CN112457294A - 一种作为NaV1.8阻滞剂的化合物及其制备方法和用途 - Google Patents

一种作为NaV1.8阻滞剂的化合物及其制备方法和用途 Download PDF

Info

Publication number
CN112457294A
CN112457294A CN202110107114.6A CN202110107114A CN112457294A CN 112457294 A CN112457294 A CN 112457294A CN 202110107114 A CN202110107114 A CN 202110107114A CN 112457294 A CN112457294 A CN 112457294A
Authority
CN
China
Prior art keywords
pain
compound
pharmaceutically acceptable
acceptable salt
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110107114.6A
Other languages
English (en)
Other versions
CN112457294B (zh
Inventor
张琼
王中利
戴明
彭建彪
郭海兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiyu Pharmaceutical Technology Co ltd
Jiangxi Jimin Kexin Group Co Ltd
Original Assignee
Shanghai Jiyu Pharmaceutical Technology Co ltd
Jiangxi Jimin Kexin Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiyu Pharmaceutical Technology Co ltd, Jiangxi Jimin Kexin Group Co Ltd filed Critical Shanghai Jiyu Pharmaceutical Technology Co ltd
Priority to CN202110107114.6A priority Critical patent/CN112457294B/zh
Publication of CN112457294A publication Critical patent/CN112457294A/zh
Application granted granted Critical
Publication of CN112457294B publication Critical patent/CN112457294B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/02Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D223/06Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Vascular Medicine (AREA)
  • Dermatology (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种作为NaV1.8阻滞剂的化合物及其制备方法和用途。具体地,本发明公开了一种如式(Ⅰ)所示的化合物或其药效上可接受的盐,该化合物具有较佳的NaV1.8阻滞活性的同时,具有很好的药代动力学活性;

Description

一种作为NaV1.8阻滞剂的化合物及其制备方法和用途
技术领域
本发明涉及一种作为NaV1.8阻滞剂的化合物及其制备方法和用途。
背景技术
疼痛是临床上最常见的症状之一,是继呼吸、脉搏、血压和体温之后的第五生命体征,严重影响患者的生活质量。据统计,2018年全球镇痛药市场约为360亿美元,预计2023年将达到560亿美元。其中急性中重度主要依赖于阿片类药物,占镇痛药市场份额的三分之二左右,未来将以2.5%的年复合增长率稳定增长。而以神经病理性疼痛(neuropathic pain)和关节炎疼痛为主的慢性疼痛患者数量逐年增加,预计市场将呈现18%左右的年复合增长率,是驱动未来十年全球疼痛市场持续增长的主要推动力。
神经病理性疼痛是由于外周躯体感觉神经系统的损伤或疾病导致的一种慢性疼痛,其症状包括自发性疼痛以及对正常无害刺激产生的痛觉超敏。诱发神经病理性疼痛的常见病因包括:糖尿病、带状疱疹、脊髓损伤、脑卒中、多发性硬化、癌症、HIV感染、腰或颈神经根性神经病变和创伤或术后神经损害等等。骨关节炎又称退化性关节炎,是由多种因素引起的骨关节软骨退化,能导致关节骨表面凸凹不平,并有可能形成骨刺,临床表现主要是关节疼痛和关节僵硬。长期疼痛不但影响患者睡眠、工作和生活能力,还会增加抑郁或焦虑等感情障碍的发病率,因此给患者家庭及社会带来沉重的经济负担。
根据国际疼痛学会神经病理性疼痛特别小组(NeuPSIG)发布的数据,神经病理性疼痛患病率约3.3%-8.2%。据此推算,仅我国国内就有至少5千万以上患者。2017年,美国、日本和欧盟五大市场(法国、德国、意大利、西班牙和英国)共有3050万例神经病理性疼痛患者,并呈逐年上升趋势。神经病理性疼痛是最难治疗的疾病之一,目前大多数治疗方案仍不能达到令人满意的效果。有报道指出,能通过药物治疗而及时止痛的门诊患者仅有14.9%,即约85%的疼痛病人并没有得到及时有效的药物治疗,因而一些病人不得不寻求手术介入性治疗。目前临床上用于神经病理性疼痛治疗的一线药物主要是钙离子通道调节剂(如普瑞巴林、加巴喷丁)、三环类抗抑郁药和5-羟色胺、去甲肾上腺素再摄取抑制药(如度洛西汀、文拉法辛等抗惊厥、抗抑郁的药物)。这些药疗效有限并伴随有各种不良反应。度洛西汀是神经病理性疼痛治疗的一线用药之一,主要副作用包括胃肠道反应、恶心、嗜睡、口干、多汗和头晕等,由此导致的停药率到达15%-20%。抗癫痫药物加巴喷丁和普瑞巴林是治疗神经病理性疼痛的主要药物,会引起头晕、嗜睡、周围性水肿、体重增加、虚弱、头痛和口干等诸多不良反应。近年来还发现普瑞巴林会导致极少部分患者出现药物使用相关的自杀观念和自伤行为。
骨关节炎患者数量庞大,预计目前全世界骨关节炎患者超过4亿,中国患者人数已过亿。骨关节炎疼痛目前也没有有效的治疗方法。临床上有物理疗法和药物疗法和手术治疗。物理疗法包括热疗,水疗,超声和按摩等,另外辅助用具减少关节压力缓解疼痛,但效果均有限,大部分依然需要依赖药物进行治疗。这些药物均存在不同程度的副作用。非甾体类抗炎药只适用于轻中度疼痛,而且有胃肠道副作用和心脑血管方面的风险。阿片类镇痛药用于重度疼痛,但有明显的恶心呕吐、便秘和药物依赖等副作用,不适合长期服用。因此,研发靶向新靶点新机制以及安全有效的镇痛药物,满足未被满足的临床需求,具有重要的经济意义和社会意义。
近年来的研究成果逐步揭示了钠离子通道亚型1.8(NaV1.8)在痛觉的发生和传递方面起重要作用。NaV1.8是一种电压门控钠离子通道,主要表达在包括感觉神经元在内的传入神经元上,通过控制钠离子进出细胞,在维持伤害性感觉神经元的兴奋性、动作电位的发放和持续以及痛觉敏感性的调节等方面,发挥着重要作用。NaV1.8激活性突变病人出现小纤维神经病变(主要负责痛觉传递的Aδ纤维和无髓纤维C型纤维受损)导致的阵发性疼痛。慢性炎症和糖尿病等疾病会引起NaV1.8表达增加或性质改变从而敏化伤害感受神经元,引起多种疼痛。而NaV1.8基因敲除小鼠对痛觉不敏感。
随着Nav1.8在慢性疼痛中地位的确定,基于此靶点的药物研究也日益火热,目前国际上有一个小分子阻滞剂处于临床2期,其他多个小分子阻滞剂及抗体在进行临床前开发,国内尚无其他针对该靶点的新药研发。处于研发前端的是美国福泰(Vertex)公司的小分子NaV1.8阻滞剂VX-150,目前已在骨性关节炎、急性疼痛及小纤维神经病变导致疼痛的患者中进行了2期临床试验,并且所有三项研究均获得阳性结果,表明抑制NaV1.8活性可以缓解包括神经病理性疼痛在内的多种疼痛。目前VX-150获得了美国FDA突破性疗法认定,用于治疗中度至重度疼痛,再次证明NaV1.8是镇痛很有潜力的靶点。另外,NaV1.8阻滞剂的作用机理及二期临床实验表明,其适应广泛,包括神经病理性疼痛、骨关节炎疼痛和急性损伤疼痛等多种疼痛;且安全性相对高,没有成瘾性,也没有非甾体类抗炎药的胃肠道副作用及心脑血管方面的副作用;可以与其他镇痛药联用,增强疗效,降低副作用。
发明内容
本发明要解决的技术问题是现有的NaV1.8阻滞剂的种类较少,为此,本发明提供了一类新的NaV1.8阻滞剂及其应用。该类化合物有较佳的NaV1.8阻滞活性的同时,具有更好的药代动力学活性。
本发明提供了式(Ⅰ)所示化合物或其药效上可接受的盐,
Figure 214764DEST_PATH_IMAGE001
其中,
R1选自H、F、Cl、OH或NH2
R2选自H、F、Cl、Br、I、OH、NH2、C1-C3的烷基或C1-C3的烷氧基,所述C1-C3的烷基或C1-C3的烷氧基任选被1、2或3个卤素取代;
R3选自H、F、Cl、Br、I、OH、NH2、C1-C3的烷基或C1-C3的烷氧基,所述C1-C3的烷基或C1-C3的烷氧基任选被1、2或3个卤素取代;
R4、R7分别独立地选自H、F、Cl、OH、NH2或C1-C3的烷基,所述C1-C3的烷基任选被1、2或3个卤素取代;
或者,R4与R7连接在一起,形成一个6~7元环烷基;
R5、R6分别独立地选自H、F、Cl或C1-C3的烷基,所述C1-C3的烷基任选被1、2或3个卤素取代;
或者,R5与R6连接在一起,形成一个3~7元环烷基;
n选自1或2;
T1、T2分别独立地选自C(R8)、N或N→O;
R8选自H、F、OH、CN、
Figure 256538DEST_PATH_IMAGE002
在某一方案中,所述的如式(Ⅰ)所示的化合物或其药效上可接受的盐里,某些基团的定义如下所述,未涉及的基团的定义如前述任一方案所述(以下简称为“在某一方案中”):
n选自2。
在某一方案中,R2选自H、F、Cl、Br、I、OH、NH2、甲基、三氟甲基、甲氧基或三氟甲氧基。
在某一方案中,R3选自H、F、Cl、Br、I、OH、NH2、甲基、三氟甲基、甲氧基或三氟甲氧基。
在某一方案中,R4、R7分别独立地选自H、F、Cl、OH、NH2、甲基或三氟甲基。
在某一方案中,R5、R6分别独立地选自H、F、Cl或甲基。
在某一方案中,R5与R6连接在一起形成环丙基、环丁基或环戊基。
在某一方案中,结构单元
Figure 98592DEST_PATH_IMAGE003
选自
Figure 429821DEST_PATH_IMAGE004
Figure 40931DEST_PATH_IMAGE005
Figure 660131DEST_PATH_IMAGE006
Figure 989482DEST_PATH_IMAGE007
在某一方案中,结构单元
Figure 985119DEST_PATH_IMAGE008
选自
Figure 575370DEST_PATH_IMAGE009
Figure 365471DEST_PATH_IMAGE010
Figure 512943DEST_PATH_IMAGE011
在某一方案中,结构单元
Figure 46693DEST_PATH_IMAGE012
选自
Figure 366816DEST_PATH_IMAGE013
Figure 593397DEST_PATH_IMAGE014
在某一方案中,上述化合物或其药效上可接受的盐,其中,所述的化合物为下述任一化合物:
Figure 756394DEST_PATH_IMAGE015
Figure 562676DEST_PATH_IMAGE016
Figure 333711DEST_PATH_IMAGE017
Figure 324669DEST_PATH_IMAGE018
Figure 584750DEST_PATH_IMAGE019
Figure 53777DEST_PATH_IMAGE020
Figure 82913DEST_PATH_IMAGE021
Figure 247702DEST_PATH_IMAGE022
Figure 854133DEST_PATH_IMAGE023
Figure 2218DEST_PATH_IMAGE024
Figure 10494DEST_PATH_IMAGE025
Figure 334466DEST_PATH_IMAGE026
Figure 37980DEST_PATH_IMAGE027
Figure 848810DEST_PATH_IMAGE028
Figure 446013DEST_PATH_IMAGE029
Figure 215255DEST_PATH_IMAGE030
Figure 408995DEST_PATH_IMAGE031
本发明还提供了一种药物组合物,其包括物质X和药用辅料;所述的物质X为上述的如式(Ⅰ)所示的化合物或其药效上可接受的盐。
本发明还提供了一种物质X在制备电压门控型钠通道阻滞剂或药物中的应用;所述的物质X为上述的如式(Ⅰ)所示化合物或其药效上可接受的盐;所述的药物为用于抑制电压门控型钠通道的药物。
在所述的应用的某一方案中,所述的电压门控型钠通道为NaV1.8。
在所述的应用的某一方案中,所述的电压门控型钠通道阻滞剂为在体外使用的电压门控型钠通道阻滞剂。
本发明还提供了一种物质X在制备药物中的应用;所述的药物为用于抑制电压门控型钠通道的药物;所述的物质X为上述的如式(Ⅰ)所示化合物或其药效上可接受的盐。
在所述的应用的某一方案中,所述的电压门控型钠通道可为NaV1.8。
本发明还提供了一种物质X在制备药物中的应用;所述的物质X为上述的如式(Ⅰ)所示的化合物或其药效上可接受的盐;
所述的药物为用于治疗下组疾病中的一种或多种的药物:慢性疼痛、肠痛、神经性疼痛、肌肉骨骼痛、急性疼痛、炎性疼痛、癌症疼痛、原发性疼痛、手术后疼痛、内脏痛、多发性硬化症、夏-马-图三氏综合症、失禁和心律失常。
在所述的应用的某一方案中,所述的肠痛可为发炎性肠病疼痛、克罗恩病疼痛或间质性膀胱炎疼痛。
在所述的应用的某一方案中,所述的神经性疼痛可为疱疹后神经痛、糖尿病性神经痛、痛性HIV相关性感觉神经病、三叉神经痛(例如三叉自主神经性头痛)、口灼伤综合症、截肢术后疼痛、幻痛、痛性神经瘤、创伤性神经瘤、Morton神经瘤、神经挤压损伤、脊管狭窄、腕管综合症、神经根痛、坐骨神经痛、神经撕脱伤、臂丛撕脱伤、复杂性区域疼痛综合症、药物疗法引起的神经痛、癌症化学疗法引起的神经痛、抗逆转录病毒疗法引起的神经痛、脊髓损伤后疼痛、原发性小纤维神经病或原发性感觉神经病。
在所述的应用的某一方案中,所述的肌肉骨骼痛可为骨关节炎疼痛、背痛、冷痛、烧伤疼痛或牙痛。
在所述的应用的某一方案中,所述的炎性疼痛可为类风湿性关节炎疼痛或外阴痛。
在所述的应用的某一方案中,所述的原发性疼痛可为纤维肌痛。
本发明中所用的下列术语和符号具有如下所述的含义,其所处的上下文中另有说明除外。
术语“卤素”指氟(F)、氯(Cl)、溴(Br)或碘(I)。
术语“烷基”指具有1-3个碳原子,例如具有1、2或3个碳原子的直链或支链饱和一价烃基。例如,“C1~C3的烷基”表示具有1-3个碳原子的烷基。烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基如正丙基(n-Pr)或异丙基(i-Pr)、丁基如正丁基(n-Bu)、异丁基(i-Bu)等。无论术语“烷基”是单独使用、还是作为其它基团如卤代烷基、烷氧基等的一部分,均适用该定义。
术语“烷氧基”表示通过一个氧原子连接到分子的其余部分的烷基基团。C1~C3的烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
术语“药效上可接受的”指无毒的、生物学上可耐受的、适合给个体施用的。
术语“药效上可接受的盐”指式(Ⅰ)化合物的无毒的、生物学上可耐受的适合给个体施用的酸加成盐或碱加成盐,包括但不限于:式(Ⅰ)化合物与无机酸形成的酸加成盐,例如盐酸盐、氢溴酸盐、碳酸盐、碳酸氢盐、磷酸盐、硫酸盐、亚硫酸盐、硝酸盐等;以及式(Ⅰ)化合物与有机酸形成的酸加成盐,例如甲酸盐、乙酸盐、苹果酸盐、马来酸盐、富马酸盐、酒石酸盐、琥珀酸盐、柠檬酸盐、乳酸盐、甲磺酸盐、对甲苯磺酸盐、2-羟基乙磺酸盐、苯甲酸盐、水杨酸盐、硬脂酸盐和与式HOOC-(CH2)n-COOH(其中n是0-4)的链烷二羧酸形成的盐等。“药效上可接受的盐”也包括带有酸性基团的式(Ⅰ)化合物与药效上可接受的阳离子如钠、钾、钙、铝、锂和铵形成的碱加成盐。
此外,如果本发明所述的化合物是以酸加成盐的形式得到的,其游离碱形式可以通过碱化该酸加成盐的溶液获得。相反地,如果产物是游离碱形式,则其酸加成盐、特别是药效上可接受的酸加成盐可以按照由碱性化合物制备酸加成盐的常规操作(通过将游离碱溶于合适的溶剂并且用酸处理该溶液)来得到。本领域技术人员无需过多实验即可确定各种可用来制备无毒的药效上可接受的酸加成盐的合成方法。
术语“治疗”指给患有疾病或者具有所述疾病的症状的个体施用一种或多种药物物质、特别是本发明所述的式(I)化合物和/或其药效上可接受的盐,用以治愈、缓解、减轻、改变、医治、改善、改进或影响所述疾病或者所述疾病的症状。
当涉及化学反应时,术语“处理”、“接触”和“反应”指在适当的条件下加入或混合两种或更多种试剂,以产生所示的和/或所需的产物。应当理解的是,产生所示的和/或所需的产物的反应可能不一定直接来自最初加入的两种试剂的组合,即,在混合物中可能存在生成的一个或多个中间体,这些中间体最终导致了所示的和/或所需的产物的形成。
本发明所用的未具体定义的技术和科学术语具有本发明所属领域的技术人员通常理解的含义。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:本发明化合物具有较佳的NaV1.8阻滞活性同时,具有更好的药代动力学性质,例如半衰期更长。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中如未注明具体条件的实验方法,通常按照这类反应的常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。除非另外说明,否则液体的比为体积比。
以下实施例中所用的实验材料和试剂如无特别说明均可从市售渠道获得。
在下列实施例中,1H-NMR谱是用Bluker AVANCE III HD 400MHz核磁共振仪记录的;13C-NMR谱是用Bluker AVANCE III HD 400MHz核磁共振仪记录的,化学位移以δ(ppm)表示;质谱是用Agilent 1260(ESI)型或Shimadzu LC-MS-2020(ESI型)或Agilent 6215(ESI)型质谱仪记录的;反相制备型HPLC分离是用Agilent 1290 紫外引导的全自动纯化系统(Xtimate ®Prep C18 OBDTM 21.2*250mm 10μm 柱)或 用Gilson GX281 紫外引导的全自动纯化系统(xBridge ®Prep C18 OBDTM 19*250mm 10μm 柱)或Waters QDa引导的全自动纯化系统(SunFire ®Prep C18 OBD 29*250mm 10μm柱)进行的。
其中,化学式或英文字母缩写代表的试剂中文名称如下:
Aq代表水溶液;Ar代表氩气;br代表宽峰;BINAP代表1,1’-联萘-2,2’-双苯磷;B2Pin2代表联硼酸频那醇酯;℃代表摄氏度;CO代表一氧化碳;CD3OD代表氘代甲醇;CDCl3代表氘代氯仿;conc.代表浓;(COCl)2代表草酰氯;Cs2CO3代表碳酸铯;CuAc代表醋酸亚铜;CuCN代表氰化亚铜;CuI代表碘化亚铜;d代表二重峰;DAST代表二乙胺基三氟化硫;DCE代表1,2-二氯乙烷;DCM代表二氯甲烷;Dioxane或1,4-dioxane代表二氧六环;DIPEA或DIEA代表N,N-二异丙基乙胺;DMF代表二甲基甲酰胺;DMSO代表二甲基亚砜;EA或EtOAc代表乙酸乙酯;ESI代表电喷雾电离;g代表克;H2O代表水;HATU代表1-[双(二甲基氨基)亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶鎓3-氧化物六氟磷酸盐;HPLC代表高效液相色谱法;K2CO3代表碳酸钾;KH2PO4代表磷酸二氢钾;KOH代表氢氧化钾;LC-MS代表液相色谱法-质谱法联用;LDA代表二异丙基氨基锂;LiOH代表氢氧化锂;m代表多重峰;m/z代表质荷比;MeCN、ACN或CH3CN代表乙腈;m-CPBA代表间氯过氧苯甲酸;MeOH代表甲醇;min代表分钟;mg代表毫克;mL代表毫升;mmol代表毫摩尔;N2代表氮气;Na2CO3代表碳酸钠;NaCl代表氯化钠;NaClO2代表次氯酸钠;NaHCO3代表碳酸氢钠;NaOH代表氢氧化钠;Na2SO4代表硫酸钠;NaH2PO4代表磷酸二氢钠;NBS代表N-溴代丁二酰亚胺;n-BuLi代表丁基锂;NH4Cl代表氯化铵;NH4OH代表氢氧化铵或氨水;NMO代表N-甲基-N-氧化吗啉;NMP代表N-甲基-2-吡咯烷酮;Pd(AcO)2代表醋酸钯;Pd(dppf)Cl2或PdCl2(dppf)代表1,1’-双(二苯基膦基)二茂铁二氯化钯;PE代表石油醚;p-TsOH代表对甲苯磺酸;Py-HBr代表吡啶氢溴酸盐;CaCl2代表氯化钙;KCl代表氯化钾;HEPES代表4-羟乙基哌嗪乙磺酸;MgCl2代表氯化镁;Glucose代表葡萄糖;CsCl代表氯化铯;EGTA代表乙二醇双(2-氨基乙基醚)四乙酸;CsF代表氟化铯;CsOH代表氢氧化铯;r.t.或RT代表室温;s代表单峰;SOCl2代表二氯亚砜;t代表三重峰;TEA代表三乙胺;TFA代表三氟乙酸;TLC代表薄层色谱法;THF代表四氢呋喃;Toluene或tol.代表甲苯;Xantphos-Pd-G2代表氯[(4,5-双(二苯基膦)-9,9-二甲基氧杂蒽)-2-(2-氨基联苯)]钯(II)。
实施例A1
Figure 554674DEST_PATH_IMAGE032
Figure 412909DEST_PATH_IMAGE033
Figure 87473DEST_PATH_IMAGE034
Figure 31158DEST_PATH_IMAGE035
步骤1,中间体1-2的合成
将化合物1-1(50 g,234.44 mol)加到反应瓶中,加入DCM(300 mL),降温到0℃,在此温度下缓慢滴加DAST(75.6 g,468.88 mol),滴加毕,自然升温到室温搅拌48小时,取样TLC检测原料反应完全,将反应液缓慢加入低温饱和碳酸氢钠溶液中淬灭,用EtOAc(500mL* 3)萃取,有机相饱和食盐水洗一次,再用Na2SO4干燥,拌硅胶旋干柱层析(EA/PE:0%-10%)得中间体1-2共40g,收率:72.5%。1H NMR(400 MHz,CDCl3)δ 3.51-3.35(m,4H),2.16-2.01(m,4H),1.86-1.81(m,2H),1.47(s,9H)。
步骤2,中间体1-3的合成
将中间体1-2(20 g,85 mmol)加到反应瓶中,加入EA(30 mL),再缓慢滴加4N的氯化氢乙酸乙酯溶液100 mL,滴加毕,室温下反应4h有大量固体析出,取样TLC检测原料反应完全,过滤得中间体1-3共13 g,收率:89%。1H NMR(400 MHz,DMSO-d 6 )δ 9.43(s,2H),3.15(m,4H),2.51-2.40(m,2H),2.28-2.17(m,2H),1.86-1.80(m,2H)。
步骤3,中间体1-6的合成
室温下,向2000毫升三口瓶中加入化合物1-5(20 g,161.03 mmol),无水四氢呋喃1000 mL,冰水浴降温至0℃,分批加入NaH(6.44 g,161.03 mmol,60%分散于矿物油),加毕,搅拌30分钟。于该温度下滴加化合物1-4(28.3 g,161.03 mmol)的50 mL无水四氢呋喃溶液,滴加完毕,反应2小时,加入500 mL水,加入乙酸乙酯1000 mL,饱和食盐水洗,干燥,浓缩后经正相柱层析(EA/PE=0-15%)得中间体1-6共40g,收率89%。LC-MS:m/z 279.9[M+1]+
步骤4,中间体1-8的合成
室温下,向500 mL单口瓶中加入中间体1-6(45 g,160.61 mmol),二氯甲烷/醋酸/水(630 mL/90 mL/180 mL),氮气保护下,滴加化合物1-7(95 g,481.83 mmol)的二氯甲烷溶液,滴加完毕,室温反应16小时。TLC检测反应完成,加入二氯甲烷2000毫升,水洗,饱和食盐水洗,干燥,过滤,减压浓缩,得到中间体1-8,直接用于下一步。
步骤5,中间体1-10的合成
室温下,向250 mL单口瓶中加入中间体1-8(10 g,38.99 mmol),二氯甲烷100 mL,DIEA(15.12 g,116.96 mmol),降温到0℃,分批加入化合物1-9(6.2 g,19.49 mmol),加毕,室温搅拌16小时,加入二氯甲烷500 mL,水洗,干燥,浓缩后经正相柱层析(EA/PE=0-100%)得到5 g中间体1-10,收率24%。LC-MS:m/z 561.0(M+23)+
步骤6,中间体1-12的合成
称化合物1-11(1 g,3.48 mmol)于单口瓶中,DCM(10 mL)做溶剂,冰水浴下滴加草酰氯(1 mL ),再滴加1滴DMF,滴毕室温反应2h,LC-MS 显示反应完毕后将反应液旋干拔干后再溶于DCM(10 mL)中,冰水浴下滴加氨水(2 mL),滴毕室温反应过夜,次日LC-MS 显示反应完毕后将反应液倒入水中,DCM萃取×2,合并有机相,无水Na2SO4干燥,过滤浓缩后得到中间体1-12,1 g,收率:100%。LC-MS:m/z 285.8(M+H)+
步骤7,中间体1-13的合成
称中间体1-12(1 g,3.48 mmol)于单口瓶中,DMF(10 mL)做溶剂,冰水浴下滴加三氯聚氰(0.96 g,5.23 mmol)的DMF溶液,滴毕室温反应2小时,LC-MS显示反应完毕后将反应液倒入冰水中,EA萃取×2,合并有机相,有机相用饱和NaCl水溶液洗涤,无水Na2SO4干燥,过滤浓缩后柱层析(EA/PE=0~30%)得到中间体1-13,0.72 g,收率:77%。1H NMR(400 MHz,DMSO-d 6 )δ 8.14 – 8.05(m,1H),7.97(dt,J = 8.6,0.9 Hz,1H)。
步骤8,中间体1-14的合成
称中间体1-13(200 mg,0.75 mmol)、化合物1-3(141 mg,0.82 mmol)、BINAP (93mg,0.15 mmol)、三(二亚苄基丙酮)二钯(69 mg,0.07 mmol)和碳酸铯(610 mg,1.87 mmol)于25 mL三口瓶中, 氮气置换3次后加入甲苯(10 mL)做溶剂,油浴85℃反应12小时,LC-MS显示反应完毕后将反应液倒入冰水中,EA萃取×2,合并有机相,有机相用饱和NaCl水溶液洗涤,无水Na2SO4干燥,过滤浓缩后柱层析(EA/PE=0~30%)得中间体1-14,90 mg,收率:37%。1H NMR(400 MHz,CDCl3)δ 7.60 – 7.45(m,1H),6.62(d,J = 9.2 Hz,1H),3.86 – 3.58(m,4H),2.52 – 2.27(m,2H),2.24 – 1.98(m,4H)。
步骤9,中间体1-15的合成
称中间体1-14(90 mg,0.28 mmol)于单口瓶中,DMSO(5 mL)做溶剂,搅拌下加入氢氧化钾(63 mg,1.12 mmol),再滴加双氧水(0.4 mL),滴毕室温反应2小时,LC-MS显示反应完毕后将反应液倒入冰水中,EA萃取×2,合并有机相,有机相用饱和NaCl水溶液洗涤,无水Na2SO4干燥,过滤浓缩后柱层析(EA/PE=0~50%)得到中间体1-15,85mg,收率:89%。LC-MS:m/z341.0(M+H)+
步骤10,中间体1-16的合成
称中间体1-15(85 mg,0.25 mmol)、中间体1-10(188 mg,0.35 mmol)、Xantphos-Pd-G2(22 mg,0.03 mmol)和碳酸铯(245 mg,0.75 mmol)于25 mL三口瓶中,氮气置换3次后加入1,4-二氧六环(10 mL)做溶剂,油浴100℃反应12小时,LC-MS显示反应完毕后将反应液倒入冰水中,EA萃取×2,合并有机相,有机相用饱和NaCl水溶液洗涤,无水Na2SO4干燥,过滤浓缩后柱层析(EA/PE=0~50%)得到中间体1-16,100 mg,收率:50%。LC-MS:m/z 797.0(M+H)+
步骤11,化合物A1的合成
称中间体1-16(100 mg,0.13 mmol)于单口瓶中,二氯甲烷(5 mL)做溶剂,冰水浴下滴加三氟乙酸(1.5 mL),滴毕室温反应12h,LC-MS显示反应完毕后将反应液倒入冰水中,DCM萃取×2,合并有机相,有机相用饱和NaHCO3水溶液洗涤,无水Na2SO4干燥,过滤浓缩后得粗品,粗品送制备(MeCN/0.05% NH4HCO3水溶液)=5~95%),得到化合物A1,38 mg,收率:61%。LC-MS:m/z 497.0(M+H)+1H NMR (400 MHz,DMSO-d6)δ 11.51(s,1H),8.64 (d,J = 5.4Hz,1H),8.28(d,J = 2.0 Hz,1H),7.80(dd,J = 5.4,2.1 Hz,1H),7.63(t,J = 9.0 Hz,1H),7.49(s,2H),6.92(d,J = 9.1 Hz,1H),3.55 – 3.42(m,4H),2.25 - 2.24(m,2H),2.09– 1.99(m,2H),1.89 – 1.77(m,2H)。
实施例A2
Figure 186720DEST_PATH_IMAGE036
步骤1,中间体2-1的合成
称中间体1-15(100 mg,0.29 mmol)、3-溴吡啶(65 mg,0.41 mmol)、Xantphos-Pd-G2(26 mg,0.03 mmol)和碳酸铯(288 mg,0.88 mmol)于25 mL三口瓶中,氮气置换3次后加入1,4-二氧六环(10 mL)做溶剂,油浴100℃反应12h,LC-MS显示反应完毕后将反应液倒入冰水中,EA萃取×2,合并有机相,有机相用饱和NaCl水溶液洗涤,无水Na2SO4干燥,过滤浓缩后柱层析(EA/PE=0~50%)得到中间体2-1,95mg,收率:77%。LC-MS:m/z 418.0(M+H)+
步骤2,化合物A2的合成
将中间体2-1(95 mg,0.23 mmol)加入到二氯甲烷(10 mL)中,0℃下加入m-CPBA(79 mg,0.46 mmol),加毕室温下反应12h,LC-MS显示反应完毕后将反应液倒入冰水中,加入饱和的NaHCO3调节pH至弱碱性,DCM萃取×2,合并有机相,无水Na2SO4干燥,过滤浓缩后得粗品,粗品送制备(MeCN/0.05%的NH4HCO3水溶液=5~95%),得到实施例A2,6 mg,收率:6%。LC-MS:m/z 434.0(M+H)+1H NMR(400 MHz,DMSO-d 6 )δ 11.19(s,1H),8.71(t,J = 1.8 Hz,1H),8.04(dt,J = 6.3,1.2 Hz,1H),7.62(t,J = 9.0 Hz,1H),7.50(dt,J = 8.5,1.3 Hz,1H),7.42(dd,J = 8.5,6.3 Hz,1H),6.91(d,J = 9.1 Hz,1H),3.56 – 3.40(m,4H),2.32 –2.16(m,2H),2.04 – 1.97(m,2H),1.90 – 1.77(m,2H)。
类似于实施例A1和A2的合成,合成了下列实施例A3-A20,见下表1。
表1:实施例A3-A20的结构式及其分析数据
Figure 758516DEST_PATH_IMAGE037
Figure 338402DEST_PATH_IMAGE038
Figure 503804DEST_PATH_IMAGE039
Figure 725707DEST_PATH_IMAGE040
Figure 154938DEST_PATH_IMAGE041
Figure 640146DEST_PATH_IMAGE042
实施例B1.本发明化合物对钠离子通道1.8(NaV1.8)的阻滞活性
1. 测试方法:膜片钳技术检测化合物对电压门控钠离子通道(NaV)1.1~1.8亚型电流的影响
2. 给药制剂的配制和分析
2.1 给药制剂储液配制方法
对照:称量合适体积的DMSO作为储液。
测试化合物:称量合适质量的化合物(实际量=理论浓度*体积×分子量/纯度),根据公式,计算出所需的DMSO的体积,然后换算出最终所需的DMSO的质量。之后将粉末用称量的DMSO溶解。根据最终的DMSO使用量计算出实际的储液浓度,一般地实际储液浓度与理论浓度略有差异。
2.2 给药制剂工作液配制方法及浓度
NaV通道电流测试之前,将对照和测试化合物储液稀释到10 mL细胞外液中作为工作液,并超声20 min。
3. 实验系统
3.1细胞培养
1)稳定表达Nav1.8通道的CHO细胞系具体信息如下:SCN10A:NM_006514。
2)细胞在含有10%胎牛血清以及10 µg/mL Blasticidin、200 µg/mL HygromycinB及100 µg/mL Zeocin的HAM’S/F-12培养基中培养,培养温度为37 ℃,二氧化碳浓度为5%。
3)细胞传代:除去旧培养基并用PBS洗一次,然后加入1 mL 0.25 %-Trypsin-EDTA溶液,37 ℃孵育1.5 min。当细胞从皿底脱离,加入5 mL 37 ℃预热的完全培养基。将细胞悬液用吸管轻轻吹打使聚集的细胞分离。将细胞悬液转移至无菌的离心管中,1000 rpm离心5 min收集细胞。扩增或维持培养,将细胞接种于6厘米细胞培养皿,每个细胞培养皿接种细胞量为2.5*105 cells(最终体积:5 mL)。
4)为维持细胞的电生理活性,细胞密度必须不能超过80%。
5)膜片钳检测,实验之前细胞用0.25%-Trypsin-EDTA分离,以每孔8*103细胞的密度接种到预先放好盖玻片的24孔板中(最终体积:500 µL),加入四环素,第二天进行实验检测。
3.2. 电生理溶液
细胞外液:140 mM NaCl,3.5 mM KCl,2 mM CaCl2,10 mM HEPES,1.25 mMNaH2PO4,1 mM MgCl2,10 mM Glucose,pH=7.4 (NaOH)。
细胞内液:50 mM CsCl,10 mM NaCl,10 mM HEPES,20 mM EGTA,60 mM CsF,pH=7.2 (CsOH)。
4. 试验方法
4.1. 仪器如下表2所示
表2:采用的仪器的供应商及其型号
Figure 558424DEST_PATH_IMAGE043
4.2. 膜片钳检测
全细胞膜片钳记录Nav通道电流的电压刺激方案如下:首先将细胞的膜电位钳制在-130 mV,然后以10 mv的阶跃间隔,将电压阶跃至-40 mV或者-20 mV,持续8s。钳制电压维持在-120 mV,每隔20秒重复采集数据。测量其内向电流的峰值振幅,确定其半失活电压。
细胞钳制电位设定在-120mV。钠电流的静息和半失活抑制使用双脉冲模式来测量。双脉冲模式由两个持续50ms的0mV去极化测试脉(TP1以及TP2)完成。两个去极化脉冲之间的条件电压,设定在半失活电压附近(持续8s)。在给与第二个去极化脉冲之前,将细胞膜电位钳制到-120 mv,持续20 ms以使得未结合化合物,且处于失活状态的通道得到恢复。以20s的间隔重复采集数据,并测量两个测试脉冲处的电流峰值。
实验数据由EPC-10 放大器(HEKA)进行采集并储存于PatchMaster(HEKA)软件中(软件版本:v2x73.2)。
用微电极拉制仪(P97,Sutter Instruments)将毛细玻璃管(BF150-86-10,SutterInstruments)拉制成记录电极。在倒置显微镜(IX71)下操纵微电极操纵仪(MP285)将记录电极接触到细胞上,给予负压抽吸,形成GΩ封接。形成GΩ封接后进行快速电容补偿,然后继续给予负压,吸破细胞膜,形成全细胞记录模式。然后进行慢速电容的补偿并记录膜电容及串联电阻,不给予漏电补偿。
当全细胞记录的Nav通道电流稳定后开始给药,每个药物浓度作用至5分钟(或者电流至稳定)后检测下一个浓度,每一个测试化合物检测多个浓度。将铺有细胞的盖玻片置于倒置显微中的记录浴槽中,测试化合物以及不含化合物的外液利用重力灌流的方法从低浓度到高浓度依次流经记录小室从而作用于细胞,在记录中利用真空泵进行液体交换。每一个细胞在不含化合物的外液中检测到的电流作为自己的对照组。独立重复检测多个细胞。所有电生理实验在室温下进行。
4.3. 数据分析
首先将每一个药物浓度作用后的电流和空白对照电流标准化,然后计算每一个药物浓度对应的阻滞率。对每一个浓度计算平均数和标准误差,以上所有数值利用MicrosoftExcel 2013计算获得。此外通过IGOR软件运用以下的方程计算每种化合物的半抑制浓度:阻滞率=1/[1+(IC50/c)h]。
用以上方程对剂量依赖效应进行非线性拟合,其中c代表药物浓度,IC50为半抑制浓度,h代表希尔系数。曲线拟合以及IC50的计算利用IGOR软件完成(软件版本:6.0.1.0)。
在本实施例中测定了本发明的化合物对NaVl.8的半数阻滞活性(IC50)和本发明的化合物在10 nM时对NaV1.8的阻滞率分别如下表3和4中所示,现有技术中化合物在一定浓度时对NaV1.8的阻滞率如下表5所示,其中:
表3. 本发明的化合物对NaV1.8的阻滞活性IC50值(nM)
Figure 584018DEST_PATH_IMAGE044
表4. 本发明的化合物在10 nM时对NaV1.8的阻滞率
Figure 691975DEST_PATH_IMAGE045
可见本公开的化合物对NaV1.8通道活性具有明显的阻滞效果。
表5. 现有技术中化合物在一定浓度时对NaV1.8的阻滞率
Figure 754609DEST_PATH_IMAGE046
实施例B2.本发明化合物与专利报道对照品化合物的药代动力学实验结果
本实验例对大鼠通过单次静脉注射或灌胃口服给药进行了体内药代动力学评价。
实验方法和条件:雄性Sprague Dawley大鼠,动物均禁食过夜,分别单次给予待测化合物1mg/Kg(静脉注射,溶剂5%DMSO/10%Solutol/85%Saline)和10 mg/Kg (灌胃给药),给药后5,15,30 min,1,2,4,6,8和24 hr经颌下静脉采血,每个样品采集约0.20 mL,肝素钠抗凝,采集后放置冰上,并于1小时之内离心分离血浆待测。血浆中血药浓度的检测采用液相串联质谱法(LC/MS/MS),测得浓度用以计算药代动力学参数。结果如下表6和表7所示。
表6:静脉给药(1 mg/kg)的药代动力学
Figure DEST_PATH_IMAGE047
表7:灌胃注射给药(10 mg/kg)的药代动力学
Figure DEST_PATH_IMAGE048
可见本公开化合物在大鼠内药代吸收良好,具有药代动力学优势。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (13)

1.式(Ⅰ)所示化合物或其药效上可接受的盐,其特征在于,
Figure DEST_PATH_IMAGE001
R1选自H、F、Cl、OH或NH2
R2选自H、F、Cl、Br、I、OH、NH2、C1-C3的烷基或C1-C3的烷氧基,所述C1-C3的烷基或C1-C3的烷氧基任选被1、2或3个卤素取代;
R3选自H、F、Cl、Br、I、OH、NH2、C1-C3的烷基或C1-C3的烷氧基,所述C1-C3的烷基或C1-C3的烷氧基任选被1、2或3个卤素取代;
R4、R7分别独立地选自H、F、Cl、OH、NH2或C1-C3的烷基,所述C1-C3的烷基任选被1、2或3个卤素取代;
R5、R6分别独立地选自H、F、Cl或C1-C3的烷基,所述C1-C3的烷基任选被1、2或3个卤素取代;
n选自1或2;
T1、T2分别独立地选自C(R8)或N;
R8选自H、F、OH、CN、
Figure DEST_PATH_IMAGE002
2.根据权利要求1所示化合物或其药效上可接受的盐,其特征在于,n选自2。
3.根据权利要求1或2所示化合物或其药效上可接受的盐,其特征在于,R2选自H、F、Cl、Br、I、OH、NH2、甲基、三氟甲基、甲氧基或三氟甲氧基。
4.根据权利要求1或2所示化合物或其药效上可接受的盐,其特征在于,R3选自H、F、Cl、Br、I、OH、NH2、甲基、三氟甲基、甲氧基或三氟甲氧基。
5.根据权利要求1或2所示化合物或其药效上可接受的盐,其特征在于,R4、R7分别独立地选自H、F、Cl、OH、NH2、甲基或三氟甲基。
6.根据权利要求1或2所示化合物或其药效上可接受的盐,其特征在于,R5、R6分别独立地选自H、F、Cl或甲基。
7.根据权利要求1或2所述化合物或其药效上可接受的盐,其特征在于,结构单元
Figure DEST_PATH_IMAGE003
选自
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE007
8.根据权利要求1或2所述化合物或其药效上可接受的盐,其特征在于,结构单元
Figure DEST_PATH_IMAGE008
选自
Figure DEST_PATH_IMAGE009
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE011
9.根据权利要求1或2所述化合物或其药效上可接受的盐,其特征在于,结构单元
Figure DEST_PATH_IMAGE012
选自
Figure DEST_PATH_IMAGE013
Figure DEST_PATH_IMAGE014
10.根据权利要求1或2所述化合物或其药效上可接受的盐,其特征在于,所述的化合物为下述任一化合物:
Figure DEST_PATH_IMAGE015
Figure DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE017
Figure DEST_PATH_IMAGE018
Figure DEST_PATH_IMAGE019
Figure DEST_PATH_IMAGE020
Figure DEST_PATH_IMAGE021
Figure DEST_PATH_IMAGE022
Figure 171963DEST_PATH_IMAGE023
11.一种物质X在制备电压门控型钠通道阻滞剂或药物中的应用,其特征在于,所述的物质X为如权利要求1~10中任一项所述的式(Ⅰ)所示化合物或其药效上可接受的盐;所述的药物为用于抑制电压门控型钠通道的药物。
12.如权利要求11所述的应用,其特征在于,所述的电压门控型钠通道为NaV1.8;
和/或,所述的电压门控型钠通道阻滞剂为在体外使用的电压门控型钠通道阻滞剂。
13.一种物质X在制备药物中的应用,其特征在于,所述的物质X为如权利要求1~10中任一项所述的式(Ⅰ)所示化合物或其药效上可接受的盐;
所述的药物为用于治疗下组疾病中的一种或多种的药物:慢性疼痛、肠痛、神经性疼痛、肌肉骨骼痛、急性疼痛、炎性疼痛、癌症疼痛、原发性疼痛、手术后疼痛、内脏痛、多发性硬化症、夏-马-图三氏综合症、失禁和心律失常。
CN202110107114.6A 2021-01-27 2021-01-27 一种作为NaV1.8阻滞剂的化合物及其制备方法和用途 Active CN112457294B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110107114.6A CN112457294B (zh) 2021-01-27 2021-01-27 一种作为NaV1.8阻滞剂的化合物及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110107114.6A CN112457294B (zh) 2021-01-27 2021-01-27 一种作为NaV1.8阻滞剂的化合物及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN112457294A true CN112457294A (zh) 2021-03-09
CN112457294B CN112457294B (zh) 2021-06-04

Family

ID=74802327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110107114.6A Active CN112457294B (zh) 2021-01-27 2021-01-27 一种作为NaV1.8阻滞剂的化合物及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN112457294B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022121805A1 (zh) * 2020-12-07 2022-06-16 成都康弘药业集团股份有限公司 作为Nav1.8抑制剂的并环化合物及其用途
WO2022256622A1 (en) 2021-06-04 2022-12-08 Vertex Pharmaceuticals Incorporated N-(hydroxyalkyl (hetero)aryl) tetrahydrofuran carboxamides as modulators of sodium channels
WO2022256842A1 (en) 2021-06-04 2022-12-08 Vertex Pharmaceuticals Incorporated Hydroxy and (halo)alkoxy substituted tetrahydrofurans as modulators of sodium channels
WO2022256679A1 (en) 2021-06-04 2022-12-08 Vertex Pharmaceuticals Incorporated N-(hydroxyalkyl (hetero)aryl) tetrahydrofuran carboxamide analogs as modulators of sodium channels
WO2022256708A1 (en) 2021-06-04 2022-12-08 Vertex Pharmaceuticals Incorporated Solid dosage forms and dosing regimens comprising (2r,3s,4s,5r)-4-[[3-(3,4-difluoro-2-methoxy-phenyl)-4,5-dimethyl-5-(trifluoromethyl) tetrahydrofuran-2-carbonyl]amino]pyridine-2-carboxamide
WO2022256676A1 (en) 2021-06-04 2022-12-08 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofuran analogs as modulators of sodium channels
WO2022256702A1 (en) 2021-06-04 2022-12-08 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofuran-2-carboxamides as modulators of sodium channels
WO2023205778A1 (en) 2022-04-22 2023-10-26 Vertex Pharmaceuticals Incorporated Heteroaryl compounds for the treatment of pain
WO2023205463A1 (en) 2022-04-22 2023-10-26 Vertex Pharmaceuticals Incorporated Heteroaryl compounds for the treatment of pain
WO2023205465A1 (en) 2022-04-22 2023-10-26 Vertex Pharmaceuticals Incorporated Heteroaryl compounds for the treatment of pain
WO2023205468A1 (en) 2022-04-22 2023-10-26 Vertex Pharmaceuticals Incorporated Heteroaryl compounds for the treatment of pain
WO2023207949A1 (zh) * 2022-04-25 2023-11-02 中国科学院上海药物研究所 并环类化合物及其应用
WO2024032774A1 (zh) * 2022-08-12 2024-02-15 广州费米子科技有限责任公司 用作电压-门控钠通道抑制剂的化合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466665A (zh) * 2006-04-11 2009-06-24 沃泰克斯药物股份有限公司 适用作电压-门控钠通道抑制剂的组合物
WO2020092187A1 (en) * 2018-11-02 2020-05-07 Merck Sharp & Dohme Corp. 2-amino-n-phenyl-nicotinamides as nav1.8 inhibitors
WO2020092667A1 (en) * 2018-11-02 2020-05-07 Merck Sharp & Dohme Corp. 2-amino-n-heteroaryl-nicotinamides as nav1.8 inhibitors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466665A (zh) * 2006-04-11 2009-06-24 沃泰克斯药物股份有限公司 适用作电压-门控钠通道抑制剂的组合物
WO2020092187A1 (en) * 2018-11-02 2020-05-07 Merck Sharp & Dohme Corp. 2-amino-n-phenyl-nicotinamides as nav1.8 inhibitors
WO2020092667A1 (en) * 2018-11-02 2020-05-07 Merck Sharp & Dohme Corp. 2-amino-n-heteroaryl-nicotinamides as nav1.8 inhibitors

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022121805A1 (zh) * 2020-12-07 2022-06-16 成都康弘药业集团股份有限公司 作为Nav1.8抑制剂的并环化合物及其用途
WO2022256702A1 (en) 2021-06-04 2022-12-08 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofuran-2-carboxamides as modulators of sodium channels
WO2022256842A1 (en) 2021-06-04 2022-12-08 Vertex Pharmaceuticals Incorporated Hydroxy and (halo)alkoxy substituted tetrahydrofurans as modulators of sodium channels
WO2022256679A1 (en) 2021-06-04 2022-12-08 Vertex Pharmaceuticals Incorporated N-(hydroxyalkyl (hetero)aryl) tetrahydrofuran carboxamide analogs as modulators of sodium channels
WO2022256708A1 (en) 2021-06-04 2022-12-08 Vertex Pharmaceuticals Incorporated Solid dosage forms and dosing regimens comprising (2r,3s,4s,5r)-4-[[3-(3,4-difluoro-2-methoxy-phenyl)-4,5-dimethyl-5-(trifluoromethyl) tetrahydrofuran-2-carbonyl]amino]pyridine-2-carboxamide
WO2022256676A1 (en) 2021-06-04 2022-12-08 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofuran analogs as modulators of sodium channels
WO2022256622A1 (en) 2021-06-04 2022-12-08 Vertex Pharmaceuticals Incorporated N-(hydroxyalkyl (hetero)aryl) tetrahydrofuran carboxamides as modulators of sodium channels
US11827627B2 (en) 2021-06-04 2023-11-28 Vertex Pharmaceuticals Incorporated N-(hydroxyalkyl (hetero)aryl) tetrahydrofuran carboxamides as modulators of sodium channels
WO2023205778A1 (en) 2022-04-22 2023-10-26 Vertex Pharmaceuticals Incorporated Heteroaryl compounds for the treatment of pain
WO2023205463A1 (en) 2022-04-22 2023-10-26 Vertex Pharmaceuticals Incorporated Heteroaryl compounds for the treatment of pain
WO2023205465A1 (en) 2022-04-22 2023-10-26 Vertex Pharmaceuticals Incorporated Heteroaryl compounds for the treatment of pain
WO2023205468A1 (en) 2022-04-22 2023-10-26 Vertex Pharmaceuticals Incorporated Heteroaryl compounds for the treatment of pain
WO2023207949A1 (zh) * 2022-04-25 2023-11-02 中国科学院上海药物研究所 并环类化合物及其应用
WO2024032774A1 (zh) * 2022-08-12 2024-02-15 广州费米子科技有限责任公司 用作电压-门控钠通道抑制剂的化合物

Also Published As

Publication number Publication date
CN112457294B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
CN112457294B (zh) 一种作为NaV1.8阻滞剂的化合物及其制备方法和用途
CN112225695B (zh) 一种氮氧化合物及其制备方法和用途
CN111808019B (zh) 一种并环化合物及其应用
US11498900B2 (en) Salts of an LSD1 inhibitor
CN112479996B (zh) 吡啶氮氧化合物及其制备方法和用途
US11512064B2 (en) Salts of an LSD1 inhibitor and processes for preparing the same
AU2016215431A1 (en) 3-aryl-4-amido-bicyclic (4,5,0) hydroxamic acids as HDAC inhibitors
TW200538112A (en) Novel compounds
US20190023684A1 (en) Substituted 5-cyanoindole compounds and uses thereof
BR112015017963A2 (pt) composto de fenil amino pirimidina deuterado, método para preparar a composição farmacêutica, composição farmacêutica e uso do composto
US20230285381A1 (en) Novel dizocilpine derivatives as peripheral nmda receptor antagonists
TW202300147A (zh) 吡啶氮氧化合物晶型及其應用
JP2023522863A (ja) Egfr阻害剤としての三環式化合物
CN114591352A (zh) 一种三唑并哒嗪类化合物及其应用
WO2020020377A1 (zh) 用作fgfr4抑制剂的稠环衍生物
TWI644914B (zh) 1,2,4-三唑并[4,3-a]吡啶化合物及其作為MGLUR2受體之正向異位調節劑的用途
TW201022279A (en) Chemical compounds
KR20200035077A (ko) 통증 및 통증 관련 상태 치료를 위한 새로운 프로판아민 유도체
WO2017162157A1 (zh) 内磺酰胺化合物及其使用方法
CA3145678A1 (en) Sglt2/dpp4 inhibitor and application thereof
EP3468969B1 (en) Novel dizocilpine derivatives as peripheral nmda receptor antagonists
TW202408520A (zh) Kras g12d抑制劑及其在醫藥上的應用
CN116891467A (zh) 一种p2x3抑制剂化合物及其盐、多晶型和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant