CN112473360B - 一种微生物电解池厌氧处理氯苯废气的方法 - Google Patents

一种微生物电解池厌氧处理氯苯废气的方法 Download PDF

Info

Publication number
CN112473360B
CN112473360B CN202011348293.4A CN202011348293A CN112473360B CN 112473360 B CN112473360 B CN 112473360B CN 202011348293 A CN202011348293 A CN 202011348293A CN 112473360 B CN112473360 B CN 112473360B
Authority
CN
China
Prior art keywords
chlorobenzene
cathode
waste gas
catholyte
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011348293.4A
Other languages
English (en)
Other versions
CN112473360A (zh
Inventor
张士汉
应赞赟
陈建孟
叶杰旭
成卓韦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202011348293.4A priority Critical patent/CN112473360B/zh
Publication of CN112473360A publication Critical patent/CN112473360A/zh
Application granted granted Critical
Publication of CN112473360B publication Critical patent/CN112473360B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种微生物电解池厌氧处理氯苯废气的方法,包括步骤:(1)在微生物电解池的阴极加入厌氧活性污泥,连续通入含氯苯的气体培养驯化具有氯苯降解能力的阴极生物菌群;(2)利用微生物作为催化剂,外加阴极电位,处理氯苯废气。本发明的微生物电解池能在厌氧条件下降解石油化工行业的氯苯废气,不需要从外部引入氧气,大大减小了爆炸风险,也节约了废气治理成本。外加合适的阴极电位可以提高氯苯的矿化率和对高浓度氯苯气体的耐受能力。本发明的生物电解池能实现石油化工行业氯苯废气的高效净化,具有污染低,成本低廉,容易推广的优点。

Description

一种微生物电解池厌氧处理氯苯废气的方法
技术领域
本发明涉及微生物电化学领域,具体涉及一种微生物电解池厌氧处理氯苯废气的方法。
背景技术
挥发性有机化合物(VOCs)是石油化工行业中常见的气体污染物,也是众多大气污染物中较难处理的一种。大多数VOCs具有高毒性,致癌性,严重破坏了生态环境,威胁了人类健康,而且大部分排放的VOCs会导致更有害的二次污染物的形成,如对流层的臭氧,过氧乙酰硝酸盐和二次有机气溶胶。含氯挥发性有机化合物(CVOCs)是VOCs中的一种,作为试剂和溶剂广泛用于化学和制药行业,并且可以通过废气或废水的形式排放到环境中。CVOCs通常具有高毒性和环境持久性,能在大气或水环境中长期存在,通过食物链在生物体内富集,产生致畸,致癌,致突变效应。目前对于CVOCs的研究主要集中在多氯苯类,氯代芳香烃类和直链烃类氯化物这三大类典型污染物。氯苯(CB)作为其中一种氯代芳香烃,是石油化工行业中的典型污染物。
在石油化工行业生产中,较高的操作温度会扩大可燃性气体的爆炸极限,容易引发爆炸。氧气作为可燃性气体爆炸的要素之一,因而需要被严格控制。《石油化工可燃性排放系统设计规范》明确规定:氧含量高于2%(v%)的可燃性气体不能排入可燃性气体排放系统。石油化工企业排放的工艺尾气的重要特点是没有氧气,浓度和流量都比较小。常用治理技术有燃烧技术,吸附技术,光催化技术,生物降解技术。对于燃烧技术,由于工艺尾气不含氧,因此废气燃烧需要的氧气要借助鼓风机引入,这增加了废气治理成本。吸附技术中吸附剂易达到饱和,吸附剂的再生问题较难解决。光催化技术可以将有机物分解成水和二氧化碳,但是它对技术的要求比较高。对于生物降解技术,由于其对于废气的处理更加绿色化,符合国家可持续发展理念,近年来越来越受到企业的青睐。对于石油化工行业的氯苯废气,采用传统的厌氧生物技术,如厌氧滤池,厌氧流化床等,会面临启动时间长,生物降解效率低下,稳定运行困难等问题,使它们在实际运用中受到了极大限制。因此亟需开发出一种能在厌氧体系中快速去除氯苯的环境友好型技术。
生物电解池(MECs)作为一种新型的废气处理工艺,利用微生物作为催化剂,具有绿色、低成本、可生化性等优势,是一种环境友好型处理技术。随着对MECs的研究越来越深入,它的应用范围也逐渐由产氢和产甲烷扩展到了环境修复领域。大量研究报道了MECs能有效去除氯代有机物。通过施加合适的电压可以缩短生物电解池的启动时间,增强污染物去除效果。
发明内容
针对本领域存在的不足之处,本发明提供了一种微生物电解池厌氧处理氯苯废气的方法,构建了适宜具有氯苯降解性能的特异性功能菌群生长的微生物电解池环境,通过培养驯化阴极生物膜,形成具有氯苯降解性能的特异性功能菌群,并进一步利用阴极微生物作为催化剂,并施加外部电压加快电子传递速率,从而强化对氯苯的去除效果。
一种微生物电解池厌氧处理氯苯废气的方法,包括步骤:
(1)在微生物电解池的阴极加入厌氧活性污泥,连续通入含氯苯的气体培养驯化具有氯苯降解能力的阴极生物菌群;
(2)利用微生物作为催化剂,外加阴极电位,处理氯苯废气。
本发明中,如无特殊说明,所述阴极电位的大小都是相对于标准氢电极而言。
作为优选,所述微生物电解池采用双室结构,包括分别装有阴极液和阳极液并通过质子交换膜分隔的阴极室和阳极室,所述阳极室设有石墨棒作为对电极,所述阴极室设有碳布作为工作电极、Ag/AgCl电极作为参比电极,所述阴极室还设有进气口、出气口和阴极液取样口;
所述微生物电解池置于30℃水浴锅中,且各电极外接电化学工作站构成回路;
所述阳极室内的阳极液为不含微量元素和维生素的无机盐缓冲溶液,具体含有0.66g/L(NH4)2SO4,0.11g/L MgSO4,0.12g/L K2SO4,8.8g/L Na2HPO4,4.56g/L NaH2PO4,溶剂为去离子水;
所述阴极室内的阴极液为无机盐缓冲溶液,成分包括0.66g/L(NH4)2SO4,0.11g/LMgSO4,0.12g/L K2SO4,8.8g/L Na2HPO4,4.56g/L NaH2PO4,1.25mL/L微量元素溶液,0.62mL/L维生素溶液,溶剂为去离子水,pH=7;
所述微量元素溶液配方:1.5g/L氨基三乙酸,3g/L MgSO4,0.5g/L MnSO4·H2O,1g/L NaCl,0.1g/L FeSO4·7H2O,0.1g/L CaCl2·2H2O,0.1g/L CoCl2·6H2O,0.13g/L ZnCl2,0.01g/L CuSO4·5H2O,0.01g/L AlK(SO4)2·12H2O,0.01g/L H3BO3,0.025g/L Na2MoO4,0.024g/L NiCl2·6H2O,0.025g/L Na2WO4·2H2O,溶剂为去离子水;
所述维生素溶液配方:0.2g/L生物素,0.2g/L叶酸,1g/L盐酸吡哆辛,0.5g/L核黄素,0.5g/L硫胺,0.5g/L烟酸,0.5g/L泛酸,0.01g/L B-12,0.5g/L对氨基苯甲酸,0.5g/L硫辛酸,溶剂为去离子水。
作为优选,步骤(1)中,设定阴极电位为-0.3V,依次进行以下4个阶段:
(a)阴极液中加入葡萄糖直至阴极液中葡萄糖浓度为1g/L,进气口持续通入氯苯浓度为100mg/m3的氯苯/氮气混合气,待电流稳定后进入下一阶段;
(b)更换新鲜阴极液和阳极液,并在阴极液中加入葡萄糖直至阴极液中葡萄糖浓度为0.5g/L,进气口持续通入氯苯浓度为200mg/m3的氯苯/氮气混合气,待电流稳定后进入下一阶段;
(c)更换新鲜阴极液和阳极液,进气口持续通入氯苯浓度为500mg/m3的氯苯/氮气混合气,待电流稳定后进入下一阶段;
(d)更换新鲜阴极液和阳极液,进气口持续通入氯苯浓度为1000mg/m3的氯苯/氮气混合气,待电流稳定,完成具有氯苯降解能力的阴极生物菌群的培养驯化。
步骤(2)中,外加的阴极电位优选为-0.7~0V,进一步优选为-0.4~-0.2V。
步骤(2)中,所述氯苯废气不含氧且氯苯浓度优选为300~2400mg/cm3
步骤(2)中,当所述氯苯废气中氯苯浓度大于800mg/cm3时,所述阴极电位优选为-0.4~-0.2V,进一步优选为-0.3V。
作为优选,步骤(2)中,所述氯苯废气来源于石油化工行业尾气。
本发明方法是将活性污泥加入到微生物电解池(MECs)的阴极室,在连续通入氯苯气体和外加电压的条件下,形成阴极生物膜。利用微生物作为催化剂,电解池可以在厌氧条件下去除氯苯。通过改变阴极电位可以进一步强化去除效果。
本发明与现有技术相比,主要优点包括:本发明的微生物电解池能在厌氧条件下降解石油化工行业的氯苯废气,不需要从外部引入氧气,大大减小了爆炸风险,也节约了废气治理成本。当氯苯浓度低于800mg/m3时,反应器对氯苯的去除率能保持在90%,高于传统生物滴滤塔对氯苯的去除效率(60%-85%)。外加合适的阴极电位可以提高氯苯的矿化率和对高浓度氯苯气体的耐受能力。本发明的生物电解池能实现石油化工行业氯苯废气的高效净化,具有污染低,成本低廉,容易推广的优点。
本发明中构建的系统在-0.3V的外加电位下,对800mg m-3的氯苯气体可以达到94%的去除效率且停留时间短,这比具有更长停留时间的生物滴滤塔的去除性能更好(60%-85%)(Wang,C.,Xi,J.Y.,Hu,H.Y.,2009.Effects of nitrogen source,empty bedresidence time and inlet concentration on biofilter removal ofchlorobenzene.Eng.Life Sci.9,109-115;Zhou,Q.W.,Zhang,L.L.,Chen,J.M.,Xu,B.C.,Chu,G.W.,Chen,J.F.,2016.Performance and microbial analysis of two differentinocula for the removal of chlorobenzene in biotricklingfilters.Chem.Eng.J.284,174-181.)。此外,系统在该条件下的性能甚至比等离子体和生物滴滤塔耦合系统的性能更佳(~80%)(Jiang,L.Y.,Li,H.,Chen,J.M.,Zhang,D.,Cao,S.L.,Ye,J.X.,2016.Combination of non-thermal plasma and biotrickling filterfor chlorobenzene removal.Chem.Technol.Biotechnol.91,3079-3087.)。
附图说明
图1为实施例微生物电解池装置结构示意图,图中:1-对电极,2-出气口,3-进气口,4-工作电极,5-参比电极,6-阴极液取样口,7-阴极室,8-阳极室,9-质子交换膜;
图2为实施例微生物电解池启动阶段电流图;
图3为实施例不同阴极电位下的电流图;
图4为实施例不同阴极电位下氯苯去除率图;
图5为实施例不同阴极电位下氯苯矿化率图;
图6为实施例不同阴极电位下平均脱氯速度图;
图7为实施例不同阴极电位下生物膜的扫描电镜照片,其中:(a)0V,(b)-0.1V,(c)-0.3V,(d)-0.5V,(e)-0.7V。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
如图1所示,本实施例的微生物电解池采用双室结构,包括分别装有阴极液和阳极液并通过质子交换膜9分隔的阴极室7和阳极室8,阳极室8设有石墨棒作为对电极1,阴极室7设有碳布作为工作电极4、Ag/AgCl电极作为参比电极5,阴极室7还设有进气口3、出气口2和位于阴极室7侧面的阴极液取样口6。进气口3伸入阴极液液面以下。
微生物电解池置于30℃水浴锅中,且各电极外接电化学工作站构成回路;
阳极室8内的阳极液为不含微量元素和维生素的无机盐缓冲溶液,具体含有0.66g/L(NH4)2SO4,0.11g/L MgSO4,0.12g/L K2SO4,8.8g/L Na2HPO4,4.56g/L NaH2PO4,溶剂为去离子水;
阴极室7内的阴极液为无机盐缓冲溶液,成分包括0.66g/L(NH4)2SO4,0.11g/LMgSO4,0.12g/L K2SO4,8.8g/L Na2HPO4,4.56g/L NaH2PO4,1.25mL/L微量元素溶液,0.62mL/L维生素溶液,溶剂为去离子水,pH=7;
所述微量元素溶液配方:1.5g/L氨基三乙酸,3g/L MgSO4,0.5g/L MnSO4·H2O,1g/L NaCl,0.1g/L FeSO4·7H2O,0.1g/L CaCl2·2H2O,0.1g/L CoCl2·6H2O,0.13g/L ZnCl2,0.01g/L CuSO4·5H2O,0.01g/L AlK(SO4)2·12H2O,0.01g/L H3BO3,0.025g/L Na2MoO4,0.024g/L NiCl2·6H2O,0.025g/L Na2WO4·2H2O,溶剂为去离子水;
所述维生素溶液配方:0.2g/L生物素,0.2g/L叶酸,1g/L盐酸吡哆辛,0.5g/L核黄素,0.5g/L硫胺,0.5g/L烟酸,0.5g/L泛酸,0.01g/L B-12,0.5g/L对氨基苯甲酸,0.5g/L硫辛酸,溶剂为去离子水。
微生物电解池的两个电极式中分别加入35mL阳极液和阴极液,并在阴极室7接种来自杭州七格污水处理厂的活性污泥,同时加入能高效降解氯苯的苍白杆菌,该菌种从活性污泥中筛选得到,目前保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M2018490。
利用上述微生物电解池对氯苯废气进行厌氧处理的方法,包括:
(1)微生物电解池启动阶段
设定阴极电位为-0.3V,依次进行以下4个阶段:
(a)阴极液中加入葡萄糖直至阴极液中葡萄糖浓度为1g/L,进气口持续通入氯苯浓度为100mg/m3的氯苯/氮气混合气,待电流稳定后进入下一阶段;
(b)更换新鲜阴极液和阳极液,并在阴极液中加入葡萄糖直至阴极液中葡萄糖浓度为0.5g/L,进气口持续通入氯苯浓度为200mg/m3的氯苯/氮气混合气,待电流稳定后进入下一阶段;
(c)更换新鲜阴极液和阳极液,进气口持续通入氯苯浓度为500mg/m3的氯苯/氮气混合气,待电流稳定后进入下一阶段;
(d)更换新鲜阴极液和阳极液,进气口持续通入氯苯浓度为1000mg/m3的氯苯/氮气混合气,待电流稳定,完成具有氯苯降解能力的阴极生物菌群的培养驯化,碳布表面形成生物膜。
启动阶段过程中(a)~(d)各阶段的电流如图2所示。
(2)微生物电解池启动后,利用微生物作为催化剂,外加阴极电位,处理模拟氯苯废气,模拟废气组成为氯苯/氮气混合气。分别在0、-0.1、-0.3、-0.5、-0.7V阴极电位下,驯化测试不同氯苯浓度(300、500、800、1200、1600、2400mg/m3)的模拟氯苯废气中的氯苯的去除率、矿化率、平均脱氯速度等指标。不同阴极电位下均进行3个周期(每个周期为3天)的驯化,每个周期结束时,阳极液和阴极液全部更换为新鲜阳极液和阴极液,驯化过程中持续通模拟氯苯废气,驯化结束后测试模拟氯苯废气中氯苯的去除率、矿化率、平均脱氯速度等指标。不同阴极电位下,一个周期内的电流图如图3所示,施加的阴极电位越负,电流越负。
根据进气口和出气口氯苯的浓度差,计算微生物电解池对氯苯的去除率。不同阴极电位下,微生物电解池对氯苯的去除效果如图4所示。在不同阴极电位下,当进气口氯苯浓度低于800mg/m3时,阴极电位对氯苯的去除率影响不大且氯苯的去除率变化也不明显,微生物电解池对氯苯的去除率能达到90%左右。当氯苯浓度进一步增加时,去除率降低,说明过多的氯苯对微生物有抑制作用。其中,阴极电位为-0.3V时,系统对氯苯的去除效果最佳。更低的阴极电位可能会影响微生物活性,降低了去除氯苯的能力。
不同阴极电位下,微生物电解池矿化氯苯的性能如图5所示。在不同阴极电位下,矿化率随着氯苯浓度的增加而降低,说明高浓度的氯苯对细菌有抑制作用。氯苯矿化率随着阴极电位减小,呈现先增大后减小的变化趋势,阴极电位为0V时,氯苯的矿化率最低。这表明适当的阴极电位的施加有助于电子从电极转移到微生物,利于氯苯完全降解,但是过多的电子又会抑制氯苯的矿化。
针对氯苯浓度为800mg/m3的模拟氯苯废气,不同阴极电位下的平均脱氯速度如图6所示。阴极电位时0V时,平均脱氯速度最小(0.060mmol/(L h)),这表明适当的阴极电位的施加,有利于氯苯脱氯。当阴极电位为-0.3V时,平均脱氯速度最大,达到0.074mmol/(L h),与0V时的脱氯速度相比,增加了约20%。随着阴极电位降低至-0.7V,脱氯速度减小,这可能是由于非生物产氢竞争了来自电极的电子造成的。
同一电压下的性能测试实验结束后,剪取生物膜用于扫描电镜的观察,不同阴极电位下的生物膜扫描电镜照片参见图7。阴极电位施加后开始出现纳米导线,微生物之间的联系更加紧密,形成了稳固的生物膜。此外,细菌表面出现了白点,这可能是由于电刺激导致细菌膜蛋白的表达发生改变而造成的。生物膜上开始出现杆状菌和大直径的球状细菌,这表明阴极电位的施加可以选择性地富集微生物。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (3)

1.一种微生物电解池厌氧处理氯苯废气的方法,其特征在于,包括步骤:
(1)在微生物电解池的阴极加入厌氧活性污泥,连续通入含氯苯的气体培养驯化具有氯苯降解能力的阴极生物菌群,驯化方法具体为设定阴极电位为-0.3V,依次进行以下4个阶段:
(a)阴极液中加入葡萄糖直至阴极液中葡萄糖浓度为1g/L,进气口持续通入氯苯浓度为100mg/m3的氯苯/氮气混合气,待电流稳定后进入下一阶段;
(b)更换新鲜阴极液和阳极液,并在阴极液中加入葡萄糖直至阴极液中葡萄糖浓度为0.5g/L,进气口持续通入氯苯浓度为200mg/m3的氯苯/氮气混合气,待电流稳定后进入下一阶段;
(c)更换新鲜阴极液和阳极液,进气口持续通入氯苯浓度为500mg/m3的氯苯/氮气混合气,待电流稳定后进入下一阶段;
(d)更换新鲜阴极液和阳极液,进气口持续通入氯苯浓度为1000mg/m3的氯苯/氮气混合气,待电流稳定,完成具有氯苯降解能力的阴极生物菌群的培养驯化;
(2)利用微生物作为催化剂,外加-0.3V的阴极电位,处理氯苯废气;
所述阴极生物菌群为含有苍白杆菌菌群的活性污泥;
所述微生物电解池采用双室结构,包括分别装有阴极液和阳极液并通过质子交换膜分隔的阴极室和阳极室,所述阳极室设有石墨棒作为对电极,所述阴极室设有碳布作为工作电极、Ag/AgCl电极作为参比电极,所述阴极室还设有进气口、出气口和阴极液取样口;
所述微生物电解池置于30℃水浴锅中,且各电极外接电化学工作站构成回路;
所述阳极室内的阳极液为不含微量元素和维生素的无机盐缓冲溶液,具体含有0.66g/L(NH4)2SO4,0.11g/L MgSO4,0.12g/L K2SO4,8.8g/L Na2HPO4,4.56g/L NaH2PO4,溶剂为去离子水;
所述阴极室内的阴极液为无机盐缓冲溶液,成分包括0.66g/L(NH4)2SO4,0.11g/LMgSO4,0.12g/L K2SO4,8.8g/L Na2HPO4,4.56g/L NaH2PO4,1.25mL/L微量元素溶液,0.62mL/L维生素溶液,溶剂为去离子水,pH=7;
所述微量元素溶液配方:1.5g/L氨基三乙酸,3g/L MgSO4,0.5g/L MnSO4·H2O,1g/LNaCl,0.1g/L FeSO4·7H2O,0.1g/L CaCl2·2H2O,0.1g/L CoCl2·6H2O,0.13g/L ZnCl2,0.01g/L CuSO4·5H2O,0.01g/L AlK(SO4)2·12H2O,0.01g/L H3BO3,0.025g/L Na2MoO4,0.024g/L NiCl2·6H2O,0.025g/L Na2WO4·2H2O,溶剂为去离子水;
所述维生素溶液配方:0.2g/L生物素,0.2g/L叶酸,1g/L盐酸吡哆辛,0.5g/L核黄素,0.5g/L硫胺,0.5g/L烟酸,0.5g/L泛酸,0.01g/LB-12,0.5g/L对氨基苯甲酸,0.5g/L硫辛酸,溶剂为去离子水。
2.根据权利要求1所述的方法,其特征在于,步骤(2)中,所述氯苯废气不含氧且氯苯浓度为300~2400mg/cm3
3.根据权利要求1所述的方法,其特征在于,步骤(2)中,所述氯苯废气来源于石油化工行业尾气。
CN202011348293.4A 2020-11-26 2020-11-26 一种微生物电解池厌氧处理氯苯废气的方法 Active CN112473360B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011348293.4A CN112473360B (zh) 2020-11-26 2020-11-26 一种微生物电解池厌氧处理氯苯废气的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011348293.4A CN112473360B (zh) 2020-11-26 2020-11-26 一种微生物电解池厌氧处理氯苯废气的方法

Publications (2)

Publication Number Publication Date
CN112473360A CN112473360A (zh) 2021-03-12
CN112473360B true CN112473360B (zh) 2022-08-05

Family

ID=74935051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011348293.4A Active CN112473360B (zh) 2020-11-26 2020-11-26 一种微生物电解池厌氧处理氯苯废气的方法

Country Status (1)

Country Link
CN (1) CN112473360B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225661A (zh) * 2021-12-06 2022-03-25 浙江工业大学 一种强化微生物电解池去除含氯挥发性有机化合物的方法
CN114214645B (zh) * 2021-12-06 2023-07-11 浙江工业大学 一种微生物电催化转化二氧化碳的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014153570A2 (en) * 2013-03-15 2014-09-25 Transtar Group, Ltd New and improved system for processing various chemicals and materials
JP2018142541A (ja) * 2017-02-28 2018-09-13 公立大学法人大阪府立大学 電気化学デバイスおよびその製造方法
CN109370945A (zh) * 2018-11-20 2019-02-22 浙江工业大学 一株高效降解氯苯的苍白杆菌zjutcb-1及其应用
CN110078225A (zh) * 2019-05-17 2019-08-02 华东师范大学 一种微生物电解池及有机物氧化降解同步co2甲烷化方法
CN110229766A (zh) * 2019-06-14 2019-09-13 浙江工业大学 氧化微杆菌及其在降解有机污染物中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550021B2 (en) * 2014-10-27 2020-02-04 Danmarks Tekniske Universitet System and method to control H2O2 level in advanced oxidation processes
GB201607461D0 (en) * 2016-04-29 2016-06-15 Ecole Polytech Battery
US20190119133A1 (en) * 2017-10-25 2019-04-25 Advanced Environmental Technologies, Llc Method and Systems for Advanced Bioelectrochemical Treatment of Pollutants
CN110743354B (zh) * 2019-11-05 2022-01-04 广东国源环保机电设备工程有限公司 一种微生物耦合石墨烯纳米技术降解VOCs装置及工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014153570A2 (en) * 2013-03-15 2014-09-25 Transtar Group, Ltd New and improved system for processing various chemicals and materials
JP2018142541A (ja) * 2017-02-28 2018-09-13 公立大学法人大阪府立大学 電気化学デバイスおよびその製造方法
CN109370945A (zh) * 2018-11-20 2019-02-22 浙江工业大学 一株高效降解氯苯的苍白杆菌zjutcb-1及其应用
CN110078225A (zh) * 2019-05-17 2019-08-02 华东师范大学 一种微生物电解池及有机物氧化降解同步co2甲烷化方法
CN110229766A (zh) * 2019-06-14 2019-09-13 浙江工业大学 氧化微杆菌及其在降解有机污染物中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation;Xiao-QiuLin et al.;《Water Research》;20191001;章节1-2 *
微生物电解池降解芳香烃类化合物的研究;许炉生等;《中国环境科学学会会议论文集》;20101231;第一部分 *

Also Published As

Publication number Publication date
CN112473360A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
Liu et al. Effect of direct electrical stimulation on decolorization and degradation of azo dye reactive brilliant red X-3B in biofilm-electrode reactors
Thrash et al. Direct and indirect electrical stimulation of microbial metabolism
Szekeres et al. Hydrogen-dependent denitrification in a two-reactor bio-electrochemical system
Watsuntorn et al. Comparison of sulphide and nitrate removal from synthetic wastewater by pure and mixed cultures of nitrate-reducing, sulphide-oxidizing bacteria
Han et al. Performance of a new suspended filler biofilter for removal of nitrogen oxides under thermophilic conditions and microbial community analysis
Zhang et al. Performance and microbial community evolution of toluene degradation using a fungi-based bio-trickling filter
CN112473360B (zh) 一种微生物电解池厌氧处理氯苯废气的方法
Zeng et al. Anoxic biodesulfurization using biogas digestion slurry in biotrickling filters
WO2014082989A1 (en) Bioelectrochemical water treatment and apparatus
Watsuntorn et al. Resilient performance of an anoxic biotrickling filter for hydrogen sulphide removal from a biogas mimic: steady, transient state and neural network evaluation
Wu et al. Denitrifying biofilm processes for wastewater treatment: developments and perspectives
Vijay et al. Denitrification process in microbial fuel cell: A comprehensive review
Liu et al. Improving the performance of biotrickling filter microbial fuel cells in treating exhaust gas by adjusting the oxygen content of the anode tank
Mohanakrishna et al. Bioelectrochemical systems (BES) for microbial electroremediation: an advanced wastewater treatment technology
Li et al. Comparison and application of biofilter and suspended bioreactor in removing gaseous o-xylene
Cassarini et al. Anaerobic methane oxidation coupled to sulfate reduction in a biotrickling filter: Reactor performance and microbial community analysis
Lin et al. Performance of bioelectrochemical systems in treating exhaust gas with power generation: Effects of shock-load, shut-down episodes and microbial community
Ye et al. Dominance of Oscillospira and Bacteroides in the bacterial community associated with the degradation of high-concentration dimethyl sulfide under iron-reducing condition
Andreides et al. Biological H2S removal from gases
Zhang et al. Removal of H2S in an extremely acidic-biotrickling filter: evaluation of removal performance and characterization of microbial communities
CN100548910C (zh) 一种还原溶液中Fe(Ⅲ)EDTA的方法及其应用
EP3466894B1 (en) Treatment and recovery of caustic from spent caustic through bioelectrochemical process
CN108640294B (zh) 一种化工或农药废水生化末端的处理方法
CN114225661A (zh) 一种强化微生物电解池去除含氯挥发性有机化合物的方法
Manchon et al. Fluid-like electrodes and purple phototrophic bacteria: bridging the gap in wastewater biorefineries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant