CN112461669A - 一种巷道掘进冲击地压动力灾害实验方法和装置 - Google Patents

一种巷道掘进冲击地压动力灾害实验方法和装置 Download PDF

Info

Publication number
CN112461669A
CN112461669A CN202011246447.9A CN202011246447A CN112461669A CN 112461669 A CN112461669 A CN 112461669A CN 202011246447 A CN202011246447 A CN 202011246447A CN 112461669 A CN112461669 A CN 112461669A
Authority
CN
China
Prior art keywords
sample
dynamic
tunneling
rock
roadway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011246447.9A
Other languages
English (en)
Other versions
CN112461669B (zh
Inventor
王桂峰
沈承德
曹安业
巩思园
窦林名
蔡武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202011246447.9A priority Critical patent/CN112461669B/zh
Publication of CN112461669A publication Critical patent/CN112461669A/zh
Application granted granted Critical
Publication of CN112461669B publication Critical patent/CN112461669B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/307Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by a compressed or tensile-stressed spring; generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0026Combination of several types of applied forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0252Monoaxial, i.e. the forces being applied along a single axis of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0254Biaxial, the forces being applied along two normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/0282Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0617Electrical or magnetic indicating, recording or sensing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0658Indicating or recording means; Sensing means using acoustic or ultrasonic detectors

Abstract

一种巷道掘进冲击地压动力灾害实验方法及装置,其特征在于所述的实验方法包括模拟正常地质条件下巷道掘进的实验和模拟异常地质条件下巷道掘进的实验;它们均包括(1)配制试样;(2)对试样施加静态载荷,模拟煤矿井下掘进工作面周边岩体实际受力环境;(3)通过计算机程序控制刀具运动轨迹模拟掘进,采集试样掘进过程中反馈出的声电和力学信号;(4)将刀具撤出试样,采集试样停掘过程中反馈出的声电和力学信号;(5)分别在步骤2和步骤3中,施加动载荷,由计算机控制动态加载波形特征、施加时间参数;(6)改变动载波形形式和强度,直至试样发生冲击破坏,得到巷道冲击破坏的条件准则等步骤。本发明能为煤矿巷道掘进冲击地压的预警与防治提供理论参考与科学对策。

Description

一种巷道掘进冲击地压动力灾害实验方法和装置
技术领域
本发明涉及一种矿山巷道技术,尤其是一种矿山巷道掘进试验技术,具体地说是一种巷道掘进冲击地压动力灾害实验方法及装置。
背景技术
冲击地压是煤矿巷道围岩由于弹性变形能的瞬时释放而产生的突然、剧烈破坏的动力现象。
目前,巷道掘进时冲击地压发生的机理还不清楚,缺乏针对性危险性监测、预警与防治基础理论。试验研究是揭示煤巷掘进冲击地压机理的重要研究手段。然而,配置不同地质条件下的煤岩层结构试样,并对试样分别施加单向、双向、三向静载荷,模拟井下工程岩体受力环境,同时实验室模拟掘进作业,并施加动载扰动,系统研究掘进过程中煤岩体动态调整的应力在复合矿震、顶板破断等动载时,煤岩体应力、能量演变及冲击破坏的规律,揭示掘进巷道冲击地压灾害发生机理及其内在孕育机制等内容的试验研究还不多见,其原因是缺乏相应的试验方法和设备。
利用巷道掘进冲击地压动力灾害实验方法和装置,可以获得冲击地压灾害演化过程与动力学机制、响应信号和前兆特征,确定地质赋存环境对冲击地压发生的影响规律,揭示巷道掘进冲击地压机理,为巷道掘进冲击地压的监测和防范解危提供理论依据。
发明内容
本发明的目的是针对现有的实验装置不能有效模拟巷道掘进过程中的真实受力情况,尤其是无法模拟掘进过程对安全性的影响的问题,发明一种巷道掘进冲击地压动力灾害实验方法,同时提供一种相应的实验装置。
本发明的技术方案之一是:
一种巷道掘进冲击地压动力灾害实验方法,其特征在于:包括正常地质条件下巷道掘进和异常地质条件下巷道掘进冲击地压动力灾害实验方法,所述的正常地质条件下巷道掘进冲击地压动力灾害实验方法包括以下步骤:
(1)配制试样;根据煤矿井下掘进工作面煤岩层结构及其物理力学性质、实际和实验室模拟掘进的巷道尺寸,利用相似准则完成正常层状结构煤岩试样的配制;
(2)对试样施加静态载荷,模拟煤矿井下掘进工作面周边岩体实际受力环境;
(3)通过计算机程序控制刀具空间运动轨迹,在试样内部模拟煤矿井下生产班时巷道的掘进作业,巷道形状为拱形、正方形、梯形之一;在掘进过程中利用声发射传感器、电磁辐射传感器和力学传感器采集掘进过程中的声电和力学信号;
(4)模拟掘进完成一定距离后,将刀具撤出试样,利用声发射传感器、电磁辐射传感器和力学传感器采集试样停掘过程中试验应力调整而反馈出的声电和力学信号,利用微型摄像机观测巷道表面变形及破裂情况;
(5)分别在步骤2和步骤3中,施加动载荷,由计算机控制动态加载波形特征、施加时间参数,加载波形包括:正弦波、半正弦波、三角波、半三角波、方波、半方波、斜波之一;或读取矿井采集的矿震波形文件加载;
(6)改变动载波形形式和强度,直至试样发生冲击破坏,得到巷道冲击破坏的条件准则;
(7)重复步骤(2),改变载荷加载形式为单向、双向和三向、改变静态载荷强度,重复步骤(3)、(4)、(5)、(6),研究不同应力条件对掘进冲击地压发生的影响规律;
(8)重复步骤(3),改变步骤(3)中的开挖速度,重复步骤(4)、(5)、(6),获得不同开挖速度对掘进冲击地压发生的影响规律;
所述的异常地质条件下巷道掘进冲击地压动力灾害实验方法包括以下步骤;
首先配制试样;根据煤矿井下掘进工作面煤岩层结构及其物理力学性质、异常地质构造、实际和实验室模拟掘进的巷道尺寸,利用相似准则配制煤岩层厚度变化的试样、有断层的煤岩结构试样、有岩浆侵入的煤岩结构试样、有褶曲的煤岩结构试样;
其次,重复步骤(2)至步骤(8);
第三,将步骤(2)至步骤(8)所得到的声电和应力信号与正常地质条件下得到的信号进行对比分析,得到不同地质赋存环境对冲击地压发生的影响规律。
本发明的技术方案之二是:
一种巷道掘进冲击地压动力灾害实验装置,其特征是包括三向加载反力架模块11、动载荷施加模块13、数控掘进机14和静态液压缸15;试样17位于反力架模块11的中心,数控掘进机14和静态液压缸15对称设置在试样的两侧(X向),动载荷施加模块13与另一静态液压缸15对称设置在试样17的另外两侧(Y向),在试样17的上方、反力架模块11上安装有动态液压缸13-1(Z向),动态液压缸13-1可同时作为静态液压缸使用,它与试样17下部的底座对称设置;所述的反力架模块11以试样为中心,在X、Y、Z三向的每个方向上各配置有一个静态液压缸15和一个反力加载板16、一个动态液压缸13-1和一个中空液压缸13-2、一反力架19和一个动态液压缸13-1,液压缸受控于液压伺服控制系统12。
所述的动载荷施加模块13包括低应变率加载模块和中高应变率加载模块;所述低应变率加载模块是由动态液压缸13-1加以实现;所述中高应变率加载模块是由中空液压缸13-2加以实现,中空液压缸13-2的中间放置冲击杆13-3,外部利用霍普金森冲击机13-4或摆锤冲击机13-5击打冲击杆13-3,冲击杆13-3将动载荷传递给试样17。
所述的所述数控掘进机14前部有刀具,刀具连接有进给装置14-3,进给装置14-3安装在水平移动装置14-2上,水平移动装置14-2安装在升降装置14-1上,数控掘进机14由计算机程序控制运动轨迹,利用刀具切割试样,模拟矿山掘进作业。
本发明的有益效果是:
本发明的掘进动力灾害突发机理物理模拟实验系统可用于试验研究“静态加载-掘进开挖”、“静态加载-掘进开挖-动载”等应力路径等煤岩变形破裂机制、能量演化规律分析与结构失稳模式辨识、冲击孕育前兆信息识别等内容,揭示巷道掘进冲击破坏机理,为我国煤矿巷道掘进冲击地压的预警与防治提供一定的理论参考与科学对策。
本发明属于动态加载试验系统,试验系统由四部分组成:主机、液压源、测控装置、加载单元;加载系统三向独立,可实现三向异步加、卸载,又可三向或其中任意两向同步加、卸载;具有多波形信号,包括斜坡波、正弦波、三角波、锯齿波等,也可读取现场监测波形文件,主要试验波形:正弦波、三角波、方波、半正弦波、半三角波、半方波、斜波等,以及读取波形文件方式加载;由计算机控制动态加载波形特征、施加时间等参数。加载控制模式:位移、力、速度等。模拟现场顶板垮落、断层滑动等产生的扰动波。
附图说明
图1是本发明的逐层配置试样示意图。
图2 是对普通煤岩层结构试样施加三向载荷,通过计算机程序控制刀具运动轨迹,模拟巷道掘进作业示意图。
图3是将刀具撤出试样,利用声发射传感器、电磁辐射传感器和力学传感器采集试样停掘过程中反馈出的声电和力学信号示意图。
图4是将刀具撤出试样利用微型摄像机观测巷道表面变形及破裂情况示意图。
图5是分别在掘进和停掘过程中,施加动载荷示意图。
图6是利用煤岩层厚度变化的试样,进行巷道掘进实验示意图。
图7是利用有断层的煤岩结构试样,进行巷道掘进实验示意图。
图8是本发明的巷道掘进冲击地压动力灾害实验装置正视图。
图9是本发明的巷道掘进冲击地压动力灾害实验装置俯视图之一。
图10是本发明的巷道掘进冲击地压动力灾害实验装置俯视图之二。
图中:1、试样;2、应力传感器;3、施加载荷;4、声发射传感器;5、电磁辐射传感器;6、机器手;7、微型摄像头;8、施加动载荷;9、煤岩层厚度变化的试样;10、有断层的煤岩结构试样;11、三向加载反力架模块;12、液压伺服控制系统;13、动载荷施加模块;13-1动态液压缸;13-2中空液压缸,13-3冲击杆;13-4霍普金森冲击;13-5摆锤冲击机;14、数控掘进机;14-1、升降装置;14-2、水平移动装置;14-3、进给装置;15、液压缸;16、反力加载板。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
实施例一。
如图1-5所示。
一种正常地质条件下巷道掘进冲击地压动力灾害实验方法,包括以下步骤:
(1)配制试样;根据煤矿井下掘进工作面煤岩层结构及其物理力学性质、实际和实验室模拟掘进的巷道尺寸,利用相似准则完成正常地质试样(图1)的配制;并在正常地质试样上放置应力传感器2(图1)。
(2)如图3所示,在试样上布置声发射传感器4和试样旁边放置电磁辐射传感器5。对试样施加三向静态载荷,模拟煤矿井下掘进工作面周边岩体不同受力环境;
(3)通过计算机程序控制刀具运动轨迹,在试样内部模拟煤矿井下生产班时巷道的掘进作业,如图3所示;在掘进过程中利用声发射传感器、电磁辐射传感器和力学传感器采集掘进过程中的声电和力学信号;利用小波分析过滤施工信号,得到试样被开挖时自身应力、能量和裂隙动态变化过程中反馈出的声电和力学信号;如图3所示;
(4)模拟掘进完成一定距离后,将刀具撤出试样,利用声发射传感器、电磁辐射传感器和力学传感器采集试样停掘过程中反馈出的声电和力学信号,再利用微型摄像机7观测巷道表面变形及破裂情况;如图4所示;
(5)再次进行掘进和停掘,并在此过程中同步施加静载荷和动载荷,动载荷由计算机控制动态加载波形特征、施加时间参数,以读取波形文件方式加载,加载波形包括:正弦波、半正弦波、三角波、半三角波、方波、半方波、斜波之一;如图5所示;
(6)改变动载波形形式和强度,直至试样发生冲击破坏,得到巷道冲击破坏的条件准则;
(7)重复步骤(2),改变载荷加载形式为单向或双向、改变载荷强度,分别重复步骤(3)、(4)、(5)、(6),研究不同应力条件对掘进冲击地压发生的影响规律;
(8)重复步骤(3),改变步骤(3)中的开挖速度,重复步骤(4)、(5)、(6)、(7),研究不同开挖速度对掘进冲击地压发生的影响规律。
实施例二。
如图6、7所示。
一种异常地质条件下巷道掘进冲击地压动力灾害实验方法,包括以下步骤:
(1)配制试样;根据煤矿井下掘进工作面煤岩层结构及其物理力学性质、异常地质构造、实际和实验室模拟掘进的巷道尺寸,利用相似准则配制异常地质条件试样,常见的民常地质条件试样包括图6所示的煤岩层厚度变化的试样、图7所示的有断层的煤岩结构试样、有岩浆侵入的煤岩结构试样或有褶曲的煤岩结构试样(图中未示出,可根据常识进行制作)。并在试样上放置应变块传感器2,
(2)分别对异常地质条件试样重复实施例一中的步骤(2)至(8),将所测得的信号与正常地质试样反馈的信号进行对比分析,得到不同地质赋存环境对冲击地压发生的影响规律。
实施例一、二中的试样比例一般为1:20。
实施例三。
如图8-10所示。
一种巷道掘进冲击地压动力灾害实验装置,包括三向加载反力架模块11、动载荷施加模块13、数控掘进机14(或机械手6)和静态液压缸15;试样17位于反力架模块11的中心,数控掘进机14和静态液压缸15对称设置在试样的两侧(X向),如图9所示,动载荷施加模块13与另一静态液压缸15对称设置在试样17的另外两侧(Y向),在试样17的上方、反力架模块11上安装有动态液压缸13-1(Z向),动态液压缸13-1可同时作为静态液压缸使用并安装在横梁18上,它与试样17下部的反力架19对称设置。
在反力架模块11,以试样为中心,在X、Y、Z三向的每个方向上各配置有一个静态液压缸15和一个反力加载板16(图9)、一个动态液压缸13-1(也可作为静态液压缸使用)和一个中空液压缸13-2、一反力架19和一个动态液压缸13-1,液压缸受控于液压伺服控制系统12(可采用现有技术加以实现)。
所述动载荷施加模块13包括低应变率加载模块、中高应变率加载模块;所述低应变率加载模块是由动态液压缸13-1加以实现;所述中高应变率加载模块是由中空液压缸13-2(图9)加以实现,中空液压缸13-2的中间放置冲击杆13-3,外部利用霍普金森冲击机13-4(图9)或摆锤冲击机13-5(图10)击打冲击杆13-3,冲击杆13-3将动载荷传递给试样17;所述数控掘进机14(也可采用机器手6代替)前部有刀具,刀具连接有进给装置14-3,进给装置14-3安装在水平移动装置14-2上,水平移动装置14-2安装在升降装置14-1上,如图8所示。数控掘进机14由计算机程序控制运动轨迹,利用刀具切割试样,模拟矿山掘进作业。
本发明未涉及部分与现有技术相同或可采用现有技术加以实现。

Claims (4)

1.一种巷道掘进冲击地压动力灾害实验方法,其特征在于:包括正常地质条件下巷道掘进和异常地质条件下巷道掘进冲击地压动力灾害实验方法,所述的正常地质条件下巷道掘进冲击地压动力灾害实验方法包括以下步骤:
(1)配制试样;根据煤矿井下掘进工作面煤岩层结构及其物理力学性质、实际和实验室模拟掘进的巷道尺寸,利用相似准则完成正常层状结构煤岩试样的配制;
(2)对试样施加静态载荷,模拟煤矿井下掘进工作面周边岩体实际受力环境;
(3)通过计算机程序控制刀具空间运动轨迹,在试样内部模拟煤矿井下生产班时巷道的掘进作业,巷道形状为拱形、正方形、梯形之一;在掘进过程中利用声发射传感器、电磁辐射传感器和力学传感器采集掘进过程中的声电和力学信号;
(4)模拟掘进完成一定距离后,将刀具撤出试样,利用声发射传感器、电磁辐射传感器和力学传感器采集试样停掘过程中试验应力调整而反馈出的声电和力学信号,利用微型摄像机观测巷道表面变形及破裂情况;
(5)分别在步骤2和步骤3中,施加动载荷,由计算机控制动态加载波形特征、施加时间参数,加载波形包括:正弦波、半正弦波、三角波、半三角波、方波、半方波、斜波之一;或读取矿井采集的矿震波形文件加载;
(6)改变动载波形形式和强度,直至试样发生冲击破坏,得到巷道冲击破坏的条件准则;
(7)重复步骤(2),改变载荷加载形式为单向、双向和三向、改变静态载荷强度,重复步骤(3)、(4)、(5)、(6),研究不同应力条件对掘进冲击地压发生的影响规律;
(8)重复步骤(3),改变步骤(3)中的开挖速度,重复步骤(4)、(5)、(6),获得不同开挖速度对掘进冲击地压发生的影响规律;
所述的异常地质条件下巷道掘进冲击地压动力灾害实验方法包括以下步骤;
首先配制试样;根据煤矿井下掘进工作面煤岩层结构及其物理力学性质、异常地质构造、实际和实验室模拟掘进的巷道尺寸,利用相似准则配制煤岩层厚度变化的试样、有断层的煤岩结构试样、有岩浆侵入的煤岩结构试样、有褶曲的煤岩结构试样;
其次,重复步骤(2)至步骤(8);
第三,将步骤(2)至步骤(8)所得到的声电和应力信号与正常地质条件下得到的信号进行对比分析,得到不同地质赋存环境对冲击地压发生的影响规律。
2.一种巷道掘进冲击地压动力灾害实验装置,其特征是包括三向加载反力架模块(11)、动载荷施加模块(13)、数控掘进机(14)和静态液压缸(15);试样(17)位于反力架模块(11)的中心,数控掘进机(14)和静态液压缸(15)对称设置在试样的两侧(X向),动载荷施加模块(13)与另一静态液压缸(15)对称设置在试样(17)的另外两侧(Y向),在试样(17)的上方、反力架模块(11)上安装有动态液压缸(13-1)(Z向),动态液压缸(13-1)可同时作为静态液压缸使用,它与试样(17)下部的底座对称设置;所述的反力架模块(11)以试样为中心,在X、Y、Z三向的每个方向上各配置有一个静态液压缸(15)和一个反力加载板(16)、一个动态液压缸(13-1)和一个中空液压缸(13-2)、一反力架(19)和一个动态液压缸(13-1),液压缸受控于液压伺服控制系统(12)。
3.根据权利要求2所述的巷道掘进冲击地压动力灾害实验装置,其特征是所述的动载荷施加模块(13)包括低应变率加载模块和中高应变率加载模块;所述低应变率加载模块是由动态液压缸(13-1)加以实现;所述中高应变率加载模块是由中空液压缸(13-2)加以实现,中空液压缸(13-2)的中间放置冲击杆(13-3),外部利用霍普金森冲击机(13-4)或摆锤冲击机(13-5)击打冲击杆(13-3),冲击杆(13-3)将动载荷传递给试样(17)。
4.根据权利要求2所述的巷道掘进冲击地压动力灾害实验装置,其特征是所述的所述数控掘进机(14)前部有刀具,刀具连接有进给装置(14-3),进给装置(14-3)安装在水平移动装置(14-2)上,水平移动装置(14-2)安装在升降装置(14-1)上,数控掘进机(14)由计算机程序控制运动轨迹,利用刀具切割试样,模拟矿山掘进作业。
CN202011246447.9A 2020-11-10 2020-11-10 一种巷道掘进冲击地压动力灾害实验方法和装置 Active CN112461669B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011246447.9A CN112461669B (zh) 2020-11-10 2020-11-10 一种巷道掘进冲击地压动力灾害实验方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011246447.9A CN112461669B (zh) 2020-11-10 2020-11-10 一种巷道掘进冲击地压动力灾害实验方法和装置

Publications (2)

Publication Number Publication Date
CN112461669A true CN112461669A (zh) 2021-03-09
CN112461669B CN112461669B (zh) 2021-09-07

Family

ID=74825925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011246447.9A Active CN112461669B (zh) 2020-11-10 2020-11-10 一种巷道掘进冲击地压动力灾害实验方法和装置

Country Status (1)

Country Link
CN (1) CN112461669B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252457A (zh) * 2021-04-13 2021-08-13 中煤科工开采研究院有限公司 局部矿井刚度试验装置及方法
CN113624593A (zh) * 2021-10-11 2021-11-09 煤炭科学研究总院 一种模拟含倾角煤岩组合的动静载致冲试验装置及方法
CN113916691A (zh) * 2021-09-16 2022-01-11 中煤科工开采研究院有限公司 托板与缓冲垫层组合结构动载测试方法
CN114109499A (zh) * 2021-11-30 2022-03-01 济宁学院 一种基于可控冲击载荷的巷道支护相似模拟实验装置
WO2023103159A1 (zh) * 2021-12-07 2023-06-15 山东科技大学 一种用于模拟深部巷道开挖的三维动静载试验系统及方法
CN117074168A (zh) * 2023-07-05 2023-11-17 中国矿业大学(北京) 一种水平垂直联动力学模拟的围岩变形实验装置及方法
CN117110093A (zh) * 2022-12-07 2023-11-24 天津大学 一种力学试验装置及试验方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU69135U1 (ru) * 2007-06-04 2007-12-10 Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет Буровой станок для проходки скважин в подземных условиях
CN202101910U (zh) * 2011-06-10 2012-01-04 中国矿业大学 三轴冲击动静载组合试验机
CN103471914A (zh) * 2013-09-18 2013-12-25 山东科技大学 冲击地压真三轴模拟试验系统
CN104374655A (zh) * 2014-11-30 2015-02-25 湖南科技大学 一种冲击扰动围岩试验设备
CN107014689A (zh) * 2017-03-20 2017-08-04 中国矿业大学 一种基于霍普金森压杆的真三轴动静组合加卸载试验系统
CN107340229A (zh) * 2017-06-22 2017-11-10 中国矿业大学 一种测试煤岩体动力学特性的实验装置及方法
CN109238761A (zh) * 2018-09-25 2019-01-18 绍兴文理学院 一种模拟深部条件下的巷道试验的模型试验方法及其装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU69135U1 (ru) * 2007-06-04 2007-12-10 Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет Буровой станок для проходки скважин в подземных условиях
CN202101910U (zh) * 2011-06-10 2012-01-04 中国矿业大学 三轴冲击动静载组合试验机
CN103471914A (zh) * 2013-09-18 2013-12-25 山东科技大学 冲击地压真三轴模拟试验系统
CN104374655A (zh) * 2014-11-30 2015-02-25 湖南科技大学 一种冲击扰动围岩试验设备
CN107014689A (zh) * 2017-03-20 2017-08-04 中国矿业大学 一种基于霍普金森压杆的真三轴动静组合加卸载试验系统
CN107340229A (zh) * 2017-06-22 2017-11-10 中国矿业大学 一种测试煤岩体动力学特性的实验装置及方法
CN109238761A (zh) * 2018-09-25 2019-01-18 绍兴文理学院 一种模拟深部条件下的巷道试验的模型试验方法及其装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252457A (zh) * 2021-04-13 2021-08-13 中煤科工开采研究院有限公司 局部矿井刚度试验装置及方法
CN113916691A (zh) * 2021-09-16 2022-01-11 中煤科工开采研究院有限公司 托板与缓冲垫层组合结构动载测试方法
CN113624593A (zh) * 2021-10-11 2021-11-09 煤炭科学研究总院 一种模拟含倾角煤岩组合的动静载致冲试验装置及方法
CN114109499A (zh) * 2021-11-30 2022-03-01 济宁学院 一种基于可控冲击载荷的巷道支护相似模拟实验装置
CN114109499B (zh) * 2021-11-30 2023-12-22 济宁学院 一种基于可控冲击载荷的巷道支护相似模拟实验装置
WO2023103159A1 (zh) * 2021-12-07 2023-06-15 山东科技大学 一种用于模拟深部巷道开挖的三维动静载试验系统及方法
US11860135B2 (en) * 2021-12-07 2024-01-02 Shandong University Of Science And Technology Three-dimensional dynamic and static load test system for simulating deep roadway excavation and method thereof
CN117110093A (zh) * 2022-12-07 2023-11-24 天津大学 一种力学试验装置及试验方法
CN117074168A (zh) * 2023-07-05 2023-11-17 中国矿业大学(北京) 一种水平垂直联动力学模拟的围岩变形实验装置及方法

Also Published As

Publication number Publication date
CN112461669B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
CN112461669B (zh) 一种巷道掘进冲击地压动力灾害实验方法和装置
Cai et al. A monitoring investigation into rock burst mechanism based on the coupled theory of static and dynamic stresses
US11913915B2 (en) Uniaxial bidirectional synchronous control electromagnetic loaded dynamic shear test system and method
Su et al. Influence of radial stress gradient on strainbursts: an experimental study
CN112461670B (zh) 一种模拟井下巷道掘进和打钻作业的静动加载实验机及方法
Wu et al. Mechanical properties and fracture characteristics of pre-holed rocks subjected to uniaxial loading: A comparative analysis of five hole shapes
Qiu et al. Physical model test on the deformation behavior of an underground tunnel under blasting disturbance
Mao et al. Laboratory hydraulic fracturing test on large-scale pre-cracked granite specimens
CN104237024B (zh) 一种矿井工作面底板采动破坏模拟试验方法
KR100701979B1 (ko) Tbm의 면판설계 및 굴진성능 평가를 위한선형절삭시험장치
Kong et al. An experimental investigation on stress-induced cracking mechanisms of a volcanic rock
CN115372152B (zh) 一种深部工程岩爆孕育全过程大型三维物理模拟试验系统
CN106526131A (zh) 一种模拟岩墙轴向微扰动触发型岩爆的实验方法
CN114965006A (zh) 一种工程岩体动力学模拟试验系统及其试验方法
CN102662041B (zh) 用于模型实验的震动模拟系统
Liu et al. Estimation of cracking and damage mechanisms of rock specimens with precut holes by moment tensor analysis of acoustic emission
Wang et al. Study on roof breakage-induced roadway coal burst in an extrathick steeply inclined coal seam
Liu et al. Evolution of anisotropy during sandstone rockburst process under double-faces unloading
AU2021100769A4 (en) An Experimental Method for Simulating Triggered Rockburst of Rock Wall under Micro-disturbance
CN103790582A (zh) 地应力测量设备及方法
Gao et al. Investigation on the vibration effect of shock wave in rock burst by in situ microseismic monitoring
Jia et al. Identification of goaf instability under blasting disturbance using microseismic monitoring technology
Haramy et al. Causes and control of coal mine bumps
Xu et al. Creep structure effect of layered rock mass based on acoustic emission characteristics
Lu et al. Numerical simulation on energy concentration and release process of strain rockburst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant