CN112487307A - 一种时间感知的poi推荐方法 - Google Patents

一种时间感知的poi推荐方法 Download PDF

Info

Publication number
CN112487307A
CN112487307A CN202011454790.2A CN202011454790A CN112487307A CN 112487307 A CN112487307 A CN 112487307A CN 202011454790 A CN202011454790 A CN 202011454790A CN 112487307 A CN112487307 A CN 112487307A
Authority
CN
China
Prior art keywords
poi
user
recommendation
time
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011454790.2A
Other languages
English (en)
Other versions
CN112487307B (zh
Inventor
钱铁云
王营丽
姜聪聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202011454790.2A priority Critical patent/CN112487307B/zh
Publication of CN112487307A publication Critical patent/CN112487307A/zh
Application granted granted Critical
Publication of CN112487307B publication Critical patent/CN112487307B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9536Search customisation based on social or collaborative filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9537Spatial or temporal dependent retrieval, e.g. spatiotemporal queries

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明公开了一种时间感知的POI推荐方法。该方法是一种利用不同时间特征下用户的访问特征提高POI的推荐准确度的方法。首先,提出基于不同时间尺度构建关系矩阵的思路,利用时间信息的特征,在不同时间段内构建的用户与POI的关系矩阵,能够更好的表示用户与POI的表示;其次,对用户‑POI‑时间三维张量矩阵执行张量分解得到不同时间特征下的用户与POI的表示,对不同时间特征下的向量进行线性组合,这样用户和POI的表示中包含了不同时间维度的信息,有利于提高推荐的准确性。该POI推荐的方法采用RESCAL的张量分解技术,形成了一个直接,多维,信息利用率高的POI推荐模型,提高了POI推荐任务的效果。

Description

一种时间感知的POI推荐方法
技术领域
本发明涉及POI推荐领域,具体涉及一种时间感知的POI推荐方法。
背景技术
基于位置的社交网络(LBSN)越来越受欢迎。在LBSN中,用户通过共享他们的位置和以及与位置信息相关的内容来记录自己的生活,并且发现更多感兴趣的地点。兴趣点(Point of Interest,POI)推荐是LBSN中的重要应用,其根据用户历史签到记录来学习用户的特征,从而向用户推荐可能感兴趣的新POI。POI推荐可以缓解目前普遍存在的信息过载问题,帮助用户从海量的地点中找到他们可能感兴趣的未访问过的POI。
POI推荐系统大多数是基于内存或者基于模型的协同过滤(CF)技术,并通过线性组合地理影响、社会影响和偏好相似性来进一步完善模型,提高性能。地理信息也已经在POI推荐中被广泛应用,利用地理影响进行POI推荐的方法大致分为两类,一种是利用地理邻近度来改善用户偏好,另一种是应用地理潜在因子或主题模型来推导区域或POI的潜在特征。除了地理信息之外,POI推荐的模型中还会利用分类信息或流行度信息等来提高推荐的准确度,但是相对于如何更好的利用时间信息达到更好的推荐效果还未能实现。
针对在POI推荐中时间信息利用不足的缺陷,本发明提出了一种时间感知的POI推荐模型,将时间信息结合到POI推荐中去,提高时间信息的利用程度,以进一步提高POI推荐的准确度。
发明内容
针对已有模型中的缺陷,本发明提供了一种时间感知的POI推荐方法。该方法考虑了如何利用不同时间特征的信息,提高了POI推荐的准确度。
本发明的技术方案如下:一种时间感知的POI推荐方法,其特征在于将时间信息结合到推荐模型中,包括以下步骤:
步骤1:对原始数据进行预处理获得符号化表示,并且按照需求比例划分训练集、验证集和测试集;
步骤2:构建基于时间特征的POI推荐模型,将训练样本与验证样本批量随机地输入基于时间特征的POI推荐模型中,开始迭代模型训练过程,得到训练集与验证集上的评价指标,当验证集上的指标不再上升或者迭代达到一定次数后停止,保存验证集上的最优模型;
其中,构建基于时间特征的POI推荐模型包括:划分时间段、基于时间特征构建关系矩阵、学习用户与POI的表示、计算用户对POI的感兴趣程度;
步骤3:加载保存的在验证集上评价指标最优的基于时间特征的POI推荐模型,将测试样本批量送入模型中,输出与保存推荐的结果。
进一步地,所述步骤1中的原始数据集包含相关的用户信息、地点信息以及与其对应的用户访问记录信息。
优选地,所述步骤2中划分时间段具体为:根据每周以及每日两个不同的时间特征构建用户与POI的关系矩阵,每周划分为工作日与周末,每日按照小时划分为5个时间段,总共有10种不同的时间段。
优选地,所述步骤2中基于时间特征构建关系矩阵具体为:根据不同时间段下用户访问POI的记录信息,每个时间段分别构建用户和POI的交互矩阵;通过将多个时间段的关系矩阵排列形成一个由用户、POI以及时间段构成的三维张量;分别为每周T1以及每日T2这两个不同时间的尺度建立两个独立的张量。
优选地,所述步骤2中学习用户与POI的表示具体为:利用RESCAL的有效分解算法,将基于时间特征构建关系矩阵中得到的两个三维张量分别执行张量分解后,学习得到用户的两个表示与POI的两个表示。
优选地,所述步骤2中计算用户对POI的感兴趣程度具体为:在得到用户与POI的表示后,采用余弦相似性分别度量计算不同的时间特征下用户对于未访问的POI的感兴趣程度,采用线性组合方式将两个时间特征下的用户对POI的偏好得分组合在一起;最后,将用户对未访问过的POI的通过协同过滤算法得到的偏好得分与基于时间特征的张量分解的偏好得分线性组合起来,作为用户对POI的最终偏好得分。
优选地,所述步骤2中构建好基于时间特征的POI推荐方法后,将训练与验证样本随机批量的输入到模型中,并且利用随机梯度下降(Stochastic Gradient Descent)方法使模型逐渐学习最优的参数值,同时计算在验证集上的评价指标,当验证集上的指标不再上升或者模型训练迭代到一定次数后停止训练,保存验证集上表现最优的关系分类模型。
进一步地,所述步骤3的测试过程具体为先加载步骤2中训练好的关系分类模型,再将测试集中的样本批量输入到模型中,此时模型的参数固定不变,经过模型计算后,得到针对每位用户的可能感兴趣的POI推荐。
与现有技术相比,本发明具有以下优点和积极效果:
1)本发明提出基于不同时间尺度构建关系矩阵的思路,利用时间信息的特征,在不同时间段内构建的用户与POI的关系矩阵,能够更好的表示用户与POI的表示。
2)本发明对用户-POI-时间三维张量矩阵执行张量分解得到不同时间特征下的用户与POI的表示,其次对不同时间特征下的向量进行线性组合,这样用户和POI的表示中包含了不同时间维度的信息,有利于提高推荐的准确性。
附图说明
图1为本发明实施例的方法流程图;
图2为本发明实施例的模型框架图;
具体实施方式
具体实施时,本发明所提供技术方案可由本领域技术人员采用计算机软件技术实现自动运行流程。以下结合附图和实施例详细说明本发明技术方案。
步骤1:对原始数据集中的用户、地点、时间信息以及用户访问记录信息,进行预处理获得符号化表示,并且按照需求比例划分训练集、验证集和测试集。
实施例中,本发明选择了POI推荐任务中被广泛采用的Gowalla和Foursquare数据集,这两个数据集自被提出后便逐渐在POI推荐领域内取得了广泛的使用。Gowalla数据集包含2009年2月至2010年10月用户签到信息。本发明去掉Gowalla数据集中签到的POI数量少于15的用户以及访客少于10人的POI。因此过滤后的数据集包括18737个用户,32510个POI,1278274个用户访问记录。Foursquare数据集包含2012年4月至2013年9月的用户签到数据。本发明去掉Foursquare数据集中签到的POI数量少于10的用户以及不超过10位访客的POI。因此过滤后的数据集包含24941个用户,28593个POI和1196248个用户访问记录。
在进行预处理后,将按照通用的训练、验证、测试划分方式,对于每个用户,本发明使用用户历史签到数据的70%作为训练数据,接下来的10%作为验证数据,最近的20%作为测试数据。
步骤2:参考附图1,将训练样本与验证样本批量随机地输入基于时间特征的POI推荐模型中,开始迭代模型训练过程,得到训练集与验证集上的评价指标,当验证集上的指标不再上升或者迭代达到一定次数后停止,保存验证集上的最优模型。
实施例中,为了构建利用时间信息下的用户与POI的关系矩阵,本发明划分不同时间段,利用RESCAL算法来学习用户与POI的表示,将不同时间特征的贡献聚合在一起。本文采用多种时间特征为POI做推荐。参考附图2,此处说明整个模型的实现过程。
1)划分时间段:根据对Gowalla数据集和Foursquare数据集中用户的签到数据进行分析,本发明考虑两个时间尺度的时间特征:每天T1中不同的时间段以及每周T2中的工作日和周末。通过分析记录用户与POI的签到关系,本发明首先以周为尺度划分为工作日和周末,相应的,对应的用户和POI的交互矩阵就划分为Xwork和Xweekend。其次,本发明以天为尺度划分为5个时间段,即t1(0-7时,晚上休息时间)、t2(8-11时,为上午工作时间)、t3(12-14时,为午休时间)、t4(15-18时,为下午工作时间)和t5(19-23时,为晚上休息和娱乐时间),分别对应X1、X2、X3、X4和X5五个关系矩阵。
2)基于时间特征构建关系矩阵:为体现用户在不同时间段下的签到偏好,本发明定义了关于时间段的用户与POI的关系矩阵,该矩阵记录了在每个时间段下,用户与POI之间的关系。如1)所述,每周存在的关系矩阵为工作日关系矩阵Xwork和周末关系矩阵Xweekend,每天划分为五个时间段,即t1、t2、t3、t4和t5时间段,每个时间段分别对应的关系矩阵X1、X2、X3、X4和X5。因此,对于两个不同的时间特征,分别存在不同的三维张量XT1和XT2,其中XT1包含工作日关系矩阵Xwork和周末关系矩阵Xweekend,XT2包含五个时间段关系矩阵X1、X2、X3、X4和X5。对于每个三维张量中的每个用户与POI的关系矩阵构造如下:
Figure BDA0002828236040000041
其中,U_U:用户与用户之间存在的关系,同一时间段两个用户共同访问POI的个数,即在同一时间段用户A与用户B共同访问POI的个数,POI相同个数越多表示用户A与用户B具有潜在相似性。
P_P:POI与POI之间存在的关系,同一时间段两个POI共同访问用户的个数,即在同一时间段POI A与POI B共同被访问的用户的个数,用户相同个数越多表示POI A与POI B具有潜在相似性。
U_P:用户与POI之间存在的关系,同一时间段内用户A访问POIj的次数与其用户A所有签到次数的比例,[注:关系矩阵假设为频数矩阵,U_P关系得到的比例数,因此我们将其同比例扩大10倍作为签到次数];P_U构造方法与其类似。
3)学习用户与POI的表示:根据2)构造出的张量,本发明通过张量因子分解算法将不同时间段的关系信息相关的用户和POI转换为对应的表示。给定张量Xn×n×m,RESCAL旨在秩r近似,其中每个切片Xk被分解的过程如下:
Xk≈ARkAT
其中,A是n×r的矩阵,其中第i行表示第i个实体;Rk是非对称的r×r矩阵,其描述了第k个关系的潜在分量的相互作用;k的范围是从1到m。
然后,本发明通过最小化下面的损失函数得到A和Rk表示:
Figure BDA0002828236040000051
为了自动获取更多有用的全局信息,本发明构建不同时间段用户与POI的关系矩阵这样可以通过张量分解将多重时间段中的信息嵌入到最终学习的表示中。由2)可以得到为每周T1以及每日T2两个不同时间尺度建立两个独立的张量,并分别得到执行张量分解后学习到的用户(U(T1)和U(T2))与POI(L(T1)和L(T2))的表示。
4)计算用户对POI的感兴趣程度:由3)可得用户和POI在不同时间尺度下的向量表示,本发明对得到的用户和POI表示利用余弦相似度度量用户(u)对未访问POI(i)的感兴趣程度
Figure BDA0002828236040000052
Figure BDA0002828236040000053
具体计算如下式所示:
Figure BDA0002828236040000054
Figure BDA0002828236040000055
其中,cos表示余弦相似度的计算。
最后,本发明将两种时间特征下用户对POI的感兴趣程度线性结合,从而能够向用户更好地推荐未访问过的POI,具体计算如下式所示:
Figure BDA0002828236040000056
其中,
Figure BDA0002828236040000057
表示在T1和T2时间特征下,用户(u)对POI(j)的偏好得分。α1和α2是模型的超参。较大的α1会使得模型的推荐分数更加偏重每周T1的时间特征,反之,较大的α2会使得模型的推荐分数更加偏重每日T2的时间特征。
为了推断用户对目标POI的偏好,本发明将用户偏好与时间信息融合。具体来说,即用户偏好和时间影响来一起实现POI推荐。其中,用户偏好的计算是基于协同过滤的矩阵分解算法,通过聚合类似用户的行为来发现用户的隐含偏好。因此,我们使用线性融合框架将用户偏好和时间信息的影响提供的排名列表整合到最终排名列表中,具体的融合方法如下式所示:
Figure BDA0002828236040000058
其中,
Figure BDA0002828236040000059
是基于协同过滤的方法得到的用户的隐含兴趣偏好。Suj就是用户(u)对POI(j)的偏好打分。β1和β2也是模型的超参。较大的β1会使得模型的推荐分数更加偏重基于协同过滤算法得到的用户和POI特征,反之,较大的β2会使得模型的推荐分数更加偏重本专利提出的两种时间特征。
本专利中,α1、α2和β1、β2被约束在[0,1]的范围内。在网格搜索方法中,首先将α1从零改为1,间隔为0.1。然后,对于每个α1值,例如α1=0.1,将α2满足需求1-α1。网格搜索方法尝试步长为0.1的所有值组合满足约束α1+α2=1,并且,α1,α2≥0。相对,对于每个β1值,例如β1=0.1,将β2满足需求1-β1。网格搜索方法尝试步长为0.1的所有值组合满足约束β1+β2=1,并且β1,β2>=0。当α1=0.3,α2=0.7以及β1=0.4,β2=0.6时,我们发现Gowalla数据集和Foursquare数据集上的我们的方法都达到最佳效果。
步骤3:加载步骤2中训练好的POI推荐模型,再将测试集中的样本批量输入到推荐系统模型中,此时模型的参数固定不变。经过模型计算后,得到每位用户的可能感兴趣的Top-k个POI。
实施例中,加载在验证集上表现最好的模型,输入测试集Dtest,得到测试集的每位用户的POI推荐结果。
本文中所描述的具体实施例仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例作各种各样的修改、补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (8)

1.一种时间感知的POI推荐方法,其特征在于,包括以下步骤:
步骤1:对原始数据进行预处理获得符号化表示,并且按照需求比例划分训练集、验证集和测试集;
步骤2:构建基于时间特征的POI推荐模型,将训练样本与验证样本批量随机地输入基于时间特征的POI推荐模型中,开始迭代模型训练过程,得到训练集与验证集上的评价指标,当验证集上的指标不再上升或者迭代达到一定次数后停止,保存验证集上的最优模型;
其中,构建基于时间特征的POI推荐模型包括:划分时间段、基于时间特征构建关系矩阵、学习用户与POI的表示、计算用户对POI的感兴趣程度;
步骤3:加载保存的在验证集上评价指标最优的基于时间特征的POI推荐模型,将测试样本批量送入模型中,输出与保存推荐的结果。
2.根据权利要求1所述的时间感知的POI推荐方法,其特征在于:所述步骤1中的原始数据集包含相关的用户信息、地点信息以及与其对应的用户访问记录信息。
3.根据权利要求1所述的时间感知的POI推荐方法,其特征在于:所述步骤2中划分时间段具体为:根据每周以及每日两个不同的时间特征构建用户与POI的关系矩阵,每周划分为工作日与周末,每日按照小时划分为5个时间段,总共有10种不同的时间段。
4.根据权利要求3所述的时间感知的POI推荐方法,其特征在于:所述步骤2中基于时间特征构建关系矩阵具体为:根据不同时间段下用户访问POI的记录信息,每个时间段分别构建用户和POI的交互矩阵;通过将多个时间段的关系矩阵排列形成一个由用户、POI以及时间段构成的三维张量;分别为每周T1以及每日T2这两个不同时间的尺度建立两个独立的张量。
5.根据权利要求4所述的时间感知的POI推荐方法,其特征在于:所述步骤2中学习用户与POI的表示具体为:利用RESCAL的有效分解算法,将基于时间特征构建关系矩阵中得到的两个三维张量分别执行张量分解后,学习得到用户的两个表示与POI的两个表示。
6.根据权利要求5所述的时间感知的POI推荐方法,其特征在于:所述步骤2中计算用户对POI的感兴趣程度具体为:在得到用户与POI的表示后,采用余弦相似性分别度量计算不同的时间特征下用户对于未访问的POI的感兴趣程度,采用线性组合方式将两个时间特征下的用户对POI的偏好得分组合在一起;最后,将用户对未访问过的POI的通过协同过滤算法得到的偏好得分与基于时间特征的张量分解的偏好得分线性组合起来,作为用户对POI的最终偏好得分。
7.根据权利要求1所述的时间感知的POI推荐方法,其特征在于:
所述步骤2中构建好基于时间特征的POI推荐方法后,将训练与验证样本随机批量的输入到模型中,并且利用随机梯度下降(Stochastic Gradient Descent)方法使模型逐渐学习最优的参数值,同时计算在验证集上的评价指标,当验证集上的指标不再上升或者模型训练迭代到一定次数后停止训练,保存验证集上表现最优的关系分类模型。
8.根据权利要求1所述的时间感知的POI推荐方法,其特征在于,所述步骤3的测试过程具体为先加载步骤2中训练好的关系分类模型,再将测试集中的样本批量输入到模型中,此时模型的参数固定不变,经过模型计算后,得到针对每位用户的可能感兴趣的POI推荐。
CN202011454790.2A 2020-12-10 2020-12-10 一种时间感知的poi推荐方法 Active CN112487307B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011454790.2A CN112487307B (zh) 2020-12-10 2020-12-10 一种时间感知的poi推荐方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011454790.2A CN112487307B (zh) 2020-12-10 2020-12-10 一种时间感知的poi推荐方法

Publications (2)

Publication Number Publication Date
CN112487307A true CN112487307A (zh) 2021-03-12
CN112487307B CN112487307B (zh) 2022-06-14

Family

ID=74916653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011454790.2A Active CN112487307B (zh) 2020-12-10 2020-12-10 一种时间感知的poi推荐方法

Country Status (1)

Country Link
CN (1) CN112487307B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115687801A (zh) * 2022-09-27 2023-02-03 南京工业职业技术大学 一种基于位置时效特征和时间感知动态相似性的位置推荐方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960044A (zh) * 2017-03-30 2017-07-18 浙江鸿程计算机系统有限公司 一种基于张量分解及加权hits的时间感知个性化poi推荐方法
WO2018190341A1 (ja) * 2017-04-10 2018-10-18 株式会社Nttドコモ アプリ利用推定装置及びルール作成装置
CN109492166A (zh) * 2018-08-06 2019-03-19 北京理工大学 基于签到时间间隔模式的连续兴趣点推荐方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960044A (zh) * 2017-03-30 2017-07-18 浙江鸿程计算机系统有限公司 一种基于张量分解及加权hits的时间感知个性化poi推荐方法
WO2018190341A1 (ja) * 2017-04-10 2018-10-18 株式会社Nttドコモ アプリ利用推定装置及びルール作成装置
CN109492166A (zh) * 2018-08-06 2019-03-19 北京理工大学 基于签到时间间隔模式的连续兴趣点推荐方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAXIMILIAN NICKEL等: "A Three-Way Model for Collective Learning on Multi-Relational Data", 《INTERNATIONAL CONFERENCE ON MACHINE LEANING 2011》 *
SHENGLIN ZHAO等: "Aggregated Temporal Tensor Factorization Model for Point-of-Interest Recommendation", 《ICONIP 2016: NEURAL INFORMATION PROCESSING》 *
王楠等: "TPR-TF:基于张量分解的时间敏感兴趣点推荐模型", 《吉林大学学报(工学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115687801A (zh) * 2022-09-27 2023-02-03 南京工业职业技术大学 一种基于位置时效特征和时间感知动态相似性的位置推荐方法
CN115687801B (zh) * 2022-09-27 2024-01-19 南京工业职业技术大学 基于位置时效特征和时间感知动态相似性的位置推荐方法

Also Published As

Publication number Publication date
CN112487307B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
US10515424B2 (en) Machine learned query generation on inverted indices
Zipkin et al. Addressing data integration challenges to link ecological processes across scales
Youyou et al. Computer-based personality judgments are more accurate than those made by humans
Sun et al. Learning multiple-question decision trees for cold-start recommendation
CN109740048B (zh) 一种课程推荐方法及装置
US8346749B2 (en) Balancing the costs of sharing private data with the utility of enhanced personalization of online services
US20120143859A1 (en) Real-time personalized recommendation of location-related entities
Li et al. Incorporating periodic variability in hidden Markov models for animal movement
Li et al. Learning User's Intrinsic and Extrinsic Interests for Point-of-Interest Recommendation: A Unified Approach.
WO2013033029A2 (en) Systems and methods for detection of satisficing in surveys
Vetschera Deriving rankings from incomplete preference information: A comparison of different approaches
Morozov Measuring benefits from new products in markets with information frictions
CN103440199B (zh) 测试引导方法和装置
CN116244513B (zh) 随机群组poi推荐方法、系统、设备及存储介质
Wang et al. Gender-based homophily in collaborations across a heterogeneous scholarly landscape
CN112487307B (zh) 一种时间感知的poi推荐方法
Liotsiou et al. The junk news aggregator: examining junk news posted on Facebook, starting with the 2018 US Midterm Elections
Mishra et al. Dynamic identification of learning styles in MOOC environment using ontology based browser extension
Li et al. Research on the strategy of E-Learning resources recommendation based on learning context
CN113935788B (zh) 模型评估方法、装置、设备及计算机可读存储介质
CN105138574A (zh) 用于推荐旅游休闲出行地的基于人机交互的混合推荐系统
Bhutani et al. WSEMQT: a novel approach for quality‐based evaluation of web data sources for a data warehouse
Lili A Mobile Terminal‐Based College English Teaching Evaluation Method
Quadrana Algorithms for sequence-aware recommender systems
Maratea et al. An heuristic approach to page recommendation in web usage mining

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant