CN112462420A - 一种边坡锁固段智能定位以及特征识别方法 - Google Patents

一种边坡锁固段智能定位以及特征识别方法 Download PDF

Info

Publication number
CN112462420A
CN112462420A CN202011289495.6A CN202011289495A CN112462420A CN 112462420 A CN112462420 A CN 112462420A CN 202011289495 A CN202011289495 A CN 202011289495A CN 112462420 A CN112462420 A CN 112462420A
Authority
CN
China
Prior art keywords
locking section
monitoring
microseismic
slope
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011289495.6A
Other languages
English (en)
Inventor
李迎春
付斌
马天辉
唐春安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202011289495.6A priority Critical patent/CN112462420A/zh
Publication of CN112462420A publication Critical patent/CN112462420A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/288Event detection in seismic signals, e.g. microseismics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/65Source localisation, e.g. faults, hypocenters or reservoirs

Abstract

本发明属于岩土工程领域,公开了一种边坡锁固段智能定位以及特征识别方法,包括步骤(1)大尺度微震监测系统安装以及自动监测,步骤(2)微震监测数据自动处理以及锁固段位置初步识别。步骤(3)锁固段的精准定位以及特征识别。本发明在微震监测基础上通过微震能量以及微震事件确定岩质边坡锁固段的确切位置,通过人工智能算法以及对边坡监测区域的分区,在确定锁固段初步位置后,通过调整微震监测范围,更加详细的明确锁固段的特征维度信息,进而为锁固型边坡的稳定性分析提供依据,为边坡的加固以及滑坡防治提供参考,降低边坡加固和监测范围以及费用。

Description

一种边坡锁固段智能定位以及特征识别方法
技术领域
本发明涉及边坡监测领域,尤其是涉及一种边坡锁固段智能定位以及特征识别方法
背景技术
滑坡作为典型的灾害性地质灾害,在全球范围内造成了巨大的经济损失和人员伤亡,因此引起了广泛的研究。但是,由于滑坡机理的复杂,对滑坡的演化目前仍未完全了解。而大型岩质滑坡由于其巨大的势能,往往在脱离母岩后形成高速、远程以及“崩→滑→流”一体的链式地质灾害,常带来毁灭性破坏和重大人员伤亡。岩质滑坡涉及不同的地质环境条件和地质结构,具有不同的诱发机制和触发因素,其变形破坏演化机制及发生过程极其复杂。其中“锁固段”在岩质边坡滑动过程中起到关键作用,锁固段是指斜坡失稳过程中,滑面上未联通,承受应力集中,提供关键承载作用的部位,其强度和变形决定了边坡整体稳定性。基于是否存在对斜坡稳定性起控制性作用的锁固段,可将斜坡分为锁固型斜坡和非锁固型斜坡两大类。需强调的是,锁固段具有聚能效应,其在未贯通之前会储存大量弹性应变能,并在锁固段突发脆性断裂时转换为坡体动能,导致滑坡高速启动,故锁固型斜坡失稳后往往具有强烈破坏性,典型实例如昭通头寨沟特大型滑坡、三峡库区千将坪滑坡、唐家山滑坡和重庆武隆鸡尾山滑坡等。在软弱层中存在锁固段的边坡,若潜在滑面上的锁固段未发生贯通性破坏,即使在降雨等因素作用下斜坡蠕滑出现加速行为,也不会发生整体失稳滑动,由于锁固段特征明显,锁固型斜坡可能是斜坡失稳预测这一世界性难题中“强度”相对薄弱、最有可能首先被突破的一个。在对锁固型边坡的研究中目前手段主要是通过滑坡后根据地质资料对边坡的滑坡过程进行反演分析,尚且缺少在滑坡前发现锁固段位置以及特征的方法。由于在设计施工前缺少锁固段的确切信息,这势必会对边坡的稳定性设计以及施工带来显著的影响。因此,本发明提出的一种边坡锁固段智能定位以及特征识别方法就显得十分必要。
发明内容
本发明的目的旨在克服现有技术存在的不足,提供了一种边坡锁固段智能定位以及特征识别方法。其可解决目前无法准确判断定位锁固段位置以及特征信息的工程难题,弥补边坡常规设计的不足,可以更加合理、准确的对边坡稳定性进行分析并对边坡设计,监测和施工过程进行有益的指导。
为了解决上述技术问题,本发明是通过以下技术方案实现的:
一种边坡锁固段智能定位以及特征识别方法,其包括以下步骤:
步骤(1)大尺度微震监测系统安装以及自动监测
根据边坡地质资料以及工程施工需要划定边坡监测范围,将待监测范围内边坡按高程以及横纵向间距划分为不同网格。在所划分网格中部通过钻孔安装导波杆,在导波杆上方端口安装微震自动监测探头。其中微震自动监测探头由传感器,无线传输设备,太阳能电池板以及蓄电池和保护箱体等组成。在降雨、地震、以及施工等外界因素变化时产生的微震事件数据经由自动监测探头采集远程传输至数据处理中心。
步骤(2)微震监测数据自动处理以及锁固段位置初步识别
由于锁固段强度较高,在锁固段位置集聚了大量的弹性应变能,边坡在外界扰动过程中锁固段会发生较为强烈的破坏,能量会以波的形式向外释放。同一个微震事件造成的波在经多个不同位置和埋深的监测探头接收后远程传输至数据中心。数据中心将接收到的实时微震监测数据采用人工智能方法高效地剔除外界干扰数据,保留岩体变形破坏发生的微震监测结果。经由双差定位算法可以确定微震事件的位置以及能量聚集区从而初步对锁固段位置进行确定。
步骤(3)锁固段的精准定位以及特征识别
在步骤(2)中对锁固段初步定位位置的基础上,缩小微震监测范围,将得到的能量聚集区再次细分为不同的网格,重复步骤(1)中微震监测系统的安装过程,将不同埋深位置的自动监测探头安装在步骤(2)圈定的能量聚集区范围内。对这一区域再次进行微震监测。之后将得到的监测数据再次处理后便可得到锁固段更为详细的位置,尺寸等信息。通过对比数据库中不同岩体微震数据信息,可以得到锁固段的其他维度信息。与现有技术相比,本发明具有如下优点:
通过智能微震数据监测探头,可以远程对边坡进行监测。采用太阳能电池板为探头以及传输设备提供能量,高效环保,同时避免了因施工以及外界原因造成的传输光缆的破坏,降低人工费用和传输光缆费用,节省投资。采用人工智能技术对监测数据进行处理,可以高效的对边坡监测数据进行拾取。采用多轮定位,可以对锁固段进行精准定位。通过对锁固段的精确定位分析,能够为设计施工监测提供有利的指导,确保边坡的稳定性和安全。
附图说明
图1为锁固段微震自动监测探头剖视图;
图2为锁固段微震监测系统布置横断面图;
图3为锁固段初步识别微震监测系统布置俯视图;
图4为锁固段精确识别微震监测系统布置俯视图;
图中:1-锁固段微震自动监测探头,2-太阳能电池板,3-太阳能板角度调整支架,4-保护箱体,5-导波杆,6-微震监测探头,7-太阳能蓄电池,8-无线数据传输设备。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
如图1所示,锁固段微震自动监测探头包括2-太阳能电池板,3-太阳能板角度调整支架,4-保护箱体,6-微震监测探头,7-太阳能蓄电池,8-无线数据传输设备。锁固段微震自动监测探头的安装位置首先需要根据边坡地质资料以及工程施工需要划定,将待监测范围内边坡按高程,横纵间距划分为不同网格,在所划分网格中部通过钻孔安装导波杆,在导波杆上方端口安装自动微震监测探头。
如图2所示,在外界扰动下锁固段集聚能量以弹性波形式释放,同一个微震事件引起的破坏波形经不同位置自动监测探头接收后远程传输至数据处理中心。数据处理中心采用人工智能方法对得到的微震监测数据进行拾取。再经由双差定位算法,确定微震事件的位置和能量。如图3所示,由于微震监测范围较广,因此第一轮监测只能初步对锁固段位置进行确定。
如图4所示,在对锁固段初步定位的基础上,继续缩小微震监测范围,将得到的能量聚集区再次细分为不同的网格,集中对初步定位得到的能量聚集区进行微震监测。之后将得到的监测数据再次处理后便可得到锁固段更为确切位置。如有必要,可将监测范围继续细分。之后将得到的微震事件能量等信息与数据库中已有岩体微震信息比对,进而可以得到锁固段其他维度信息。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种边坡锁固段智能定位以及特征识别方法,其特征在于包括以下步骤:
步骤(1)大尺度微震监测系统安装以及自动监测
根据边坡地质资料以及工程施工需要划定边坡监测范围,将待监测范围内边坡按高程以及横纵向间距划分为不同网格;在所划分网格中部通过钻孔安装导波杆,在导波杆上方端口安装微震监测探头;其中微震监测探头主要由传感器、无线数据传输设备、太阳能电池板、太阳能蓄电池和保护箱体组成;在外界因素变化时产生的微震事件数据经由微震监测探头采集远程传输至数据处理中心;
步骤(2)微震监测数据自动处理以及锁固段位置初步识别
由于锁固段强度较高,在锁固段位置集聚了大量的弹性应变能,边坡在外界扰动过程中锁固段会发生较为强烈的破坏,能量会以波的形式向外释放;同一个微震事件造成的波在经多个不同位置和埋深的微震监测探头接收后远程传输至数据处理中心;数据处理中心将接收到的实时微震监测数据采用人工智能方法剔除外界干扰数据,保留岩体变形破坏发生的微震监测结果;经由双差定位算法确定微震事件的位置以及能量聚集区从而初步对锁固段位置进行确定;
步骤(3)锁固段的精准定位以及特征识别
在步骤(2)中对锁固段初步定位位置的基础上,缩小微震监测范围,将得到的能量聚集区再次细分为不同的网格,重复步骤(1)中微震监测系统的安装过程,将不同埋深位置的微震监测探头安装在步骤(2)圈定的能量聚集区范围内;对这一区域再次进行微震监测;之后将得到的监测数据再次处理后便可得到锁固段更为详细的位置、尺寸信息;通过对比数据库中不同岩体微震数据信息,得到锁固段的其他维度信息。
CN202011289495.6A 2020-11-17 2020-11-17 一种边坡锁固段智能定位以及特征识别方法 Withdrawn CN112462420A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011289495.6A CN112462420A (zh) 2020-11-17 2020-11-17 一种边坡锁固段智能定位以及特征识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011289495.6A CN112462420A (zh) 2020-11-17 2020-11-17 一种边坡锁固段智能定位以及特征识别方法

Publications (1)

Publication Number Publication Date
CN112462420A true CN112462420A (zh) 2021-03-09

Family

ID=74837585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011289495.6A Withdrawn CN112462420A (zh) 2020-11-17 2020-11-17 一种边坡锁固段智能定位以及特征识别方法

Country Status (1)

Country Link
CN (1) CN112462420A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137605A (zh) * 2021-10-21 2022-03-04 陕西延长石油矿业有限责任公司 一种煤矿岩体中岩桥的智能定位及特征识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116440A (zh) * 2015-09-11 2015-12-02 中铁十九局集团矿业投资有限公司 一种边坡岩体监测系统及监测方法
CN105549077A (zh) * 2015-12-16 2016-05-04 中国矿业大学(北京) 基于多级多尺度网格相似性系数计算的微震震源定位方法
CN105954795A (zh) * 2016-04-25 2016-09-21 吉林大学 一种用于微地震定位的网格逐次剖分方法
CN209619984U (zh) * 2018-07-28 2019-11-12 中铁二院工程集团有限责任公司 铁路高陡岩质边坡微震监测系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116440A (zh) * 2015-09-11 2015-12-02 中铁十九局集团矿业投资有限公司 一种边坡岩体监测系统及监测方法
CN105549077A (zh) * 2015-12-16 2016-05-04 中国矿业大学(北京) 基于多级多尺度网格相似性系数计算的微震震源定位方法
CN105954795A (zh) * 2016-04-25 2016-09-21 吉林大学 一种用于微地震定位的网格逐次剖分方法
CN209619984U (zh) * 2018-07-28 2019-11-12 中铁二院工程集团有限责任公司 铁路高陡岩质边坡微震监测系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137605A (zh) * 2021-10-21 2022-03-04 陕西延长石油矿业有限责任公司 一种煤矿岩体中岩桥的智能定位及特征识别方法

Similar Documents

Publication Publication Date Title
Xue et al. Rockburst prediction and stability analysis of the access tunnel in the main powerhouse of a hydropower station based on microseismic monitoring
CN108412547B (zh) 一种承压断层活化突水多场信息协同监测临突预报方法及监测系统
CN108922123B (zh) 一种矿山边坡滑移稳定性监测预警方法
CN106779231B (zh) 一种基于采空区压力监测的煤矿采空区飓风灾害预警方法
CN108510112A (zh) 一种现场监测与数值模拟相结合的矿山灾害预测预警方法
CN111042866B (zh) 一种多物理场协同的突水监测方法
CN107727737A (zh) 一种开挖卸荷作用下地下工程未知地质构造活化识别方法
CN112487545A (zh) 基于大数据轴力监测的边坡安全实时监测预警系统
CN114412573B (zh) 一种矿井井壁破裂监测预警系统及方法
CN116591777B (zh) 多场多源信息融合的冲击地压智能化监测预警装置及方法
CN112462420A (zh) 一种边坡锁固段智能定位以及特征识别方法
CN114109508A (zh) 一种基于能量系统分析的冲击地压监测方法及应用
CN113591347A (zh) 一种高边坡施工过程中动态监测方法及预警系统
CN116677458A (zh) 一种浅埋偏压隧道爆破振动多功能监测预警系统
CN110333531A (zh) 一种高能环境隧道施工岩爆位置精细预警方法
CN114354762A (zh) 一种煤岩体失稳破坏前兆信息判识方法
CN115095389A (zh) 一种基于煤岩电荷信号的冲击地压监测预警系统
CN110532703B (zh) 一种用于海域段海底隧道的海床安全性管理方法及系统
CN113434819A (zh) 工作面采动对采空区矿震活动影响时间和距离的确定方法
Xue et al. GA-based early warning method for rock burst with microseismic and acoustic emission in steeply inclined coal seam
CN108319915B (zh) 一种岩爆信号阈值动态调整的多时窗简化形式识别方法
CN112946740A (zh) 一种智能化地震震源搜寻定位系统
CN113586157B (zh) 基于克里金插值的回采工作面突出危险区快速划分方法
Lian et al. Design and implementation of mine water hazard monitoring and early warning platform
CN117607973B (zh) 一种可判别陷落柱时空动态活化程度的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210309