CN112464708B - 双馈异步风机电能质量异常故障诊断方法 - Google Patents

双馈异步风机电能质量异常故障诊断方法 Download PDF

Info

Publication number
CN112464708B
CN112464708B CN202011106895.9A CN202011106895A CN112464708B CN 112464708 B CN112464708 B CN 112464708B CN 202011106895 A CN202011106895 A CN 202011106895A CN 112464708 B CN112464708 B CN 112464708B
Authority
CN
China
Prior art keywords
neural network
convolutional neural
power quality
training
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011106895.9A
Other languages
English (en)
Other versions
CN112464708A (zh
Inventor
傅雷
朱添田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202011106895.9A priority Critical patent/CN112464708B/zh
Publication of CN112464708A publication Critical patent/CN112464708A/zh
Application granted granted Critical
Publication of CN112464708B publication Critical patent/CN112464708B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising
    • G06F2218/06Denoising by applying a scale-space analysis, e.g. using wavelet analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06F18/2155Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Human Resources & Organizations (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Strategic Management (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Probability & Statistics with Applications (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Signal Processing (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)

Abstract

一种双馈异步风机电能质量异常故障诊断方法,包括以下步骤:步骤1)采用经验小波分解方法对原始电能质量扰动信号进行分解;步骤2)把K个fi(t)子信号行向量进行竖向排列,得到一个基于经验小波分解的时域信号矩阵F;步骤3)引入半监督协同训练进行数据重构,去除噪声或错误样本;步骤4)构建卷积神经网络模型,将时域信号矩阵F作为卷积神经网络模型的输入,利用训练集训练卷积神经网络模型,进行参数调整,利用测试集测试卷积神经网络模型;步骤5)将卷积神经网络特征值矩阵作为支持向量机模型的输入,进行双馈异步风机电能质量异常故障信号识别。本发明得到的双馈异步风机电能质量异常故障诊断分类器具有较好的分类精度和鲁棒性。

Description

双馈异步风机电能质量异常故障诊断方法
技术领域
本发明涉及一种双馈异步风机电能质量异常故障诊断方法。
背景技术
近年来,随着非线性电气设备的日益广泛应用,电能质量事件在电力系统中经常发生。就双馈异步风力发电机而言,当风速变化时,为了捕获最大风能,风机的转速会发生变化,此时为了保证工频恒定输出,需要控制转子电流频率使得维持电机定子频率恒定,当风机逆变装置发生故障时,并网风机会造成谐波、电压跌落、电压隆起、闪变等电能质量扰动故障。以往的工作通常是从电信号中提取数理统计特征,并用传统的机器学习方法构造相应的分类器,对电能质量扰动事件监测,受限于统计特征的单一性和信号处理的局限性,此类方法无法满足实际情况下风机电能质量异常故障诊断高精度和自动化的要求。此外,在电能质量故障诊断辨识的实际应用中,往往存在海量的无类标签样本,但需要使用特殊设备或经过昂贵且耗时的实验过程,对数据样本进行标记才能得到带标签的样本,由此产生了极少量的有标签样本和大量过剩的无标签样本,需要将大量的无标签样本加入到有限的有标签样本中一起进行训练,使得模型的鲁棒性进一步提升。
发明内容
针对上述问题,本发明提出了一种基于经验小波变换和卷积神经网络相结合的双馈异步风机电能质量异常故障诊断方法。结合经验小波能自适应分解非平稳信号特性,对电压信号进行分解和降噪,结合半监督协同训练学习方法,对数据进行重构,去除噪声和错误样本,通过卷积神经网络对分解信号进行特征自动提取和筛选,利用得到的优化特征向量构造支持向量机分类器,从而实现双馈异步风机电能质量异常故障诊断和模式辨识。与其他方法相比,本发明提出的方法可以自适应分解电能质量异常扰动信号,并深度提取信号特征,建立得到的双馈异步风机电能质量异常故障诊断分类器具有较好的分类精度和鲁棒性。
本发明解决其技术问题所采用的技术方案是:
一种双馈异步风机电能质量异常故障诊断方法,包括以下步骤:
步骤1)对于双馈异步风机电能质量扰动信号x(t),信号采样频率为fs,采样点数为Ns,采用经验小波分解方法对原始电能质量扰动信号进行分解,其中,K为分解数目,fi(t)为分解子信号,通过经验小波分解,x(t)表示为K个fi(t)的叠加之和;
步骤2)将经验小波分解得到的fi(t)子信号看做一维行向量矩阵,把K个fi(t)子信号行向量进行竖向排列,得到一个基于经验小波分解的时域信号矩阵F,如式(2)所示。
步骤3)时域信号矩阵F,引入半监督协同训练进行数据重构,去除噪声或错误样本;
步骤4)构建卷积神经网络模型,将时域信号矩阵F作为卷积神经网络模型的输入,利用训练集训练卷积神经网络模型,进行参数调整,利用测试集测试卷积神经网络模型;
步骤5)将步骤4)输出得到的卷积神经网络特征值矩阵,作为支持向量机模型的输入,进行双馈异步风机电能质量异常故障信号识别。
进一步,所述步骤4)中,所述卷积神经网络包括:2层卷积层、2层池化层、2层全连接层和1层输出层,第一层卷积层中的激活函数为ReLu函数,采用4个步长1、尺寸为8*80的卷积核,池化层中采用步长为1,尺寸为4*40的核,第二层卷积层中的激活函数为ReLu函数,采用6个步长1、尺寸为4*28的卷积核,池化层中采用步长为1,尺寸为2*14的核,而后对第二次池化层输出矩阵进行一维化处理,输出层设定10个标签作为输出,而后采用softmax函数作为分类器。
再进一步,所述步骤1)中,采用数学解析表达式模拟生成10种给定的风电电能质量扰动故障信号,每种故障扰动信号生成1000个数据样本,用以作为卷积神经网络模型的训练数据集,如下:
其中,y(t)表示电压信号,A为归一化的电压幅值,ω为电网工频频率,t为时间,再次得到时域信号样本基础上,添加20dB信噪比强度的高斯白噪声。
更进一步,所述步骤3)中,引入半监督协同训练进行数据重构,去除噪声或错误样本,通过将分解后带标签的样本数据导入决策树、logistic回归和朴素贝叶斯模型三种不同的分类器来实现标签重构,在半监督训练阶段,将原始数据集分成标记集L、潜在错误标记集U和验证集V三组,然后对标记集L进行bootstrap采样,生成三个标记训练集L1、L2和L3,然后,从每个训练集构造一个分类器,定义为C1、C2和C3,在“少数服从多数”的原则下,利用上述三种分类器输出噪声标记样本;如果两个分类器对一个未标记样本给出相同的预测决策,则该样本被视为具有高置信度的预测结果;然后将未标记的样本用特定的标签进行标记,并加入到第三个分类器的已标记训练集中;同时,利用“少数服从多数”原则消除分类错误;最后,将L1,L2,L3的交集优化为最终的标记训练集L'。
本发明的有益效果如下:
1)采用经验小波分解对双馈异步风机电能质量扰动信号进行分解预处理,分解的频段带宽有较好的自适应性,且信号处理实时性高。
2)采用卷积神经网络对包含特征信息的分解模态函数进行深层特征提取,提取特征不受人为预设的干扰,隐性特征能被深度挖掘。
3)结合半监督协同训练学习方法,对数据标签进行重构,能有效去除噪声和错误样本,确保建立得到的双馈异步风机电能质量异常故障诊断分类器具有较好的分类精度和鲁棒性。
附图说明
图1是双馈异步风机电能质量异常故障诊断方法的流程图。
具体实施方式
下面结合附图对本发明做进一步说明。
参照图1,一种双馈异步风机电能质量异常故障诊断方法,包括以下步骤:
步骤1)对于双馈异步风机电能质量扰动信号x(t),信号采样频率为fs,采样点数为Ns,采用经验小波分解方法对原始电能质量扰动信号进行分解,其中,K为分解数目,fi(t)为分解子信号,通过经验小波分解,x(t)表示为K个fi(t)的叠加之和;
步骤2)将经验小波分解得到的fi(t)子信号看做一维行向量矩阵,把K个fi(t)子信号行向量进行竖向排列,得到一个基于经验小波分解的时域信号矩阵F,如式(2)所示。
步骤3)时域信号矩阵F,引入半监督协同训练进行数据重构,去除噪声或错误样本;
步骤4)构建卷积神经网络模型,将时域信号矩阵F作为卷积神经网络模型的输入,利用训练集训练卷积神经网络模型,进行参数调整,利用测试集测试卷积神经网络模型;
步骤5)将步骤4)输出得到的卷积神经网络特征值矩阵,作为支持向量机模型的输入,进行双馈异步风机电能质量异常故障信号识别。
进一步,所述步骤4)中,所述卷积神经网络包括:2层卷积层、2层池化层、2层全连接层和1层输出层,第一层卷积层中的激活函数为ReLu函数,采用4个步长1、尺寸为8*80的卷积核,池化层中采用步长为1,尺寸为4*40的核,第二层卷积层中的激活函数为ReLu函数,采用6个步长1、尺寸为4*28的卷积核,池化层中采用步长为1,尺寸为2*14的核,而后对第二次池化层输出矩阵进行一维化处理,输出层设定10个标签作为输出,而后采用softmax函数作为分类器。
再进一步,所述步骤1)中,采用数学解析表达式模拟生成10种给定的风电电能质量扰动故障信号,每种故障扰动信号生成1000个数据样本,用以作为卷积神经网络模型的训练数据集,如下:
其中,y(t)表示电压信号,A为归一化的电压幅值,ω为电网工频频率,t为时间,再次得到时域信号样本基础上,添加20dB信噪比强度的高斯白噪声,用以进一步提高训练模型的鲁棒性。
更进一步,所述步骤3)中,引入半监督协同训练进行数据重构,去除噪声或错误样本,通过将分解后带标签的样本数据导入决策树、logistic回归和朴素贝叶斯模型三种不同的分类器来实现标签重构,在半监督训练阶段,将原始数据集分成标记集L、潜在错误标记集U和验证集V三组,然后对标记集L进行bootstrap采样,生成三个标记训练集L1、L2和L3,然后,从每个训练集构造一个分类器,定义为C1、C2和C3。在“少数服从多数”的原则下,利用上述三种分类器输出噪声标记样本;例如,用C1和C2来预测某个未标记样本为正样本,而C3输出为负样本,则在训练阶段将该样本视为C3分类器的噪声标记阳性样本;换言之,如果两个分类器对一个未标记样本给出相同的预测决策,则该样本被视为具有高置信度的预测结果;然后将未标记的样本用特定的标签进行标记,并加入到第三个分类器的已标记训练集中;同时,利用“少数服从多数”原则消除分类错误。最后,将L1,L2,L3的交集优化为最终的标记训练集L'。
本说明书的实施例所述的内容仅仅是对发明构思的实现形式的列举,仅作说明用途。本发明的保护范围不应当被视为仅限于本实施例所陈述的具体形式,本发明的保护范围也及于本领域的普通技术人员根据本发明构思所能想到的等同技术手段。

Claims (2)

1.一种双馈异步风机电能质量异常故障诊断方法,其特征在于,所述方法包括以下步骤:
步骤1)对于双馈异步风机电能质量扰动信号x(t),信号采样频率为fs,采样点数为Ns,采用经验小波分解方法对原始电能质量扰动信号进行分解,其中,K为分解数目,fi(t)为分解子信号,通过经验小波分解,x(t)表示为K个fi(t)的叠加之和;
步骤2)将经验小波分解得到的fi(t)子信号看做一维行向量矩阵,把K个fi(t)子信号行向量进行竖向排列,得到一个基于经验小波分解的时域信号矩阵F,如式(2)所示;
步骤3)时域信号矩阵F,引入半监督协同训练进行数据重构,去除噪声或错误样本;
步骤4)构建卷积神经网络模型,将时域信号矩阵F作为卷积神经网络模型的输入,利用训练集训练卷积神经网络模型,进行参数调整,利用测试集测试卷积神经网络模型;
步骤5)将步骤4)输出得到的卷积神经网络特征值矩阵,作为支持向量机模型的输入,进行双馈异步风机电能质量异常故障信号识别;
所述步骤1)中,采用数学解析表达式模拟生成10种给定的风电电能质量扰动故障信号,每种故障扰动信号生成1000个数据样本,用以作为卷积神经网络模型的训练数据集,如下:
其中,y(t)表示电压信号,A为归一化的电压幅值,ω为电网工频频率,t为时间,再次得到时域信号样本基础上,添加20dB信噪比强度的高斯白噪声;
所述步骤3)中,引入半监督协同训练进行数据重构,去除噪声或错误样本,通过将分解后带标签的样本数据导入决策树、logistic回归和朴素贝叶斯模型三种不同的分类器来实现标签重构,在半监督训练阶段,将原始数据集分成标记集L、潜在错误标记集U和验证集V三组,然后对标记集L进行bootstrap采样,生成三个标记训练集L1、L2和L3,然后,从每个训练集构造一个分类器,定义为C1、C2和C3,在“少数服从多数”的原则下,利用上述三种分类器输出噪声标记样本;如果两个分类器对一个未标记样本给出相同的预测决策,则该样本被视为具有高置信度的预测结果;然后将未标记的样本用特定的标签进行标记,并加入到第三个分类器的已标记训练集中;同时,利用“少数服从多数”原则消除分类错误;最后,将L1,L2,L3的交集优化为最终的标记训练集L'。
2.如权利要求1所述的双馈异步风机电能质量异常故障诊断方法,其特征在于,所述步骤4)中,所述卷积神经网络包括:2层卷积层、2层池化层、2层全连接层和1层输出层,第一层卷积层中的激活函数为ReLu函数,采用4个步长1、尺寸为8*80的卷积核,池化层中采用步长为1,尺寸为4*40的核,第二层卷积层中的激活函数为ReLu函数,采用6个步长1、尺寸为4*28的卷积核,池化层中采用步长为1,尺寸为2*14的核,而后对第二次池化层输出矩阵进行一维化处理,输出层设定10个标签作为输出,而后采用softmax函数作为分类器。
CN202011106895.9A 2020-10-16 2020-10-16 双馈异步风机电能质量异常故障诊断方法 Active CN112464708B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011106895.9A CN112464708B (zh) 2020-10-16 2020-10-16 双馈异步风机电能质量异常故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011106895.9A CN112464708B (zh) 2020-10-16 2020-10-16 双馈异步风机电能质量异常故障诊断方法

Publications (2)

Publication Number Publication Date
CN112464708A CN112464708A (zh) 2021-03-09
CN112464708B true CN112464708B (zh) 2024-04-16

Family

ID=74833125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011106895.9A Active CN112464708B (zh) 2020-10-16 2020-10-16 双馈异步风机电能质量异常故障诊断方法

Country Status (1)

Country Link
CN (1) CN112464708B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113591604A (zh) * 2021-07-09 2021-11-02 浙江工业大学 基于噪声标签重构的风力发电机电能质量扰动状态监测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841961A (zh) * 2016-03-29 2016-08-10 中国石油大学(华东) 一种基于Morlet小波变换和卷积神经网络的轴承故障诊断方法
CN110503025A (zh) * 2019-08-19 2019-11-26 重庆大学 一种基于半监督协同训练的模拟电路早期故障诊断方法
CN111222458A (zh) * 2020-01-06 2020-06-02 浙江工业大学 一种基于集合经验模态分解和卷积神经网络的滚动轴承故障诊断方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841961A (zh) * 2016-03-29 2016-08-10 中国石油大学(华东) 一种基于Morlet小波变换和卷积神经网络的轴承故障诊断方法
CN110503025A (zh) * 2019-08-19 2019-11-26 重庆大学 一种基于半监督协同训练的模拟电路早期故障诊断方法
CN111222458A (zh) * 2020-01-06 2020-06-02 浙江工业大学 一种基于集合经验模态分解和卷积神经网络的滚动轴承故障诊断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM";Karthik等;《ELSEVIER》;20190123;全文 *

Also Published As

Publication number Publication date
CN112464708A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
Sohaib et al. Fault diagnosis of rotary machine bearings under inconsistent working conditions
Wu et al. A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery
Xu et al. Online fault diagnosis method based on transfer convolutional neural networks
Jiang et al. Stacked multilevel-denoising autoencoders: A new representation learning approach for wind turbine gearbox fault diagnosis
Sun et al. Convolutional discriminative feature learning for induction motor fault diagnosis
Ma et al. A novel bearing fault diagnosis method based on 2D image representation and transfer learning-convolutional neural network
CN106124212B (zh) 基于稀疏编码器和支持向量机的滚动轴承故障诊断方法
Mitiche et al. 1D‐CNN based real‐time fault detection system for power asset diagnostics
Yang et al. Interpretability of deep convolutional neural networks on rolling bearing fault diagnosis
Gopinath et al. Intelligent fault diagnosis of synchronous generators
CN104198183A (zh) 风电机组传动链振动噪声抑制及其早期故障特征提取方法
Zheng et al. Fault diagnosis of wind power converters based on compressed sensing theory and weight constrained AdaBoost-SVM
CN116451150A (zh) 一种基于半监督小样本的设备故障诊断方法
CN109141884A (zh) 基于eemd-ar模型和dbn的轴承故障诊断方法
CN114548190B (zh) 一种基于自适应残差神经网络的风力涡轮机故障诊断方法及装置
Zhang et al. A hybrid deep-learning model for fault diagnosis of rolling bearings in strong noise environments
Afrasiabi et al. Wind turbine fault diagnosis with generative-temporal convolutional neural network
CN112464708B (zh) 双馈异步风机电能质量异常故障诊断方法
CN112990259A (zh) 基于改进迁移学习的旋转机械轴承的早期故障诊断方法
Fu et al. Powercog: A practical method for recognizing power quality disturbances accurately in a noisy environment
Mitiche et al. An expert system for EMI data classification based on complex bispectrum representation and deep learning methods
Kamarzarrin et al. Fault Diagnosis of Wind Turbine Double-Fed Induction Generator Based on Multi-Level Fusion and Measurement of Back-to-Back Converter Current Signal.
Chen et al. An Efficient CNN with Tunable Input-Size for Bearing Fault Diagnosis.
CN113240022A (zh) 多尺度单分类卷积网络的风电齿轮箱故障检测方法
CN114036977A (zh) 基于二维图像编码特征的风机电能质量扰动监测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant