上述三维水沙数学模型,可以预测整治河段在不同航道整治措施参数下的水深、 流速、流态以及含沙量的三维时空分布数据;将预测得到的水深、流速、流态及含沙量三维时空分布数据,与该指示生物栖息地的适宜度模型结合,从而预测整治河段在不同 航道整治措施参数下的该指示生物栖息地的适宜度的三维空间变化趋势,结合指示生物 栖息地的适宜度的分布范围、适宜生境面积的大小和航道通航目标,优化航道整治措施 参数和平面布局,得到最终通航-生态融合的航道整治方案,以达到航道整治目标和水生 境保护的有机融合。
以上所述的实施例仅用于说明本发明的技术思想及特点,其目的在于使本领域内的 技术人员能够理解本发明的内容并据以实施,不能仅以本实施例来限定本发明的专利范 围,即凡本发明所揭示的精神所作的同等变化或修饰,仍落在本发明的专利范围内。

Claims (7)

1.一种内河航道整治工程生态影响模拟预测方法,其特征在于,调查统计整治河段指示水生生物在流速、水深、底质和含沙量的某个区间范围的出现频次,采用多元线性回归建立整治河段指示性水生生物响应与栖息地生境因子变量之间的关系,建立该水生生物栖息地的适宜度模型;建立整治河段的三维水沙数学模型,由三维水沙数学模型,预测整治河段在不同航道整治措施参数下水深、流速、流态及含沙量的三维时空分布数据;将预测得到的水深、流速、流态及含沙量三维时空分布数据,输入适宜度模型中,预测整治河段在不同航道整治措施参数下的该水生生物栖息地的适宜度的变化,通过指示生物栖息地生境因子适宜度的分布范围和适宜生境面积的大小,优化航道整治措施参数和平面布局。
2.根据权利要求1所述的内河航道整治工程生态影响模拟预测方法,其特征在于,根据整治河段水生生物状况的历史资料,以及通过渔获物和鱼探仪相结合的生态调查与监测方法,确定整治河段的指示水生生物以及构成该水生生物栖息地生境因子及生境因子的时空分布。
3.根据权利要求1所述的内河航道整治工程生态影响模拟预测方法,其特征在于,指示水生生物为指示鱼类。
4.根据权利要求1所述的内河航道整治工程生态影响模拟预测方法,其特征在于,该水生生物的生境因子包括栖息地流速、流态、水深、含沙量。
5.根据权利要求1所述的内河航道整治工程生态影响模拟预测方法,其特征在于,由三维水沙控制方程,建立整治河段的三维水沙数学模型。
6.根据权利要求5所述的内河航道整治工程生态影响模拟预测方法,其特征在于,三维水沙控制方程包括流体连续性方程、流体动量方程、标准k-ε紊流方程以及泥沙输移控制方程。
7.根据权利要求5所述的内河航道整治工程生态影响模拟预测方法,其特征在于,三维水沙数学模型,采用有限体积法进行离散求解,三维计算域在平面上采用三角形网格离散、沿水深方向进行分层离散。
CN202011362507.3A 2020-11-27 2020-11-27 一种内河航道整治工程生态影响模拟预测方法 Active CN112487640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011362507.3A CN112487640B (zh) 2020-11-27 2020-11-27 一种内河航道整治工程生态影响模拟预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011362507.3A CN112487640B (zh) 2020-11-27 2020-11-27 一种内河航道整治工程生态影响模拟预测方法

Publications (2)

Publication Number Publication Date
CN112487640A true CN112487640A (zh) 2021-03-12
CN112487640B CN112487640B (zh) 2023-02-14

Family

ID=74936521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011362507.3A Active CN112487640B (zh) 2020-11-27 2020-11-27 一种内河航道整治工程生态影响模拟预测方法

Country Status (1)

Country Link
CN (1) CN112487640B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114117609A (zh) * 2021-11-29 2022-03-01 黄河勘测规划设计研究院有限公司 航道整治方法及装置
CN115132054A (zh) * 2022-08-15 2022-09-30 中国科学院水生生物研究所 基于河流食物网的环境水流和栖息地需求模拟模型
CN115273553A (zh) * 2022-10-08 2022-11-01 交通运输部规划研究院 一种船舶限制航行和禁止航行区域的空间划定方法
CN117541078A (zh) * 2023-11-21 2024-02-09 交通运输部规划研究院 一种基于人工运河开发的生态保护策略定制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105761302A (zh) * 2015-05-29 2016-07-13 华北电力大学 三维数字航道系统及其应用
US20170323085A1 (en) * 2015-05-13 2017-11-09 Chinese Research Academy Of Environmental Science Fresh water acute criteria prediction method based on quantitative structure-activity relationship for metals
US20180347133A1 (en) * 2017-08-14 2018-12-06 Nanjing Hydraulic Research Institute Method for controlling the gate based on the habitat requirement for fish overwintering in rives
CN109615238A (zh) * 2018-12-13 2019-04-12 水利部交通运输部国家能源局南京水利科学研究院 一种平原城市河网水力调控对河流生境影响的评价方法
CN109615076A (zh) * 2018-12-13 2019-04-12 水利部交通运输部国家能源局南京水利科学研究院 一种面向鱼类生境保护的河流生态流量过程推求方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170323085A1 (en) * 2015-05-13 2017-11-09 Chinese Research Academy Of Environmental Science Fresh water acute criteria prediction method based on quantitative structure-activity relationship for metals
CN105761302A (zh) * 2015-05-29 2016-07-13 华北电力大学 三维数字航道系统及其应用
US20180347133A1 (en) * 2017-08-14 2018-12-06 Nanjing Hydraulic Research Institute Method for controlling the gate based on the habitat requirement for fish overwintering in rives
CN109615238A (zh) * 2018-12-13 2019-04-12 水利部交通运输部国家能源局南京水利科学研究院 一种平原城市河网水力调控对河流生境影响的评价方法
CN109615076A (zh) * 2018-12-13 2019-04-12 水利部交通运输部国家能源局南京水利科学研究院 一种面向鱼类生境保护的河流生态流量过程推求方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吕彪: ""基于非结构化网格的具有自由表面水波流动数值模拟研究"", 《中国优秀博硕士学位论文全文数据库(博士) 基础科学辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114117609A (zh) * 2021-11-29 2022-03-01 黄河勘测规划设计研究院有限公司 航道整治方法及装置
CN114117609B (zh) * 2021-11-29 2023-05-23 黄河勘测规划设计研究院有限公司 航道整治方法及装置
CN115132054A (zh) * 2022-08-15 2022-09-30 中国科学院水生生物研究所 基于河流食物网的环境水流和栖息地需求模拟模型
CN115273553A (zh) * 2022-10-08 2022-11-01 交通运输部规划研究院 一种船舶限制航行和禁止航行区域的空间划定方法
CN117541078A (zh) * 2023-11-21 2024-02-09 交通运输部规划研究院 一种基于人工运河开发的生态保护策略定制方法
CN117541078B (zh) * 2023-11-21 2024-05-28 交通运输部规划研究院 一种基于人工运河开发的生态保护策略定制方法

Also Published As

Publication number Publication date
CN112487640B (zh) 2023-02-14

Similar Documents

Publication Publication Date Title
CN112487640B (zh) 一种内河航道整治工程生态影响模拟预测方法
Zhang et al. Numerical investigation of local scour around three adjacent piles with different arrangements under current
Dunbar et al. Hydraulic‐habitat modelling for setting environmental river flow needs for salmonids
Huai et al. Predicting the vertical low suspended sediment concentration in vegetated flow using a random displacement model
Nelson et al. Bed topography and the development of forced bed surface patches
Lowe et al. Modeling flow in coral communities with and without waves: A synthesis of porous media and canopy flow approaches
CA2745285C (en) Overlapped multiple layer depth averaged flow model of a turbidity current
CN109271694A (zh) 基于鱼类个体动态模拟技术的栖息地识别方法
Haimann et al. Monitoring and modelling concept for ecological optimized harbour dredging and fine sediment disposal in large rivers
Iwasaki et al. Computational modeling of 137Cs contaminant transfer associated with sediment transport in Abukuma River
Fischer et al. Supporting aquatic habitat remediation in the Detroit River through numerical simulation
Mohamed Design of alluvial Egyptian irrigation canals using artificial neural networks method
Cheviron et al. Determinants of modelling choices for 1-D free-surface flow and morphodynamics in hydrology and hydraulics: a review
MacDonald et al. PTM: Particle Tracking Model Report 1: Model Theory, Implementation, and Example Applications
Wang et al. Assessing the effect of Separation Levee Project on Chinese sturgeon (Acipensor sinensis) spawning habitat suitability in Yangtze River, China
CN115130935B (zh) 生态海堤防灾减灾效能分析方法、装置、电子设备及介质
Lackey et al. The particle tracking model description and processes
Cancino et al. 3D-numerical modelling of cohesive suspended sediment in the Western Scheldt estuary (the Netherlands)
Blettler et al. Hydrodynamic and morphologic effects on the benthic invertebrate ecology along a meander bend of a large river (Paraguay River, Argentina–Paraguay)
Schruff Taking a closer look at the causes and impacts of fine sediment infiltration into gravel beds: Development and application of an extended theory of fine sediment infiltration based on grain scale numerical simulations
Shrestha et al. A Three-Dimensional Model for Cohesive Sediment Dynamics in Shallow Bays
Li et al. A hybrid mechanism and ridge regression model to separate the effects of advection and resuspension on suspended sediment concentration
Mrokowska et al. Bed Shear Stresses and Bed Shear Velocities Ubiquitous Variables in River Hydraulics
Lai et al. Hydraulic Flushing of Sediment in Reservoirs: Best Practices of Numerical Modeling
Shimizu et al. Application of NaLA, a fishing net configuration and loading analysis system, to drift gill nets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant