CN112448807B - 基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法 - Google Patents
基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法 Download PDFInfo
- Publication number
- CN112448807B CN112448807B CN202011276157.9A CN202011276157A CN112448807B CN 112448807 B CN112448807 B CN 112448807B CN 202011276157 A CN202011276157 A CN 202011276157A CN 112448807 B CN112448807 B CN 112448807B
- Authority
- CN
- China
- Prior art keywords
- chaotic
- sequence
- conservative
- ofdm
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/001—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/80—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
- H04B10/85—Protection from unauthorised access, e.g. eavesdrop protection
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
本发明公开了基于保守数字混沌的三维Arnold变换的OFDM‑PON物理层加密方法,包括步骤:S1.在发射端利用保守数字混沌系统的初始值产生混沌序列,将产生的混沌序列加入扰动,并拓展为若干组混沌序列,将若干组混沌序列进行主成分分析算法PCA处理,选取第一主成分的混沌序列;S2.将选取的第一主成分的混沌序列控制三维Arnold变换的参数,对OFDM信号进行第一层加密;S3.通过Frank序列随机抽取产生混沌Frank矩阵,对OFDM信号进行第二层加密,将进行二次加密的信号经过电光调制器转换为光信号,并将光信号通过光纤信道传输至接收端;S4.在接收端经过光电探测器将光信号转换为电信号,并利用密钥对加密的电信号进行解密,输出原始数据。
Description
技术领域
本发明涉及光通信加密技术领域,尤其涉及基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法。
背景技术
随着信息化社会的快速发展,各类信息传输量的增大对传统的接入网提出了挑战。正交频分复用无源光网络(OFDM-PON)技术具有提高频谱利用率、抗光纤色散以及动态资源分配等优势,因此成为下一代光接入网系统的研究热点。由于无源光网络(PON)结构的广播特性,下行数据极易被非法用户窃取。此外,OFDM信号具有过高的峰值平均功率比(PAPR),使其在OFDM-PON系统传输时产生非线性失真,影响系统的传输性能。
混沌序列具有高度的初值敏感性和伪随机性等特征,使其与保密通信存在着天然的联系,为了有效地联合处理OFDM-PON系统中OFDM信号的PAPR过高以及PON系统的加密问题,国内外主要研究人员提出的许多安全加密和降低PAPR的方案,其中包括有混沌选择映射法(CSLM),混沌部分传输序列法(CPTS)以及混沌预留子载波法(CTR)等。然而,现有的这些方案都是基于耗散型的数字混沌序列。而耗散混沌系统由其自身动力学特性会形成混沌吸引子。因而,窃密者可以利用一段连续混沌序列,通过基于神经网络的机器学习算法进行混沌系统的相空间重构,这在一定程度上降低基于数字耗散混沌序列的加密系统的保密性。
与此同时,在数字混沌序列的产生过程中,由于软件计算精度的问题,混沌系统中的复杂度与理想状态下的性能差异巨大等问题使得混沌系统产生“数字退化”现象。而“数字退化”会导致混沌系统出现短周期、非遍历性、以及混沌序列之间的强相关性等缺点。针对“数字退化”,国内外研究人员提出相应解决方案,例如扰动混沌状态、扰动混沌控制参数、级联多个混沌映射和随机切换多个混沌映射等方案。而现有的方案相对较为复杂,不能被直接用于成本较为敏感的OFDM-PON的物理层加密系统。
发明内容
本发明的目的是针对现有技术的缺陷,提供了基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法。
为了实现以上目的,本发明采用以下技术方案:
基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法,包括步骤:
S1.在发射端利用保守数字混沌系统的初始值产生混沌序列,将产生的混沌序列加入扰动,并拓展为若干组混沌序列,将若干组混沌序列进行主成分分析算法PCA处理,选取第一主成分的混沌序列;
S2.将选取的第一主成分的混沌序列控制三维Arnold变换的参数,对OFDM信号进行第一层加密;
S3.通过Frank序列随机抽取产生混沌Frank矩阵,对OFDM信号进行第二层加密,将进行二次加密的信号经过电光调制器转换为光信号,并将光信号通过光纤信道传输至接收端;
S4.在接收端经过光电探测器将光信号转换为电信号,并利用密钥对加密的电信号进行解密,输出原始数据。
进一步的,其特征在于,所述步骤S1中保守数字混沌系统的序列表达式为:
其中,dx,dy,dz分别表示对x,y,z进行微分;c表示控制参数;
利用保守数字混沌系统的序列表达式生成三组混沌序列值,分别为:{xn}、{yn}、{zn}。
进一步的,所述步骤S1中将若干组混沌序列进行主成分分析算法PCA处理,选取第一主成分的混沌序列,具体为:
选取一维的混沌序列的不同时间延迟来构建d维的混沌相空间,生成的序列空间保持保守混沌特性,混沌序列扩展表达式为:
y(i)=(x(i),…,x(i+(d-1)τ))
其中,x(i)表示一维的混沌序列;i表示混沌序列的序号;τ表示混沌序列的延迟;d表示混沌序列的扩展的维数。
进一步的,其特征在于,所述步骤S2中三维Arnold变换,表示为:
其中,(xn,yn,zn)表示数据坐标的位置,(xn+1,yn+1,zn+1)表示经过三维Arnold变换后的坐标索引;N表示OFDM信号的子载波数量;a,b,c,d分别表示Arnold变换的控制变量;Arnold变换作为一种保面积变换,保证Arnold变换矩阵的模等于1,d=ab(a+1)+ac-a2-abc-1。
进一步的,其特征在于,所述步骤S2中对OFDM信号进行第一层加密是通过三维Arnold变换将OFDM信号中各个位置的点进行重新排列而进行加密的。
进一步的,其特征在于,所述步骤S3中Frank序列,表示为:
f(nM+k+1)=ej2πk/M
其中,f(nM+k+1)表示长度为N的Frank序列;N=M2,n,k={1,2,…,M-1};M表示输入序列的长度;n,k分别表示控制变量;
得到Frank序列f={f1,f2…fN}。
与现有技术相比,本发明具有如下的有益效果:
1、本发明采用保守混沌系统,现有的OFDM-PON加密方案都是基于耗散型的数字混沌序列。而耗散混沌系统由其自身动力学特性会形成混沌吸引子。窃密者容易进行混沌系统的相空间重构,这在一定程度上降低基于数字耗散混沌序列的加密系统的保密性。而保守混沌系统不存在耗散混沌的吸引子,涉及的相空间范围更大,并且随机性更强,目前针对耗散混沌系统的预测手段均无效,因此保守混沌系统具有更好的安全性。
2、本发明利用PCA技术解决了数字混沌系统退化问题,解决了“数字退化”会导致混沌系统出现短周期、非遍历性、以及混沌序列之间的强相关性等缺点。
3、本发明利用三维Arnold变换和混沌Frank矩阵进行加密和PAPR降低,三维Arnold变换增加了加密系统的复杂性,提高了加密性能。Frank序列是一种恒包络自相关序列,具有良好的自相关性和弱互相关性,任意Frank序列组成的信号都具有较低的峰均比。可以降低OFDM-PON系统的PAPR。
附图说明
图1是实施例一提供的基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法流程图;
图2是实施例一提供的基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法的传输结构示意图;
图3是实施例一提供的保守数字混沌系统的三维相图;
图4是实施例一提供的三维Arnold变换示意图;
图5是实施例一提供的OFDM信号在有无加密下的PAPR曲线图;
图6是实施例一提供的OFDM信号有无加密的BER曲线图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
本发明的目的是针对现有技术的缺陷,提供了基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法。
实施例一
本实施例提供基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法,如图1所示,包括步骤:
S11.在发射端利用保守数字混沌系统的初始值产生混沌序列,将产生的混沌序列加入扰动,并拓展为若干组混沌序列,将若干组混沌序列进行主成分分析算法PCA处理,选取第一主成分的混沌序列;
S12.将选取的第一主成分的混沌序列控制三维Arnold变换的参数,对OFDM信号进行第一层加密;
S13.通过Frank序列随机抽取产生混沌Frank矩阵,对OFDM信号进行第二层加密,将进行二次加密的信号经过电光调制器转换为光信号,并将光信号通过光纤信道传输至接收端;
S14.在接收端经过光电探测器将光信号转换为电信号,并利用密钥对加密的电信号进行解密,输出原始数据。
如图2所示为基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法的传输结构示意图,包括光发射机端、光纤信道以及光接收机端。
在光发射机端中原始数据序列输入至串并转换中,将串行序列变换成并行序列,然后将转换为并行序列的序列以四位为一组转换为十进制数,之后进行16-QAM中进行映射调制,转换为QAM符号,之后将这些QAM符号转换成的三维矩阵,然后进行三维Arnold置乱,之后进行OFDM信号调制,之后通过光电调制器将数据转换为光信号进入光纤中进行传输。在接收机通过光电探测器将光信号转换为电信号后,进行OFDM信号解调,然后利用密钥进行解密。
在步骤S11中,在发射端利用保守数字混沌系统的初始值产生混沌序列,将产生的混沌序列加入扰动,并拓展为若干组混沌序列,将若干组混沌序列进行主成分分析算法PCA处理,选取第一主成分的混沌序列。
保守数字混沌系统中的序列具有高度的初值敏感性和伪随机性等特征,使其与保密通信存在着天然的联系,本实施例的一种新型的改进型数字保守混沌序列,该序列表达式为:
其中,dx,dy,dz分别表示对x,y,z进行微分;c表示控制参数;当c=10,c∈[-5000,5000]初始值为[1.01,0.98,1.1]。目前保守混沌系统的研究多为系统参数确定的系统,该混沌系统为无平衡点的大范围保守混沌系统。系统保守混沌系统的李雅普诺夫指数分别为L1=0.0045,L2=0,L3=-0.0040,有正的李雅普诺夫指数存在说明系统处于混沌状态,并且李雅普诺夫指数的和约为零,可以判断这个系统为保守混沌系统,保守混沌系统的相图如图3所示。经过步长h=0.002的四阶龙格-库塔迭代10000次,利用保守数字混沌系统的序列表达式生成三组混沌序列值,分别为:{xn}、{yn}、{zn}。
步骤S11中采用的主成分分析算法PCA是一种数据降维算法,旨在利用降维的思想,把多指标转化为少数几个综合指标。PCA可以实现对高维度数据降维,同时会保留高维度数据的主要特征,去除数据噪声和降低数据相关性。保守混沌序列经过PCA处理后不会改变混沌特性,但是会扰乱混沌序列中的周期性,将会大大降低混沌迭代进入周期循环的概率,进而,PCA技术可以去除混沌序列“数字退化”所产生的周期变短和较高相关性。
将若干组混沌序列进行主成分分析算法PCA处理,选取第一主成分的混沌序列,具体为:
选取一维的混沌序列的不同时间延迟来构建d维的混沌相空间,其生成的序列空间仍然保持保守混沌特性,混沌序列扩展表达式为:
y(i)=(x(i),…,x(i+(d-1)τ))
其中,x(i)表示一维的混沌序列;i表示混沌序列的序号;τ表示混沌序列的延迟;d表示混沌序列的扩展的维数。
在步骤S12中,将选取的第一主成分的混沌序列控制三维Arnold变换的参数,对OFDM信号进行第一层加密。
利用保守数字混沌系统的初始值产生混沌序列,将产生的混沌序列加入扰动,并拓展为若干组混沌序列,将若干组混沌序列进行主成分分析算法PCA处理,分别产生三组混沌:{xn}、{yn}、{zn},利用这三组混沌序列控制三维Arnold变换的控制变量{a,b,c},确保每次Arnold变换的控制变量都不同。
如图4所示为三维Arnold变换示意图,三维Arnold变换可将矩阵中各个位置的点进行重新排列,是一种保面积变换,即变换的模等于±1,并且变换矩阵可逆。根据这种特性,本实施例构造了一种新型3D Arnold变换,表示为:
其中,(xn,yn,zn)表示数据坐标的位置,(xn+1,yn+1,zn+1)表示经过三维Arnold变换后的坐标索引;N表示OFDM信号的子载波数量;a,b,c,d分别表示Arnold变换的控制变量。
三维Arnold作为一种保面积变换,要保证Arnold变换矩阵的模等于1。因此,很容易得到:d=ab(a+1)+ac-a2-abc-1。假定a=1,b=2,c=3,则该系统的李雅普诺夫指数分别为:L1=3.7430,L2=-0.1011,L3=-2.6419,三个指数中有一个指数大于零,意味着这个系统具有混沌特性。为了解决3维Arnold变换存在周期性而易被破解的问题,同时提高加密性能,本实施例提出通过数字混沌序列控制变换矩阵中控制参数{a,b,c}的方法进行加密。
在步骤S13中,通过Frank序列随机抽取产生混沌Frank矩阵,对OFDM信号进行第二层加密和PAPR降低,将进行二次加密的信号经过电光调制器转换为光信号,并将光信号通过光纤信道传输至接收端。
利用改进保守混沌序列控制抽取Frank序列值构造Frank矩阵实现OFDM信号的PAPR降低和系统的加密。利用随机抽取的序列构造一个M×M的Frank矩阵。使用生成的矩阵乘以OFDM信号可以降低OFDM信号的自相关函数,子副载波同相的概率就会大大降低,即可以降低PAPR。
Frank序列是一种恒包络自相关序列,具有良好的自相关性和弱互相关性,任意Frank序列组成的信号都具有较低的峰均比,长度为N的Frank序列可表示为:
f(nM+k+1)=ej2πk/M
其中,f(nM+k+1)表示长度为N的Frank序列;N=M2,n,k={1,2,…,M-1};M表示输入序列的长度;n,k分别表示控制变量。
通过上述公式得到Frank序列f={f1,f2…fN}。
OFDM信号的PAPR与输入序列的自相关函数有关,由于Frank序列具有良好的自相关性和互相关特性,以及该序列经过傅里叶变换后仍然保持原序列特性,可以实现OFDM信号的PAPR降低。
在步骤S14中,在接收端经过光电探测器将光信号转换为电信号,并利用密钥对加密的电信号进行解密,输出原始数据。
具体为:在接收端经过光电探测器将光信号转换为电信号,将接受到的电信号进行信道估计和接受同步后,确定加密信号的密钥,其中包括:保守混沌序列的初值、混沌序列扩展的维度和延迟以及Frank序列的控制变量。
在接收端将密钥集合与接受端加密信号同步后,利用密钥对加密信号进行解密,恢复原始数据。
为了验证基于保守数字混沌映射的三维Arnold变换的OFDM-PON物理层加密算法的性能,发送端的信息序列长度设为长度为1.31072x106的伪随机比特流序列,并进行16-QAM调制,转换为3.2768x105个QAM符号。将这些QAM符号转换成的三维矩阵,然后进行3DArnold置乱,之后进行OFDM信号调制,其中IFFT/FFT点数为512,子载波数为N=128。
图5给出了原始数据和加密Frank矩阵条件下的PAPR曲线,由该图可知,与原始数据PAPR曲线相比,加密的Frank矩阵与原始的Frank矩阵具有相同的PAPR降低效果,主要是因为混沌Frank矩阵具有良好的自相关性和弱互相关性,任意Frank序列组成的信号都具有较低的峰均比。因此,本方案同时提升了OFDM-PON系统的安全性能和传输性能。
图6为原始信号与加密信号经过20km标准单模光纤传输后的误码率对比图,在相同的误码率情况下,加密信号的接收光功率比原始信号的接收光功率有稍许降低,主要是因为OFDM信号PAPR降低,可以降低非线性失真对系统性能的影响,从而提高接收机的灵敏度。因此本方案可以提升OFDM-PON系统的安全性能和优化系统的传输性能。综上所述,采用本实施例的基于保守数字混沌映射的三维Arnold变换的OFDM-PON物理层加密算法可以极大提升OFDM-PON系统的安全性,同时解决耗散混沌系统易被重构和预测的问题,提高系统的鲁棒性,以及可以解决混沌序列的“数字退化”问题。此外,该加密系统操作简单,占用空间小,具备实时、高速加密信号的能力,可以完全兼容于光OFDM-PON系统。
与现有技术相比,本实施例具有如下的有益效果:
1、本实施例采用保守混沌系统,现有的OFDM-PON加密方案都是基于耗散型的数字混沌序列。而耗散混沌系统由其自身动力学特性会形成混沌吸引子。窃密者容易进行混沌系统的相空间重构,这在一定程度上降低基于数字耗散混沌序列的加密系统的保密性。而保守混沌系统不存在耗散混沌的吸引子,涉及的相空间范围更大,并且随机性更强,目前针对耗散混沌系统的预测手段均无效,因此保守混沌系统具有更好的安全性。
2、本实施例利用PCA技术解决了数字混沌系统退化问题,解决了“数字退化”会导致混沌系统出现短周期、非遍历性、以及混沌序列之间的强相关性等缺点。
3、本实施例利用三维Arnold变换和混沌Frank矩阵进行加密和PAPR降低,三维Arnold变换增加了加密系统的复杂性,提高了加密性能。Frank序列是一种恒包络自相关序列,具有良好的自相关性和弱互相关性,任意Frank序列组成的信号都具有较低的峰均比。可以降低OFDM-PON系统的PAPR。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。
Claims (6)
1.基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法,其特征在于,包括步骤:
S1.在发射端利用保守数字混沌系统的初始值产生混沌序列,将产生的混沌序列加入扰动,并拓展为若干组混沌序列,将若干组混沌序列进行主成分分析算法PCA处理,选取第一主成分的混沌序列;
S2.将选取的第一主成分的混沌序列控制三维Arnold变换的参数,对OFDM信号进行第一层加密;
S3.通过Frank序列随机抽取产生混沌Frank矩阵,对OFDM信号进行第二层加密,将进行二次加密的信号经过电光调制器转换为光信号,并将光信号通过光纤信道传输至接收端;
S4.在接收端经过光电探测器将光信号转换为电信号,并利用密钥对加密的电信号进行解密,输出原始数据。
3.根据权利要求2所述的基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法,其特征在于,所述步骤S1中将若干组混沌序列进行主成分分析算法PCA处理,选取第一主成分的混沌序列,具体为:
选取一维的混沌序列的不同时间延迟来构建d维的混沌相空间,生成的序列空间保持保守混沌特性,混沌序列扩展表达式为:
y(i)=(x(i),…,x(i+(d-1)τ))
其中,x(i)表示一维的混沌序列;i表示混沌序列的序号;τ表示混沌序列的延迟;d表示混沌序列的扩展的维数。
5.根据权利要求4所述的基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法,其特征在于,所述步骤S2中对OFDM信号进行第一层加密是通过三维Arnold变换将OFDM信号中各个位置的点进行重新排列而进行加密的。
6.根据权利要求1所述的基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法,其特征在于,所述步骤S3中Frank序列,表示为:
f(nM+k+1)=ej2πk/M
其中,f(nM+k+1)表示长度为N的Frank序列;N=M2,n,k={1,2,…,M-1};M表示输入序列的长度;n,k分别表示控制变量;
得到Frank序列f={f1,f2…fN}。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011276157.9A CN112448807B (zh) | 2020-11-16 | 2020-11-16 | 基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011276157.9A CN112448807B (zh) | 2020-11-16 | 2020-11-16 | 基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112448807A CN112448807A (zh) | 2021-03-05 |
CN112448807B true CN112448807B (zh) | 2022-06-10 |
Family
ID=74738710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011276157.9A Active CN112448807B (zh) | 2020-11-16 | 2020-11-16 | 基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112448807B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113271201B (zh) * | 2021-05-27 | 2023-06-09 | 国网江苏省电力有限公司南京供电分公司 | 一种动态的aes物理层数据加密方法 |
CN114189418B (zh) * | 2021-11-25 | 2023-04-14 | 南京信息工程大学 | 一种基于选择映射法降低papr的高安全光接入系统 |
CN114221750B (zh) * | 2021-12-22 | 2024-02-02 | 杭州电子科技大学 | 一种基于ofdm-pon多混沌置乱的安全通信系统 |
CN114302270B (zh) * | 2021-12-29 | 2024-02-09 | 杭州电子科技大学 | 基于多混沌系统与分层置乱的ofdm-pon物理层加密方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205792618U (zh) * | 2016-04-07 | 2016-12-07 | 杭州电子科技大学 | 基于一维混沌序列映射加密的光ofdm系统 |
CN109672517A (zh) * | 2018-12-20 | 2019-04-23 | 杭州电子科技大学 | 基于细胞神经网络的ofdm-pon系统的加密及解密方法 |
CN109714147A (zh) * | 2018-12-05 | 2019-05-03 | 重庆邮电大学 | 一种双翼吸引子的耗散超混沌系统的构建及其电路实现 |
CN110601821A (zh) * | 2019-08-07 | 2019-12-20 | 中国人民解放军战略支援部队信息工程大学 | Ofdm通信信号物理层加密方法及装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070050614A1 (en) * | 2005-08-24 | 2007-03-01 | Wen-Wei Lin | Robust hyper-chaotic encryption-decryption system and method for digital secure-communication |
-
2020
- 2020-11-16 CN CN202011276157.9A patent/CN112448807B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205792618U (zh) * | 2016-04-07 | 2016-12-07 | 杭州电子科技大学 | 基于一维混沌序列映射加密的光ofdm系统 |
CN109714147A (zh) * | 2018-12-05 | 2019-05-03 | 重庆邮电大学 | 一种双翼吸引子的耗散超混沌系统的构建及其电路实现 |
CN109672517A (zh) * | 2018-12-20 | 2019-04-23 | 杭州电子科技大学 | 基于细胞神经网络的ofdm-pon系统的加密及解密方法 |
CN110601821A (zh) * | 2019-08-07 | 2019-12-20 | 中国人民解放军战略支援部队信息工程大学 | Ofdm通信信号物理层加密方法及装置 |
Non-Patent Citations (3)
Title |
---|
《A Key Space Enhanced Chaotic Encryption Scheme for Physical Layer Security in OFDM-PON》;Meihua Bi ET AL.;《IEEE Photonics Journal 》;20170207;全文 * |
《Chaotic Encryption Algorithm for Resisting CPAs and Reducing PAPR in OFDM-PON》;Xiaosong Fu ET AL.;《2017 Asia Communications and Photonics Conference (ACP)》;20190225;全文 * |
《OFDM-PON系统中基于信道相位信息的动态加密方案》;李春华等;《光学学报》;20200525;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112448807A (zh) | 2021-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112448807B (zh) | 基于保守数字混沌的三维Arnold变换的OFDM-PON物理层加密方法 | |
Shen et al. | Secure transmission of optical DFT-S-OFDM data encrypted by digital chaos | |
Hu et al. | Chaos-based partial transmit sequence technique for physical layer security in OFDM-PON | |
CN109672517B (zh) | 基于细胞神经网络的ofdm-pon系统的加密及解密方法 | |
CN112600663B (zh) | 一种重构混沌序列多层加密方法 | |
CN105577359B (zh) | 一种基于混沌序列导频映射的oofdm加密系统 | |
CN111934848B (zh) | 一种智能优化四维混沌矢量加密正交传输方法 | |
Xiao et al. | A novel hybrid secure method based on DNA encoding encryption and spiral scrambling in chaotic OFDM-PON | |
CN112019321B (zh) | 一种基于高维混沌系统的五维光概率成型加密方法 | |
CN111525998B (zh) | 基于模式、时隙和频率复合矢量的高可靠光传输方法 | |
CN112671529B (zh) | 一种基于星座扰动的少模p比特高安全传输方法 | |
Zhou et al. | Physical layer dynamic key encryption in OFDM-PON system based on cellular neural network | |
CN114302270B (zh) | 基于多混沌系统与分层置乱的ofdm-pon物理层加密方法及系统 | |
CN116527158A (zh) | 一种基于稀疏矩阵扰动的信号加密传输方法、装置、介质及设备 | |
CN114157433B (zh) | 一种密钥与明文关联的混沌光通信系统加密方法和系统 | |
Zhang et al. | Hybrid time-frequency domain chaotic interleaving for physical-layer security enhancement in OFDM-PON systems | |
CN117749278A (zh) | 一种基于星座图变换和混沌增强的noma传输系统 | |
CN205725790U (zh) | 基于混沌序列映射的oofdm加密系统 | |
Yang et al. | Chaotic signal scrambling for physical layer security in OFDM-PON | |
Wang et al. | Multi-Gbit/s real-time modems for chaotic optical OFDM data encryption and decryption | |
CN116566579A (zh) | 基于回声状态网络的增强混沌加密系统动力学特性的方法 | |
CN114142987B (zh) | 一种基于新型Logistic混沌加密方式的OCDM系统 | |
CN114142988B (zh) | 一种基于啁啾调制的高安全光传输方法 | |
CN112054902B (zh) | 一种基于子载波挑选掩蔽的高安全非对称加密方法 | |
CN114915351A (zh) | 一种光纤电流互感器的信息可靠传输技术及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |