CN112446398A - 图像分类方法以及装置 - Google Patents

图像分类方法以及装置 Download PDF

Info

Publication number
CN112446398A
CN112446398A CN201910824602.1A CN201910824602A CN112446398A CN 112446398 A CN112446398 A CN 112446398A CN 201910824602 A CN201910824602 A CN 201910824602A CN 112446398 A CN112446398 A CN 112446398A
Authority
CN
China
Prior art keywords
image
sample image
target
loss function
feature map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910824602.1A
Other languages
English (en)
Inventor
刘一衡
刘健庄
田奇
岳俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201910824602.1A priority Critical patent/CN112446398A/zh
Priority to PCT/CN2020/112694 priority patent/WO2021043112A1/zh
Publication of CN112446398A publication Critical patent/CN112446398A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/103Static body considered as a whole, e.g. static pedestrian or occupant recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person

Abstract

本申请公开了人工智能领域中计算机视觉领域的一种图像分类方法以及装置,该图像分类方法包括:获取待处理图像,该待处理图像包括待识别的目标区域以及背景区域;根据目标神经网络对该待处理图像进行分类,得到该待处理图像的该目标区域的分类结果与该背景区域的分类结果;其中,该目标神经网络是基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数训练得到的,该协同损失函数用于分离样本图像的目标区域特征图与该样本图像的背景区域特征图。本申请的技术方案能够抑制背景区域噪声对目标区域特征图的影响,从而提高目标区域分类结果的准确性。

Description

图像分类方法以及装置
技术领域
本申请涉人工智能领域,更具体地,涉及计算机视觉领域中的图像分类方法以及装置。
背景技术
计算机视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分,它是一门关于如何运用照相机/摄像机和计算机来获取我们所需的,被拍摄对象的数据与信息的学问。形象地说,就是给计算机安装上眼睛(照相机/摄像机)和大脑(算法)用来代替人眼对目标进行识别、跟踪和测量等,从而使计算机能够感知环境。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。总的来说,计算机视觉就是用各种成像系统代替视觉器官获取输入信息,再由计算机来代替大脑对这些输入信息完成处理和解释。计算机视觉的最终研究目标就是使计算机能像人那样通过视觉观察和理解世界,具有自主适应环境的能力。
识别技术是计算机视觉中的经典问题之一。例如,行人重识别技术可以是通过利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。例如,给定一张行人图像,通过行人重识别技术可以实现检索跨设备下的该行人的图像并生成该行人的行为轨迹。因此,识别技术可以广泛应用于智能视频监控、智能安保等领域。
目前,识别技术主要是基于输入图像的全局特征图进行分类,全局特征图中包括待识别的目标区域特征图以及背景区域特征图,由于进行分类时待识别的目标区域特征图容易受到背景区域特征图噪声的影响,导致目标区域分类结果的准确性降低。因此,如何提高目标区域分类结果的准确性成为一个亟需解决的问题。
发明内容
本申请提供一种图像分类方法以及装置,能够实现待处理图像中目标区域特征与背景区域特征的分离,通过抑制背景区域噪声对目标区域特征图的影响,从而提高目标区域分类结果的准确性。
第一方面,提供了一种图像分类方法,包括:获取待处理图像,该待处理图像包括待识别的目标区域以及背景区域;根据目标神经网络对该待处理图像进行分类,得到该待处理图像的该目标区域的分类结果与该背景区域的分类结果;
其中,该目标神经网络是基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数训练得到的,该目标区域分类损失函数用于表示样本图像的目标区域特征图对应的预测分类结果与目标区域标注分类结果之间的损失值,该背景区域分类损失函数用于表示该样本图像的背景区域特征图对应的预测分类结果与背景区域标注分类结果之间的损失值,该协同损失函数用于分离该样本图像的目标区域特征图与该样本图像的背景区域特征图。
其中,上述待识别的目标区域即可以看作是包含目标对象所在的前景区域,目标对象可以是具有运动属性的对象,或者,上述目标对象还可以是其他对象。
例如,目标区域可以是指行人、动物以及车辆等任意一项所在的区域,即目标区域可以是人像、动物图像以及车辆图像等任意一项。
示例性地,当待处理图像中的目标区域为人像时,目标区域的分类结果可以是指行人的标识,其中,行人的标识可以是指行人的姓名、行人的编号或者行人的身份证号码;背景区域的分类结果可以是指获取到待处理图像的摄像头的标识,比如,摄像头的编号、摄像头所在的位置信息。
需要说明的是,上述为对行人的标识与摄像头的标识的举例说明,行人的标识用于区分不同的行为,对于同一摄像头可以近似看作其获取的背景区域图像不变,即可以通过摄像头的标识确定背景区域图像的分类结果,行人的标识与摄像头的标识的具体实现形式本申请不作任何限定。在本申请中,目标神经网络是通过目标区域分类损失函数、背景区域损失函数以及协同损失函数训练得到的,使得预先训练的目标神经网络能够准确地分离待处理图像中目标区域特征图与背景区域的特征图。因此,目标神经网络在对待处理图像进行分类时,通过分离待处理图像中目标区域特征图以及背景区域特征图,不仅可以得到目标区域的分类结果以及背景区域的分类结果,同时在获取目标区域的特征图时还能避免受到背景区域的影响,提高待处理图像中目标区域分类结果的准确性。
在一种可能的实现方式中,上述待处理图像可以是指电子设备通过摄像头拍摄到的图像,或者,上述待处理图像还可以是从电子设备内部获得的图像(例如,电子设备的相册中存储的图像,或者,电子设备从云端获取的图片)。比如,上述待处理图像可以是获取的监控数据中的图片。
在一种可能的实现方式中,通过上述协同损失函数可以使得样本图像的目标区域掩膜与背景区域掩膜互补。
例如,当掩膜的取值范围为[0,1]时,目标区域掩膜与背景区域掩膜的总和可以为1,即背景区域掩膜=1-目标区域掩膜。其中,目标区域掩膜用于表示目标区域特征图中每个像素点所在的位置属于目标区域的概率值;背景区域掩膜用于表示背景区域特征图中每个像素点所在的位置属于背景区域的概率值。
在另一种可能的实现方式中,通过上述协同损失函数可以使得样本图像中的目标区域特征图对应的目标区域图像与样本图像中的背景区域特征图对应的背景区域图像的重叠区域近乎为零,即通过协同损失函数可以使得目标神经网络提取样本图像中目标区域特征图与背景区域特征图的划界明显,从而避免背景区域的噪声对目标区域特征图的影响。
结合第一方面,在第一方面的某些实现方式中,该协同损失函数是通过第一协同损失函数和第二协同损失函数加权处理得到的,其中,该第一协同损失函数是基于该样本图像的目标区域特征图与该样本图像的背景区域掩膜相乘得到的;该第二协同损失函数是基于该样本图像的背景区域特征图与该样本图像的目标区域掩膜相乘得到的。
在一种可能的实现方式中,目标区域掩膜是通过提取的目标区域特征图训练得到的;背景区域掩膜是通过提取的背景区域特征图训练得到的。
上述目标区域掩膜等同于目标区域注意力图;上述背景区域掩膜等同于背景区域注意力图。
需要说明的是,在本申请中图像的目标区域特征图、背景区域特征图、目标区域掩膜以及背景区域掩膜中任意两个的尺度大小相同。
在本申请中,通过目标区域特征图与背景区域掩膜中对应的像素点相乘得到的第一损失函数可以用于表示提取的目标区域特征与背景区域的重叠部分,即目标区域特征图受背景区域噪声影响的范围大小;通过背景区域特征图与目标区域掩膜中对应的像素点相乘得到的第二损失函数可以用于表示提取的背景区域特征图与目标区域的重叠部分,即背景区域特征图受目前区域噪声影响的范围大小,通过第一协同损失函数与第二损失函数加权处理得到协同损失函数,使得训练目标神经网络时使得目标区域特征与背景区域特征进行分离,实现目标区域特征图的准确率和背景区域特征图的准确率相互促进协同提高。
结合第一方面,在第一方面的某些实现方式中,该目标神经网络包括第一分支和第二分支,其中,该第一分支用于对该样本图像的目标区域进行处理,得到该样本图像的目标区域特征图和该样本图像的目标区域掩膜;
该第二分支用于对该样本图像的背景区域进行处理,得到该样本图像的背景区域特征图和该样本图像的背景区域掩膜。
在本申请中,为了便于通过前景区域分类损失函数、背景区域分类损失函数以及协同损失函数训练神经网络得到用于图像分类的目标神经网络。目标神经网络中可以包括两个分支,第一分支可以用于对样本图像的目标区域进行处理,第二分支可以用于对样本图像的背景区域进行处理,通过协同损失函数可以协同第一分支与第二分支进行训练,使得提取的目标区域特征图的准确率和背景区域特征图的准确率相互促进协同提高。
结合第一方面,在第一方面的某些实现方式中,该协同损失函数是通过以下等式得到的:
Figure BDA0002188675130000031
其中,Lt表示该协同损失函数,N表示该样本图像中像素点的数量,Fi表示该样本图像的目标区域中第i个像素点,表示该样本图像的目标区域掩膜中第i个像素点的概率值,Bi表示该样本图像的背景区域中第i个像素点,表示该样本图像的背景区域掩膜中第i个像素点的概率值,N为大于1的整数,i为大于或等于1且小于或等于N的整数。
在一种可能的实现方式中,整体损失函数包括上述分类损失函数、上述背景区域分类损失函数以及上述协同损失函数,整体损失函数是通过以下等式得到的:
Figure BDA0002188675130000032
其中,Lf可以表示目标区域分类损失函数,Lb可以表示背景区域分类损失函数,Lt可以表示协同损失函数。
结合第一方面,在第一方面的某些实现方式中,根据目标神经网络该待处理图像进行分类,得到待处理图像的目标区域的分类结果与背景区域的分类结果,包括:通过该目标神经网络的该第一分支对该待处理图像的目标区域进行处理,得到该待处理图像的目标区域增强特征图,其中,该目标区域增强特征图是通过该待处理图像的目标区域特征图和该待处理图像的目标区域掩膜相乘得到的;通过该目标神经网络的该第二分支对该待处理图像的背景区域进行处理,得到该待处理图像的背景区域增强特征图,其中,该背景区域增强特征图是通过该待处理图像的背景区域特征图和该待处理图像的背景区域掩膜相乘得到的;基于该待处理图像的目标区域增强特征图与背景区域增强特征图进行分类,得到该待处理图像的目标区域的分类结果与背景区域的分类结果。
结合第一方面,在第一方面的某些实现方式中,待处理图像的背景区域的分类结果是指获取到该待处理图像的摄像头的标识。
应理解,对于同一摄像头可以近似看作其获取的背景区域不变,则可以通过摄像头的标识确定背景区域图像对应的标识信息。
第二方面,提供了一种图像分类模型的训练方法,包括:获取训练数据,其中,该训练数据包括样本图像、该样本图像的目标区域标注分类结果、该样本图像的背景区域标注分类结果;根据神经网络提取的该样本图像的目标区域特征图,得到该样本图像的目标区域预测分类结果;根据该神经网络提取的该样本图像的背景区域特征图,得到该样本图像的背景区域预测分类结果;基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数,确定该神经网络的参数,其中,该目标区域分类损失函数用于表示该样本图像的目标区域预测分类结果与目标区域标注分类结果之间的损失值,该背景区域分类损失函数用于表示该样本图像的背景区域预测分类结果与背景区域标注分类结果之间的损失值,该协同损失函数用于分离该样本图像的目标区域特征图与该样本图像的背景区域特征图。
例如,上述目标区域标注分类结果可以是指目标对象所在区域的标注分类结果,目标对象可以是具有运动属性的对象,比如,目标对象可以是行人、动物以及车辆等任意一项。或者,上述目标对象还可以是其他对象。
在一种可能的实现方式中,该样本图像的目标区域预测分类结果是指获取该样本图像的摄像头的标识。
示例性地,当待处理图像中的目标区域为人像时,目标区域的分类结果可以是指行人的标识,其中,行人的标识可以是指行人的姓名、行人的编号或者行人的身份证号码;背景区域的分类结果可以是指获取到待处理图像的摄像头的标识,比如,摄像头的编号、摄像头所在的位置信息。
需要说明的是,上述为对行人的标识与摄像头的标识的举例说明,行人的标识用于区分不同的行为,对于同一摄像头可以近似看作其获取的背景区域图像不变,即可以通过摄像头的标识确定背景区域图像的分类结果,行人的标识与摄像头的标识的具体实现形式本申请不作任何限定。
在本申请中,通过协同损失函数可以使得目标神经网络提取的目标区域特征图与背景区域的特征图的分割准确性提高,即能够在获取目标区域的特征图时避免受到背景区域的影响。即通过目标区域分类损失函数、背景区域损失函数以及协同损失函数整体训练不断调整网络的参数,使得可以使得目标神经网络在对待处理图像进行分类处理时,使得提取的目标区域特征图的准确率和背景区域特征图的准确率相互促进协同提高。
在一种可能的实现方式中,通过上述协同损失函数可以使得样本图像的目标区域掩膜与背景区域掩膜互补。
例如,当掩膜的取值范围为[0,1]时,目标区域掩膜与背景区域掩膜的总和可以为1,即背景区域掩膜=1-目标区域掩膜。其中,目标区域掩膜用于表示目标区域特征图中每个像素点所在的位置属于目标区域的概率值;背景区域掩膜用于表示背景区域特征图中每个像素点所在的位置属于背景区域的概率值。
在另一种可能的实现方式中,通过上述协同损失函数可以使得样本图像中的目标区域特征图对应的目标区域图像与样本图像中的背景区域特征图对应的背景区域图像的重叠区域近乎为零,即通过协同损失函数可以使得目标神经网络提取样本图像中目标区域特征图与背景区域特征图的划界明显,从而避免背景区域的噪声对目标区域特征图的影响。
结合第二方面,在第二方面的某些实现方式中,该协同损失函数是通过第一协同损失函数和第二协同损失函数加权处理得到的,其中,该第一协同损失函数是基于该样本图像的目标区域特征图与该样本图像的背景区域掩膜相乘得到的;第二协同损失函数是基于该样本图像的背景区域特征图与该样本图像的目标区域掩膜相乘得到的。
在一种可能的实现方式中,目标区域掩膜是通过提取的目标区域特征图训练得到的;背景区域掩膜是通过提取的背景区域特征图训练得到的。
上述目标区域掩膜等同于目标区域注意力图;上述背景区域掩膜等同于背景区域注意力图。
需要说明的是,在本申请中图像的目标区域特征图、背景区域特征图、目标区域掩膜以及背景区域掩膜中任意两个的尺度大小相同。
在本申请中,通过目标区域特征图与背景区域掩膜中对应的像素点相乘得到的第一损失函数可以用于表示提取的目标区域特征与背景区域的重叠部分,即目标区域特征图受背景区域噪声影响的范围大小;通过背景区域特征图与目标区域掩膜中对应的像素点相乘得到的第二损失函数可以用于表示提取的背景区域特征图与目标区域的重叠部分,即背景区域特征图受目前区域噪声影响的范围大小,通过第一协同损失函数与第二损失函数加权处理得到协同损失函数,使得训练目标神经网络时使得目标区域特征与背景区域特征进行分离,实现目标区域特征图的准确率和背景区域特征图的准确率相互促进协同提高。
结合第二方面,在第二方面的某些实现方式中,该神经网络包括第一分支和第二分支,该第一分支用于对该样本图像的目标区域进行处理,得到该样本图像的目标区域特征图和该样本图像的目标区域掩膜;该第二分支用于对该样本图像的背景区域进行处理,得到该样本图像的背景区域特征图和该样本图像的背景区域掩膜。
在本申请中,为了便于通过前景区域分类损失函数、背景区域分类损失函数以及协同损失函数训练神经网络得到用于图像分类的目标神经网络。目标神经网络中可以包括两个分支,第一分支可以用于对样本图像的目标区域进行处理,第二分支可以用于对样本图像的背景区域进行处理,通过协同损失函数可以协同第一分支与第二分支进行训练,使得提取的目标区域特征图的准确率和背景区域特征图的准确率相互促进协同提高。
在一种可能的实现方式中,根据神经网络提取的该样本图像的目标区域特征图,得到该样本图像的目标区域预测分类结果,包括:通过该目标神经网络的该第一分支对该样本图像的目标区域进行处理,得到该样本图像的目标区域增强特征图,其中,该目标区域增强特征图是通过该样本图像的目标区域特征图和该样本图像的目标区域掩膜相乘得到的;基于该样本图像的目标区域增强特征图,得到该样本图像的目标区域的预测分类结果。
在一种可能的实现方式中,根据神经网络提取的该样本图像的背景区域特征图,得到该样本图像的背景区域预测分类结果,包括:通过该目标神经网络的该第二分支对该样本图像的背景区域进行处理,得到该样本图像的背景区域增强特征图,其中,背景区域增强特征图是通过该样本图像的背景区域特征图和该样本图像的背景区域掩膜相乘得到的;
基于该样本图像的背景区域增强特征图,得到该样本图像的背景区域的预测分类结果。
结合第二方面,在第二方面的某些实现方式中,该协同损失函数是通过以下等式得到的:
Figure BDA0002188675130000061
其中,Lt表示该协同损失函数,N表示该样本图像中像素点的数量,Fi表示该样本图像的目标区域中第i个像素点,
Figure BDA0002188675130000063
表示该样本图像的目标区域掩膜中第i个像素点的概率值,Bi表示该样本图像的背景区域中第i个像素点,
Figure BDA0002188675130000064
表示该样本图像的背景区域掩膜中第i个像素点的概率值,N为大于1的整数,i为大于或等于1且小于或等于N的整数。
在一种可能的实现方式中,整体损失函数包括上述分类损失函数、上述背景区域分类损失函数以及上述协同损失函数,整体损失函数是通过以下等式得到的:
Figure BDA0002188675130000062
其中,Lf可以表示目标区域分类损失函数,Lb可以表示背景区域分类损失函数,Lt可以表示协同损失函数。
第三方面,提供了一种图像分类方法,包括:获取待处理图像,待处理图像包括待识别的目标区域以及背景区域;通过目标神经网络对该待处理图像进行特征提取,得到该目标区域特征图以及该背景区域特征图;通过该目标神经网络对该目标区域特征图以及该背景区域特征图进行分类,得到该目标区域的分类结果以及该背景区域的分类结果;
其中,该目标神经网络是基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数训练得到的,该目标区域分类损失函数用于表示样本图像的目标区域特征图对应的预测分类结果与目标区域标注分类结果之间的损失值,背景区域分类损失函数用于表示该样本图像的背景区域特征图对应的预测分类结果与背景区域标注分类结果之间的损失值,该协同损失函数用于分离该样本图像的目标区域特征图与该样本图像的背景区域特征图。
在本申请中,目标神经网络是通过目标区域分类损失函数、背景区域损失函数以及协同损失函数训练得到的,使得预先训练的目标神经网络能够准确地分离待处理图像中目标区域特征图与背景区域的特征图。因此,目标神经网络在对待处理图像进行分类时,通过分离待处理图像中目标区域特征图以及背景区域特征图,不仅可以得到目标区域的分类结果以及背景区域的分类结果,同时在获取目标区域的特征图时还能避免受到背景区域的影响,提高待处理图像中目标区域分类结果的准确性。
结合第三方面,在第三方面的某些实现方式中,该目标神经网络包括第一分支与第二分支,通过目标神经网络对该待处理图像进行特征提取,得到该目标区域特征图以及该背景区域特征图,包括:
通过该目标神经网络的该第一分支对该待处理图像的目标区域进行特征提取,得到该待处理图像的目标区域增强特征图,其中,该目标区域增强特征图是通过该待处理图像的目标区域特征图和该待处理图像的目标区域掩膜相乘得到的;
通过该目标神经网络的该第二分支对该待处理图像的背景区域进行特征提取,得到该待处理图像的背景区域增强特征图,其中,该背景区域增强特征图是通过该待处理图像的背景区域特征图和该待处理图像的背景区域掩膜相乘得到的。
结合第三方面,在第三方面的某些实现方式中,通过该目标神经网络对该目标区域特征图以及该背景区域特征图进行分类,得到该目标区域的分类结果以及该背景区域的分类结果,包括:
基于该待处理图像的目标区域增强特征图与该背景区域增强特征图进行分类,得到该待处理图像的目标区域的分类结果与背景区域的分类结果。
需要说明的是,上述目标神经网络中的第一分支与第二分支可以同时对待处理图像进行分类的,或者,目标神经网络中也可以是以先第一分支再第二分支的顺序对待处理图像进行分类,或者,目标神经网络中也可以是以先第二分支再第一分支的顺序对待处理图像进行分类。
结合第三方面,在第三方面的某些实现方式中,该待处理图像的背景区域的分类结果是指获取到该待处理图像的摄像头的标识。
结合第三方面,在第三方面的某些实现方式中,该协同损失函数是通过第一协同损失函数和第二协同损失函数加权处理得到的,其中,该第一协同损失函数是基于该样本图像的目标区域特征图与该样本图像的背景区域掩膜相乘得到的;该第二协同损失函数是基于该样本图像的背景区域特征图与该样本图像的目标区域掩膜相乘得到的。
结合第三方面,在第三方面的某些实现方式中,该目标神经网络包括第一分支和第二分支,其中,该第一分支用于对该样本图像的目标区域进行处理,得到该样本图像的目标区域特征图和该样本图像的目标区域掩膜;该第二分支用于对该样本图像的背景区域进行处理,得到该样本图像的背景区域特征图和该样本图像的背景区域掩膜。
结合第三方面,在第三方面的某些实现方式中,该协同损失函数是通过以下等式得到的:
Figure BDA0002188675130000071
其中,Lt表示所述协同损失函数,N表示所述样本图像中像素点的数量,Fi表示所述样本图像的目标区域中第i个像素点,
Figure BDA0002188675130000073
表示所述样本图像的目标区域掩膜中第i个像素点的概率值,Bi表示所述样本图像的背景区域中第i个像素点,
Figure BDA0002188675130000074
表示所述样本图像的背景区域掩膜中第i个像素点的概率值,N为大于1的整数,i为大于或等于1且小于或等于N的整数。
在一种可能的实现方式中,整体损失函数包括上述分类损失函数、上述背景区域分类损失函数以及上述协同损失函数,整体损失函数是通过以下等式得到的:
Figure BDA0002188675130000072
其中,Lf可以表示目标区域分类损失函数,Lb可以表示背景区域分类损失函数,Lt可以表示协同损失函数。
结合第三方面,在第三方面的某些实现方式中,该待处理图像的背景区域的分类结果是指获取到该待处理图像的摄像头的标识。
第四方面,提供了一种图像分类装置,包括:获取单元,用于获取待处理图像,该待处理图像包括待识别的目标区域以及背景区域;处理单元,用于根据目标神经网络对该待处理图像进行分类,得到该待处理图像的该目标区域的分类结果与该背景区域的分类结果;
其中,该目标神经网络是基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数训练得到的,该目标区域分类损失函数用于表示样本图像的目标区域特征图对应的预测分类结果与目标区域标注分类结果之间的损失值,该背景区域分类损失函数用于表示该样本图像的背景区域特征图对应的预测分类结果与背景区域标注分类结果之间的损失值,该协同损失函数用于分离该样本图像的目标区域特征图与该样本图像的背景区域特征图。
在一种可能的实现方式中,上述图像分类装置中包括功能单元/模块还用于执行第一方面以及第一方面中的任意一种实现方式中的方法。
应理解,在上述第一方面中对相关内容的扩展、限定、解释和说明也适用于第四方面中相同的内容。
第五方面,提供了一种图像分类模型的训练装置,包括:获取单元,用于获取训练数据,其中,该训练数据包括样本图像、该样本图像的目标区域标注分类结果、该样本图像的背景区域标注分类结果;处理单元,用于根据神经网络提取的该样本图像的目标区域特征图,得到该样本图像的目标区域预测分类结果;根据该神经网络提取的该样本图像的背景区域特征图,得到该样本图像的背景区域预测分类结果;基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数,确定该神经网络的参数;
其中,所述目标区域分类损失函数用于表示所述样本图像的目标区域预测分类结果与目标区域标注分类结果之间的损失值,所述背景区域分类损失函数用于表示所述样本图像的背景区域预测分类结果与背景区域标注分类结果之间的损失值,所述协同损失函数用于分离所述样本图像的目标区域特征图与所述样本图像的背景区域特征图。
在一种可能的实现方式中,上述训练装置中包括功能单元/模块还用于执行第二方面以及第二方面中的任意一种实现方式中的训练方法。
应理解,在上述第二方面中对相关内容的扩展、限定、解释和说明也适用于第五方面中相同的内容。
第六方面,提供了一种图像分类装置,包括:获取单元,用于获取待处理图像,所述待处理图像包括待识别的目标区域以及背景区域;处理单元,用于通过目标神经网络对所述待处理图像进行特征提取,得到所述目标区域的特征图以及所述背景区域的特征图;通过所述目标神经网络对所述目标区域的特征图以及所述背景区域的特征图进行分类,得到所述目标区域的分类结果以及所述背景区域的分类结果;
其中,所述目标神经网络是基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数训练得到的,所述目标区域分类损失函数用于表示样本图像的目标区域特征图对应的预测分类结果与目标区域标注分类结果之间的损失值,所述背景区域分类损失函数用于表示所述样本图像的背景区域特征图对应的预测分类结果与背景区域标注分类结果之间的损失值,所述协同损失函数用于分离所述样本图像的目标区域特征图与所述样本图像的背景区域特征图。
在一种可能的实现方式中,上述训练装置中包括功能单元/模块还用于执行第三方面以及第三方面中的任意一种实现方式中的方法。
应理解,在上述第三方面中对相关内容的扩展、限定、解释和说明也适用于第六方面中相同的内容。
第七方面,提供了一种图像分类装置,该装置包括:存储器,用于存储程序;处理器,用于执行该存储器存储的程序,当该存储器存储的程序被执行时,该处理器用于执行:获取待处理图像,所述待处理图像包括待识别的目标区域以及背景区域;根据目标神经网络对所述待处理图像进行分类,得到所述待处理图像的所述目标区域的分类结果与所述背景区域的分类结果;
其中,所述目标神经网络是基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数训练得到的,所述目标区域分类损失函数用于表示样本图像的目标区域特征图对应的预测分类结果与目标区域标注分类结果之间的损失值,所述背景区域分类损失函数用于表示所述样本图像的背景区域特征图对应的预测分类结果与背景区域标注分类结果之间的损失值,所述协同损失函数用于分离所述样本图像的目标区域特征图与所述样本图像的背景区域特征图。
在一种可能的实现方式中,上述图像分类装置中包括的处理器还用于执行第一方面中的任意一种实现方式中方法。
应理解,在上述第一方面中对相关内容的扩展、限定、解释和说明也适用于第七方面中相同的内容。
第八方面,提供了一种图像分类模型的训练装置,该装置包括:存储器,用于存储程序;处理器,用于执行该存储器存储的程序,当该存储器存储的程序被执行时,该处理器用于执行:获取训练数据,其中,所述训练数据包括样本图像、所述样本图像的目标区域标注分类结果、所述样本图像的背景区域标注分类结果;根据神经网络提取的所述样本图像的目标区域特征图,得到所述样本图像的目标区域预测分类结果;根据所述神经网络提取的所述样本图像的背景区域特征图,得到所述样本图像的背景区域预测分类结果;基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数,确定所述神经网络的参数;
其中,所述目标区域分类损失函数用于表示所述样本图像的目标区域预测分类结果与目标区域标注分类结果之间的损失值,所述背景区域分类损失函数用于表示所述样本图像的背景区域预测分类结果与背景区域标注分类结果之间的损失值,所述协同损失函数用于分离所述样本图像的目标区域特征图与所述样本图像的背景区域特征图。
在一种可能的实现方式中,上述训练装置中包括的处理器还用于执行第二方面中的任意一种实现方式中的训练方法。
应理解,在上述第二方面中对相关内容的扩展、限定、解释和说明也适用于第八方面中相同的内容。
第九方面,提供了一种图像分类装置,该装置包括:存储器,用于存储程序;处理器,用于执行该存储器存储的程序,当该存储器存储的程序被执行时,该处理器用于执行:获取待处理图像,该待处理图像包括待识别的目标区域以及背景区域;通过目标神经网络对该待处理图像进行特征提取,得到该目标区域的特征图以及该背景区域的特征图;通过该目标神经网络对该目标区域的特征图以及该背景区域的特征图进行分类,得到该目标区域的分类结果以及该背景区域的分类结果,
其中,该目标神经网络是基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数训练得到的,该目标区域分类损失函数用于表示样本图像的目标区域特征图对应的预测分类结果与目标区域标注分类结果之间的损失值,该背景区域分类损失函数用于表示该样本图像的背景区域特征图对应的预测分类结果与背景区域标注分类结果之间的损失值,该协同损失函数用于分离该样本图像的目标区域特征图与该样本图像的背景区域特征图。
在一种可能的实现方式中,上述图像分类装置中包括的处理器还用于执行第三方面中的任意一种实现方式中方法。
应理解,在上述第三方面中对相关内容的扩展、限定、解释和说明也适用于第九方面中相同的内容。
第十方面,提供了一种计算机可读介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第三方面以及第一方面至第三方面中的任意一种实现方式中的方法。
第十一方面,提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第三方面以及第一方面至第三方面中的任意一种实现方式中的方法。
第十二方面,提供了一种芯片,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,执行上述第一方面至第三方面以及第一方面至第三方面中的任意一种实现方式中的方法。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行上述第一方面至第三方面以及第一方面至第三方面中的任意一种实现方式中的方法。
附图说明
图1是本申请实施例提供的一种人工智能主体框架示意图;
图2是本申请实施例提供的一种应用场景的示意图;
图3是本申请实施例提供的一种应用场景的示意图;
图4是本申请实施例提供的一种应用场景的示意图;
图5是本申请实施例提供的系统架构的结构示意图;
图6是本申请实施例提供的一种卷积神经网络结构示意图;
图7是本申请实施例提供的一种芯片硬件结构示意图;
图8是本申请实施例提供了一种系统架构的示意图;
图9是本申请实施例提供的图像分类方法的示意性流程图;
图10是本申请实施例提供的图像分类模型的训练方法的示意性流程图;
图11是本申请实施例提供的图像分类模型的训练方法的示意性流程图;
图12是本申请实施例提供的图像分类模型的训练方法的示意图;
图13是本申请实施例提供的图像分类装置的示意性框图;
图14是本申请实施例提供的图像分类模型的训练装置的示意性框图;
图15是本申请实施例提供的图像分类装置的示意性框图;
图16是本申请实施例提供的图像分类模型的训练装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1示出一种人工智能主体框架示意图,该主体框架描述了人工智能系统总体工作流程,适用于通用的人工智能领域需求。
下面从“智能信息链”(水平轴)和“信息技术(information technology,IT)价值链”(垂直轴)两个维度对上述人工智能主题框架100进行详细的阐述。
“智能信息链”反映从数据的获取到处理的一列过程。举例来说,可以是智能信息感知、智能信息表示与形成、智能推理、智能决策、智能执行与输出的一般过程。在这个过程中,数据经历了“数据—信息—知识—智慧”的凝练过程。
“IT价值链”从人智能的底层基础设施、信息(提供和处理技术实现)到系统的产业生态过程,反映人工智能为信息技术产业带来的价值。
(1)基础设施110
基础设施为人工智能系统提供计算能力支持,实现与外部世界的沟通,并通过基础平台实现支撑。
基础设施可以通过传感器与外部沟通,基础设施的计算能力可以由智能芯片提供。
这里的智能芯片可以是中央处理器(central processing unit,CPU)、神经网络处理器(neural-network processing unit,NPU)、图形处理器(graphics processingunit,GPU)、专门应用的集成电路(application specific integrated circuit,ASIC)以及现场可编程门阵列(field programmable gate array,FPGA)等硬件加速芯片。
基础设施的基础平台可以包括分布式计算框架及网络等相关的平台保障和支持,可以包括云存储和计算、互联互通网络等。
例如,对于基础设施来说,可以通过传感器和外部沟通获取数据,然后将这些数据提供给基础平台提供的分布式计算系统中的智能芯片进行计算。
(2)数据120
基础设施的上一层的数据用于表示人工智能领域的数据来源。该数据涉及到图形、图像、语音、文本,还涉及到传统设备的物联网数据,包括已有系统的业务数据以及力、位移、液位、温度、湿度等感知数据。
(3)数据处理130
上述数据处理通常包括数据训练,机器学习,深度学习,搜索,推理,决策等处理方式。
其中,机器学习和深度学习可以对数据进行符号化和形式化的智能信息建模、抽取、预处理、训练等。
推理是指在计算机或智能系统中,模拟人类的智能推理方式,依据推理控制策略,利用形式化的信息进行机器思维和求解问题的过程,典型的功能是搜索与匹配。
决策是指智能信息经过推理后进行决策的过程,通常提供分类、排序、预测等功能。
(4)通用能力140
对数据经过上面提到的数据处理后,进一步基于数据处理的结果可以形成一些通用的能力,比如可以是算法或者一个通用系统,例如,翻译,文本的分析,计算机视觉的处理,语音识别,图像的识别等等。
(5)智能产品及行业应用150
智能产品及行业应用指人工智能系统在各领域的产品和应用,是对人工智能整体解决方案的封装,将智能信息决策产品化、实现落地应用,其应用领域主要包括:智能制造、智能交通、智能家居、智能医疗、智能安防、自动驾驶,平安城市,智能终端等。
应用场景一:智能安防
在一个实施例中,如图2所示,本申请实施例的图像分类方法可以应用于安防领域。例如,公共场合的监控设备采集到的图片(或者,视频),通过目标神经网络可以对采集到的图片进行分类处理识别图片中的行人的信息,为案件侦破提供重要的线索信息。
例如,可以通过某个特定人员的照片,通过监控视频获得其行动轨迹。行人重识别技术根据特定人员的照片,去监控视频库里去匹配特定人员出现的视频段。这样可以把特定人员在各个摄像头的轨迹串连起来,这个轨迹一旦串连起来之后,对警察的破案刑侦有非常大的帮助。具体地,可以根据提供的特定人员照片,实现给定一个监控行人图像,检索跨设备下的该行人的图像并形成该行人的行为轨迹,如图2所示,可以通过本申请中的目标神经网络检索到背景1至背景4中该特定人员的行为轨迹,其中,背景1至背景4可以是通过不同的摄像头获取的图像。
示例性地,在本申请的图像分类方法应用在安防领域时,获取特定人员图像(例如,嫌疑人员的图片或者照片),该特定人员图像中包括特定人像区域与街景区域;根据预先训练的目标神经网络对特定人员图像进行分类,得到特定人像的分类结果与街景区域的分类结果。
例如,通过预先训练的目标神经网络可以提取特定人员图像中人像特征图与街景特征图,基于人像特征图与街景特征图进行分类,比如,将人像特征图进行分类得到特定人员的标识,将街景特征图进行分类得到获取到该街景的摄像头的标识。通过摄像头的标识可以确定街景的位置进而能够确定特定人员的行为轨迹。例如,当本申请的图像分类方法应用在安防领域时,用于训练目标神经网络的训练数据可以包括公安系统中包含不同人员的样本图像、人员的标识、获取到样本图像的各个摄像头的标识。
应理解,对于同一摄像头而言,其获取的拍摄画面的背景区域的图像可以看作是近似相同的,即通过摄像头ID可以区分不同的背景区域的图像。
需要说明的是,本申请实施例提供的应用于智能安防领域的目标神经网络同样适用于后面图5至图12中相关实施例中对目标神经网络相关内容的扩展、限定、解释和说明,此处不再赘述。
应用场景二:智能寻人系统
在一个实施例中,如图3所示,通过向智能寻人系统中输入一张行人照片(例如,走散儿童的照片),通过本申请实施例的目标神经网络可以实现实时的在所有监控摄像头寻找与该儿童照片匹配的图像,从而实现在人流密度比较大的公共场所,进行行人识别技术。
示例性地,在本申请的图像分类方法应用在智能寻人系统时,获取特定人员图像(例如,走失人员的图片或者照片),该特定人员图像中包括特定人像区域与街景区域;根据预先训练的目标神经网络对特定人员图像进行分类,得到特定人像的分类结果与街景区域的分类结果。
例如,通过预先训练的目标神经网络可以提取特定人员图像中人像特征图与街景特征图,基于人像特征图与街景特征图进行分类,比如,通过人像特征图进行分类得到人像的标识,将街景特征图进行分类得到获取到该街景的摄像头的标识,通过摄像头的标识可以确定街景的位置进而能够确定走失人员的行为轨迹。
例如,当本申请的图像分类方法应用在智能寻人系统时,用于训练目标神经网络的训练数据可以包括的包含走失人员的样本图像、走失人员的标识、获取到样本图像的各个摄像头的标识。
应理解,对于同一摄像头而言,其获取的拍摄画面的背景区域的图像可以看作是近似相同的,即通过摄像头ID可以区分不同的背景区域的图像。
需要说明的是,本申请实施例提供的应用智能寻人系统的目标神经网络同样适用于后面图5至图12中相关实施例中对目标神经网络相关内容的扩展、限定、解释和说明,此处不再赘述。
在一种可能的实现方式中,智能寻人系统可以是指在人流拥挤的公共区域,比如在机场、车站、游乐场等公共区域寻找特定人员,通过本申请实施例的目标神经网络可以通过调用监控视频库实现走失儿童的快速查找和轨迹构建。
在一种可能的实现方式中,智能寻人系统也可以是应用在智能家庭机器人中,在智能家庭机器人中通过目标神经网络实现行人重识别技术,从而使得帮助智能家庭机器人更好的识别家庭成员。
在一种可能的实现方式中,智能寻人系统也可以是应用在无人超市中。例如,通过本申请实施例的目标神经网络可以根据行人外观的照片,实时动态跟踪用户轨迹,把轨迹转化成管理员能够理解的信息,从而能够帮助经营者获取有效的顾客轨迹,进而深入挖掘商业价值。比如,可以通过行为轨迹了解用户的兴趣,以便优化用户体验。
应用场景三:相册分类
在一个实施例中,如图4所示,可以利用本申请实施例的目标神经网络实现对图片进行分类,从而为不同的类别(例如,基于不同用户的图片分类)的图片打上标签,便于用户查看和查找。另外,这些图片的分类标签也可以提供给相册管理系统进行分类管理,节省用户的管理时间,提高相册管理的效率,提升用户体验。
例如,通过本申请实施例目标神经网络对于不同用户的图像可以进行分类打标签。比如,当本申请实施例的目标神经网络应用在智能终端中,可以对于智能终端中的相册实现图片按人分类,即对于包括用户A的图片可以标记为用户A的标签;对于包括用户B的图片可以标记用户B的标签,实现相册基于不同用户的分类。
示例性地,在本申请的图像分类方法应用在相册分类时,获取待处理图像(例如,用户A的图片或者照片),待处理图像中包括人像区域与街景区域;根据预先训练的目标神经网络对人像进行分类,得到人像的分类结果与街景区域的分类结果。
例如,通过预先训练的目标神经网络可以提取待处理图像中用户A的人像特征图与街景特征图,基于人像特征图与街景特征图进行分类,比如,通过人像特征图进行分类得到人像的标识,将街景特征图进行分类得到获取到该街景的摄像头的标识,进一步可以将人像的标识相同的图像存入同一相册文件夹中,从而实现不同用户图片的相册分类。
例如,当本申请的图像分类方法应用在相册分类时,用于训练目标神经网络的训练数据可以是不同用户的样本图像、不同用户的标识以及获取到样本图像的摄像头的标识。
应理解,对于同一摄像头而言,其获取的拍摄画面的背景区域的图像可以看作是近似相同的,即通过摄像头ID可以区分不同的背景区域的图像。
需要说明的是,本申请实施例提供的应用相册分类的目标神经网络同样适用于后面图5至图12中相关实施例中对目标神经网络相关内容的扩展、限定、解释和说明,此处不再赘述。
应理解,上述为对应用场景的举例说明,并不对本申请的应用场景作任何限定。
由于本申请实施例涉及大量神经网络的应用,为了便于理解,下面先对本申请实施例可能涉及的神经网络的相关术语和概念进行介绍。
(1)神经网络
神经网络可以是由神经单元组成的,神经单元可以是指以xs和截距1为输入的运算单元,该运算单元的输出可以为:
Figure BDA0002188675130000141
其中,s=1、2、……n,n为大于1的自然数,Ws为xs的权重,b为神经单元的偏置。f为神经单元的激活函数(activation functions),用于将非线性特性引入神经网络中,来将神经单元中的输入信号转换为输出信号。该激活函数的输出信号可以作为下一层卷积层的输入,激活函数可以是sigmoid函数。神经网络是将多个上述单一的神经单元联结在一起形成的网络,即一个神经单元的输出可以是另一个神经单元的输入。每个神经单元的输入可以与前一层的局部接受域相连,来提取局部接受域的特征,局部接受域可以是由若干个神经单元组成的区域。
(2)深度神经网络
深度神经网络(deep neural network,DNN),也称多层神经网络,可以理解为具有多层隐含层的神经网络。按照不同层的位置对DNN进行划分,DNN内部的神经网络可以分为三类:输入层,隐含层,输出层。一般来说第一层是输入层,最后一层是输出层,中间的层数都是隐含层。层与层之间是全连接的,也就是说,第i层的任意一个神经元一定与第i+1层的任意一个神经元相连。
虽然DNN看起来很复杂,但是就每一层的工作来说,其实并不复杂,简单来说就是如下线性关系表达式:
Figure BDA0002188675130000142
其中,
Figure BDA0002188675130000143
是输入向量,
Figure BDA0002188675130000144
是输出向量,
Figure BDA0002188675130000145
是偏移向量,W是权重矩阵(也称系数),α()是激活函数。每一层仅仅是对输入向量
Figure BDA0002188675130000146
经过如此简单的操作得到输出向量
Figure BDA0002188675130000147
由于DNN层数多,系数W和偏移向量
Figure BDA0002188675130000148
的数量也比较多。这些参数在DNN中的定义如下所述:以系数W为例:假设在一个三层的DNN中,第二层的第4个神经元到第三层的第2个神经元的线性系数定义为
Figure BDA0002188675130000149
上标3代表系数W所在的层数,而下标对应的是输出的第三层索引2和输入的第二层索引4。
综上,第L-1层的第k个神经元到第L层的第j个神经元的系数定义为
Figure BDA00021886751300001410
需要注意的是,输入层是没有W参数的。在深度神经网络中,更多的隐含层让网络更能够刻画现实世界中的复杂情形。理论上而言,参数越多的模型复杂度越高,“容量”也就越大,也就意味着它能完成更复杂的学习任务。训练深度神经网络的也就是学习权重矩阵的过程,其最终目的是得到训练好的深度神经网络的所有层的权重矩阵(由很多层的向量W形成的权重矩阵)。
(3)卷积神经网络
卷积神经网络(convolutional neuron network,CNN)是一种带有卷积结构的深度神经网络。卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器,该特征抽取器可以看作是滤波器。卷积层是指卷积神经网络中对输入信号进行卷积处理的神经元层。在卷积神经网络的卷积层中,一个神经元可以只与部分邻层神经元连接。一个卷积层中,通常包含若干个特征平面,每个特征平面可以由一些矩形排列的神经单元组成。同一特征平面的神经单元共享权重,这里共享的权重就是卷积核。共享权重可以理解为提取图像信息的方式与位置无关。卷积核可以以随机大小的矩阵的形式初始化,在卷积神经网络的训练过程中卷积核可以通过学习得到合理的权重。另外,共享权重带来的直接好处是减少卷积神经网络各层之间的连接,同时又降低了过拟合的风险。
(4)损失函数
在训练深度神经网络的过程中,因为希望深度神经网络的输出尽可能的接近真正想要预测的值,所以可以通过比较当前网络的预测值和真正想要的目标值,再根据两者之间的差异情况来更新每一层神经网络的权重向量(当然,在第一次更新之前通常会有初始化的过程,即为深度神经网络中的各层预先配置参数),比如,如果网络的预测值高了,就调整权重向量让它预测低一些,不断地调整,直到深度神经网络能够预测出真正想要的目标值或与真正想要的目标值非常接近的值。因此,就需要预先定义“如何比较预测值和目标值之间的差异”,这便是损失函数(loss function)或目标函数(objective function),它们是用于衡量预测值和目标值的差异的重要方程。其中,以损失函数举例,损失函数的输出值(loss)越高表示差异越大,那么深度神经网络的训练就变成了尽可能缩小这个loss的过程。
(5)反向传播算法
神经网络可以采用误差反向传播(back propagation,BP)算法在训练过程中修正初始的神经网络模型中参数的大小,使得神经网络模型的重建误差损失越来越小。具体地,前向传递输入信号直至输出会产生误差损失,通过反向传播误差损失信息来更新初始的神经网络模型中参数,从而使误差损失收敛。反向传播算法是以误差损失为主导的反向传播运动,旨在得到最优的神经网络模型的参数,例如权重矩阵。
图5示出了本申请实施例提供的一种系统架构200。
在图5中,数据采集设备260用于采集训练数据。针对本申请实施例的图像分类方法来说,当可以通过训练图像对用于图像分类的神经网络进行进一步训练,即数据采集设备260采集的训练数据可以是训练图像。
例如,在本申请实施例中训练目标神经网络的训练数据可以包括样本图像、样本图像中包括的行人标识以及样本图像中包括的背景标识,其中,例如行人标识可以是行人的ID、行人的身份证信息等;背景标识可以是待处理图像对应的摄像头的标识信息,比如,可以是获取待处理图像的摄像头的ID信息。
应理解,对于同一摄像头而言,其获取的拍摄画面的背景区域的信息可以是不变的,即通过摄像头ID可以区分不同的背景区域的信息。
在采集到训练数据之后,数据采集设备260将这些训练数据存入数据库230,训练设备220基于数据库230中维护的训练数据训练得到目标模型/规则201。
下面对训练设备220基于训练数据得到目标模型/规则201进行描述,训练设备220对输入的原始图像进行处理,将输出的图像与原始图像进行对比,直到训练设备220输出的图像与原始图像的差值小于一定的阈值,从而完成目标模型/规则201的训练。
例如,在本申请提供的用于图像分类的目标神经网络可以是通过样本图像的预测分类结果与样本分类结果之间的分类损失函数进行训练得到的,训练后的神经网络使得将样本图像输入至目标神经网络得到的预测分类结果与样本分类结果的差值小于一定的阈值,从而完成神经网络的训练得到目标神经网络的参数。
上述目标模型/规则201能够用于实现本申请实施例的图像分类方法。本申请实施例中的目标模型/规则201具体可以为神经网络。
需要说明的是,在实际的应用中,所述数据库230中维护的训练数据不一定都来自于数据采集设备260的采集,也有可能是从其他设备接收得到的。另外需要说明的是,训练设备220也不一定完全基于数据库230维护的训练数据进行目标模型/规则201的训练,也有可能从云端或其他地方获取训练数据进行模型训练,上述描述不应该作为对本申请实施例的限定。
根据训练设备220训练得到的目标模型/规则201可以应用于不同的系统或设备中,如应用于图5所示的执行设备210,所述执行设备210可以是终端,如手机终端,平板电脑,笔记本电脑,增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR),车载终端等,还可以是服务器,或者,云端等。在图5中,执行设备210配置输入/输出(input/output,I/O)接口212,用于与外部设备进行数据交互,用户可以通过客户设备240向I/O接口212输入数据,所述输入数据在本申请实施例中可以包括:客户设备输入的待处理图像。
预处理模块213和预处理模块214用于根据I/O接口212接收到的输入数据(如待处理图像)进行预处理,在本申请实施例中,也可以没有预处理模块213和预处理模块214(也可以只有其中的一个预处理模块),而直接采用计算模块211对输入数据进行处理。
在执行设备210对输入数据进行预处理,或者在执行设备210的计算模块211执行计算等相关的处理过程中,执行设备210可以调用数据存储系统250中的数据、代码等以用于相应的处理,也可以将相应处理得到的数据、指令等存入数据存储系统250中。
最后,I/O接口212将处理结果,如上述得到待处理图像中待识别的目标区域的分类结果与背景区域的分类结果返回给客户设备240,从而提供给用户。
值得说明的是,训练设备220可以针对不同的目标或称不同的任务,基于不同的训练数据生成相应的目标模型/规则201,该相应的目标模型/规则201即可以用于实现上述目标或完成上述任务,从而为用户提供所需的结果。
在图5中所示情况下,在一种情况下,用户可以手动给定输入数据,该手动给定可以通过I/O接口212提供的界面进行操作。
另一种情况下,客户设备240可以自动地向I/O接口212发送输入数据,如果要求客户设备240自动发送输入数据需要获得用户的授权,则用户可以在客户设备240中设置相应权限。用户可以在客户设备240查看执行设备210输出的结果,具体的呈现形式可以是显示、声音、动作等具体方式。客户设备240也可以作为数据采集端,采集如图所示输入I/O接口212的输入数据及输出I/O接口212的输出结果作为新的样本数据,并存入数据库230。当然,也可以不经过客户设备240进行采集,而是由I/O接口212直接将如图所示输入I/O接口212的输入数据及输出I/O接口212的输出结果,作为新的样本数据存入数据库230。
值得注意的是,图5仅是本申请实施例提供的一种系统架构的示意图,图中所示设备、器件、模块等之间的位置关系不构成任何限制,例如,在图5中,数据存储系统250相对执行设备210是外部存储器,在其它情况下,也可以将数据存储系统250置于执行设备210中。
如图5所示,根据训练设备220训练得到目标模型/规则201,该目标模型/规则201在本申请实施例中可以是本申请中用于图像分类的目标神经网络,具体的,本申请实施例提供的目标神经网络可以是卷积神经网络(convolutional neuron network,CNN),或者,可以是深度卷积神经网络(deep convolutional neural networks,DCNN)等。
下面结合图6重点对卷积神经网络的结构进行详细的介绍。如上文的基础概念介绍所述,卷积神经网络是一种带有卷积结构的深度神经网络,是一种深度学习(deeplearning)架构,深度学习架构是指通过机器学习的算法,在不同的抽象层级上进行多个层次的学习。作为一种深度学习架构,卷积神经网络是一种前馈(feed-forward)人工神经网络,该前馈人工神经网络中的各个神经元可以对输入其中的图像作出响应。
本申请实施例中用于图像分类的神经网络的结构可以如图6所示。在图6中,卷积神经网络300可以包括输入层310,卷积层/池化层320(其中,池化层为可选的),以及神经网络层330。其中,输入层310可以获取待处理图像,并将获取到的待处理图像交由卷积层/池化层320以及后面的神经网络层330进行处理,可以得到图像的处理结果。下面对图6中的CNN 300中内部的层结构进行详细的介绍。
卷积层/池化层320:
如图6所示卷积层/池化层320可以包括如示例321-326层,举例来说:在一种实现中,321层为卷积层,322层为池化层,323层为卷积层,324层为池化层,325为卷积层,326为池化层;在另一种实现方式中,321、322为卷积层,323为池化层,324、325为卷积层,326为池化层,即卷积层的输出可以作为随后的池化层的输入,也可以作为另一个卷积层的输入以继续进行卷积操作。
下面将以卷积层321为例,介绍一层卷积层的内部工作原理。
卷积层321可以包括很多个卷积算子,卷积算子也称为核,其在图像处理中的作用相当于一个从输入图像矩阵中提取特定信息的过滤器,卷积算子本质上可以是一个权重矩阵,这个权重矩阵通常被预先定义,在对图像进行卷积操作的过程中,权重矩阵通常在输入图像上沿着水平方向一个像素接着一个像素(或两个像素接着两个像素等,这取决于步长stride的取值)的进行处理,从而完成从图像中提取特定特征的工作。该权重矩阵的大小应该与图像的大小相关,需要注意的是,权重矩阵的纵深维度(depth dimension)和输入图像的纵深维度是相同的,在进行卷积运算的过程中,权重矩阵会延伸到输入图像的整个深度。因此,和一个单一的权重矩阵进行卷积会产生一个单一纵深维度的卷积化输出,但是大多数情况下不使用单一权重矩阵,而是应用多个尺寸(行×列)相同的权重矩阵,即多个同型矩阵。每个权重矩阵的输出被堆叠起来形成卷积图像的纵深维度,这里的维度可以理解为由上面所述的“多个”来决定。
不同的权重矩阵可以用来提取图像中不同的特征,例如,一个权重矩阵用来提取图像边缘信息,另一个权重矩阵用来提取图像的特定颜色,又一个权重矩阵用来对图像中不需要的噪点进行模糊化等。该多个权重矩阵尺寸(行×列)相同,经过该多个尺寸相同的权重矩阵提取后的卷积特征图的尺寸也相同,再将提取到的多个尺寸相同的卷积特征图合并形成卷积运算的输出。
这些权重矩阵中的权重值在实际应用中需要经过大量的训练得到,通过训练得到的权重值形成的各个权重矩阵可以用来从输入图像中提取信息,从而使得卷积神经网络300进行正确的预测。
当卷积神经网络300有多个卷积层的时候,初始的卷积层(例如321)往往提取较多的一般特征,一般特征也可以称之为低级别的特征;随着卷积神经网络300深度的加深,越往后的卷积层(例如326)提取到的特征越来越复杂,比如,高级别的语义之类的特征,语义越高的特征越适用于待解决的问题。
池化层:
由于常常需要减少训练参数的数量,因此卷积层之后常常需要周期性的引入池化层,在如图6中320所示例的321-326各层,可以是一层卷积层后面跟一层池化层,也可以是多层卷积层后面接一层或多层池化层。在图像处理过程中,池化层的目的就是减少图像的空间大小。池化层可以包括平均池化算子和/或最大池化算子,以用于对输入图像进行采样得到较小尺寸的图像。平均池化算子可以在特定范围内对图像中的像素值进行计算产生平均值作为平均池化的结果。最大池化算子可以在特定范围内取该范围内值最大的像素作为最大池化的结果。另外,就像卷积层中用权重矩阵的大小应该与图像尺寸相关一样,池化层中的运算符也应该与图像的大小相关。通过池化层处理后输出的图像尺寸可以小于输入池化层的图像的尺寸,池化层输出的图像中每个像素点表示输入池化层的图像的对应子区域的平均值或最大值。
神经网络层330:
在经过卷积层/池化层320的处理后,卷积神经网络300还不足以输出所需要的输出信息。因为如前所述,卷积层/池化层320只会提取特征,并减少输入图像带来的参数。然而为了生成最终的输出信息(所需要的类信息或其他相关信息),卷积神经网络300需要利用神经网络层330来生成一个或者一组所需要的类的数量的输出。因此,在神经网络层330中可以包括多层隐含层(如图6所示的331、332至33n)以及输出层340,该多层隐含层中所包含的参数可以根据具体的任务类型的相关训练数据进行预先训练得到,例如该任务类型可以包括图像识别,图像分类,图像检测以及图像超分辨率重建等等。
在神经网络层330中的多层隐含层之后,也就是整个卷积神经网络300的最后层为输出层340,该输出层340具有类似分类交叉熵的损失函数,具体用于计算预测误差,一旦整个卷积神经网络300的前向传播(如图6由310至340方向的传播为前向传播)完成,反向传播(如图6由340至310方向的传播为反向传播)就会开始更新前面提到的各层的权重值以及偏差,以减少卷积神经网络300的损失,及卷积神经网络300通过输出层输出的结果和理想结果之间的误差。
需要说明的是,图6所示的卷积神经网络仅作为一种本申请实施例的目标神经网络的结构示例,在具体的应用中,本申请实施例的图像分类方法所采用的卷积神经网络还可以以其他网络模型的形式存在。
图7为本申请实施例提供的一种芯片的硬件结构,该芯片包括神经网络处理器400(neural-network processing unit,NPU)。该芯片可以被设置在如图4所示的执行设备210中,用以完成计算模块211的计算工作。该芯片也可以被设置在如图4所示的训练设备220中,用以完成训练设备220的训练工作并输出目标模型/规则201。如图6所示的卷积神经网络中各层的算法均可在如图7所示的芯片中得以实现。
NPU 400作为协处理器挂载到主中央处理器(central processing unit,CPU)上,由主CPU分配任务。NPU 400的核心部分为运算电路403,控制器404控制运算电路403提取存储器(权重存储器或输入存储器)中的数据并进行运算。
在一些实现中,运算电路403内部包括多个处理单元(process engine,PE)。在一些实现中,运算电路403是二维脉动阵列。运算电路403还可以是一维脉动阵列或者能够执行例如乘法和加法这样的数学运算的其它电子线路。在一些实现中,运算电路403是通用的矩阵处理器。
举例来说,假设有输入矩阵A,权重矩阵B,输出矩阵C。运算电路403从权重存储器402中取矩阵B相应的数据,并缓存在运算电路403中每一个PE上。运算电路403从输入存储器401中取矩阵A数据与矩阵B进行矩阵运算,得到的矩阵的部分结果或最终结果,保存在累加器408(accumulator)中。
向量计算单元407可以对运算电路403的输出做进一步处理,如向量乘,向量加,指数运算,对数运算,大小比较等等。例如,向量计算单元407可以用于神经网络中非卷积/非FC层的网络计算,如池化(pooling),批归一化(batch normalization),局部响应归一化(local response normalization)等。
在一些实现种,向量计算单元能407将经处理的输出的向量存储到统一存储器406。例如,向量计算单元407可以将非线性函数应用到运算电路403的输出,例如累加值的向量,用以生成激活值。在一些实现中,向量计算单元407生成归一化的值、合并值,或二者均有。
在一些实现中,处理过的输出的向量能够用作到运算电路403的激活输入,例如用于在神经网络中的后续层中的使用。
统一存储器406用于存放输入数据以及输出数据。
权重数据直接通过存储单元访问控制器405(direct memory accesscontroller,DMAC)将外部存储器中的输入数据存入到输入存储器401和/或统一存储器406、将外部存储器中的权重数据存入权重存储器402,以及将统一存储器406中的数据存入外部存储器。
总线接口单元410(bus interface unit,BIU),用于通过总线实现主CPU、DMAC和取指存储器409之间进行交互。
与控制器404连接的取指存储器409(instruction fetch buffer),用于存储控制器404使用的指令。
控制器404,用于调用取指存储器409中缓存的指令,实现控制该运算加速器的工作过程。
一般地,统一存储器406,输入存储器401,权重存储器402以及取指存储器409均为片上(On-Chip)存储器,外部存储器为该NPU外部的存储器,该外部存储器可以为双倍数据率同步动态随机存储器(double data rate synchronous dynamic random accessmemory,DDR SDRAM)、高带宽存储器(high bandwidth memory,HBM)或其他可读可写的存储器。
其中,图6所示的卷积神经网络中各层的运算可以由运算电路403或向量计算单元407执行。
上文中介绍的图4中的执行设备210能够执行本申请实施例的图像分类方法的各个步骤,图6所示的CNN模型和图7所示的芯片也可以用于执行本申请实施例的图像分类方法的各个步骤。
图8所示是本申请实施例提供了一种系统架构500。该系统架构包括本地设备520、本地设备530以及执行设备510和数据存储系统550,其中,本地设备520和本地设备530通过通信网络与执行设备510连接。
执行设备510可以由一个或多个服务器实现。可选的,执行设备510可以与其它计算设备配合使用,例如:数据存储器、路由器、负载均衡器等设备。执行设备510可以布置在一个物理站点上,或者分布在多个物理站点上。执行设备510可以使用数据存储系统550中的数据,或者调用数据存储系统550中的程序代码来实现本申请实施例的图像分类方法。
需要说明的是,上述执行设备510也可以称为云端设备,此时执行设备510可以部署在云端。
用户可以操作各自的用户设备(例如,本地设备520和本地设备530)与执行设备510进行交互。每个本地设备可以表示任何计算设备,例如,个人计算机、计算机工作站、智能手机、平板电脑、智能摄像头、智能汽车或其他类型蜂窝电话、媒体消费设备、可穿戴设备、机顶盒、游戏机等。
每个用户的本地设备可以通过任何通信机制/通信标准的通信网络与执行设备510进行交互,通信网络可以是广域网、局域网、点对点连接等方式,或它们的任意组合。
在一种实现方式中,本地设备520、本地设备530可以从执行设备510获取到目标神经网络的相关参数,将目标神经网络部署在本地设备520、本地设备530上,利用该目标神经网络进行图像分类处理等。
在另一种实现中,执行设备510上可以直接部署目标神经网络,执行设备510通过从本地设备520和本地设备530获取待处理图像,并根据目标神经网络对待处理图像进行图像分类处理等。
例如,上述目标神经网络可以是本申请实施例中的用于图像分类的目标神经网络。
图像(或图片)的分类是各类图像处理应用的基础,计算机视觉常常会涉及到如何对获取到的图像进行分类的问题。但是,通常用于图像分类的网络模型是基于图像的全局特征图进行分类,由于待识别的目标区域可能为全局特征图中的部分区域,因此,基于全局特征图进行分类处理会使得目标区域对应的特征图受到背景区域的噪声的影响,从而导致用于图像分类的网络模型的准确性降低。
本申请实施例提出了一种图像分类方法,通过目标区域分类损失函数、背景区域分类损失函数以及协同损失函数训练得到目标神经网络,能够实现分离待处理图像中待目标区域的特征图以及背景区域的特征图,通过抑制背景区域的噪声对待识别的目标区域的特征图的影响,提高待处理图像中待识别的目标区域分类结果的准确性。
图9示出了本申请实施例提供的图像分类方法600的示意性流程图,该方法可以由能够进行图像分类装置执行,例如,该方法可以由图8中的执行设备510执行,或者,也可以由本地设备520执行。其中,方法600包括步骤610至步骤620,下面分别对这些步骤进行详细的描述。
S610、获取待处理图像,所述待处理图像包括待识别的目标区域以及背景区域。
例如,待处理图像中可以是指包含目标对象所在的前景区域以及背景区域,目标对象可以是行人、动物以及车辆等任意一项。
应理解,上述待识别的目标区域即可以看作是包含目标对象所在的前景区域,目标对象可以是具有运动属性的对象。
示例性地,上述待处理图像可以是电子设备通过摄像头拍摄到的图像,或者,上述待处理图像还可以是从电子设备内部获得的图像(例如,电子设备的相册中存储的图像,或者,电子设备从云端获取的图片)。例如,电子设备可以是图8所示的本地设备或者执行设备中的任意一个。
S620、根据目标神经网络对待处理图像进行分类,得到目标区域的分类结果以及背景区域的分类结果;其中,所述目标区域分类损失函数用于表示所述样本图像的目标区域预测分类结果与目标区域标注分类结果之间的损失值,所述背景区域分类损失函数用于表示所述样本图像的背景区域预测分类结果与背景区域标注分类结果之间的损失值,所述协同损失函数用于分离所述样本图像的目标区域特征图与所述样本图像的背景区域特征图。
具体地,上述样本图像的目标区域特征图(或者,背景区域特征图)可以是卷积神经网络中的其他层处理后得到的特征图。应理解,这里所说的卷积神经网络中的其他层是指卷积神经网络中的一个层,例如,其他层可以是卷积神经网络中的输入层、卷积层、池化层或全连接层中的一个。
示例性地,当待处理图像中的目标区域为人像时,目标区域的分类结果可以是指行人的标识,其中,行人的标识可以是指行人的姓名、行人的编号或者行人的身份证号码;背景区域的分类结果可以是指获取到待处理图像的摄像头的标识,比如,摄像头的编号、摄像头所在的位置信息。
需要说明的是,上述为对行人的标识与摄像头的标识的举例说明,行人的标识用于区分不同的行为,对于同一摄像头可以近似看作其获取的背景区域图像不变,即可以通过摄像头的标识确定背景区域图像的分类结果,行人的标识与摄像头的标识的具体实现形式本申请不作任何限定。
例如,当输入目标神经网络的待处理图像中包括行人A时,则输出目标区域的分类结果可以是行人A的标识信息,比如,可以是行人A的身份证号码、或者行人A的ID,上述标识信息可以用于识别行人A。
例如,当输入目标神经网络的待处理图像中包括一只猫,则输出目标区域的分类结果可以是动物-猫。
例如,当输入目标神经网络的待处理图像中包括行人A以及街景1,则目标区域的分类结果以及背景区域的分类结果可以是指行人A的标识信息以及摄像头A的标识信息,其中,行人A的标识信息是行人A的身份证号码、或者行人A的ID,上述标识信息可以用于识别行人A;摄像头A的标识信息可以是拍摄输入图像中街景1区域对应的摄像头的ID。
在一种可能的实现方式中,通过上述协同损失函数可以使得样本图像的目标区域掩膜与背景区域掩膜互补。
例如,当掩膜的取值范围为[0,1]时,目标区域掩膜与背景区域掩膜的总和为1,即背景区域掩膜=1-目标区域掩膜。其中,目标区域掩膜用于表示目标区域特征图中每个像素点所在的位置属于目标区域的概率值;背景区域掩膜用于表示背景区域特征图中每个像素点所在的位置属于背景区域的概率值。
例如,当掩膜的取值范围为[-1,1]时,目标区域掩膜与背景区域掩膜的总和为0,即背景区域掩膜=0-目标区域掩膜。
应理解,上述举例为了说明目标区域掩膜与背景区域掩膜互补,并不对目标区域掩膜以及背景区域掩膜的取值范围作任何限定。
在一种可能的实现方式中,通过上述协同损失函数可以使得样本图像中的目标区域特征图对应的目标区域图像与样本图像中的背景区域特征图对应的背景区域图像的重叠区域近乎为零,即通过协同损失函数可以使得目标神经网络提取样本图像中目标区域特征图与背景区域特征图的划界明显,从而避免背景区域的噪声对目标区域特征图的影响。
在本申请的实施例中,通过协同损失函数可以使得目标神经网络提取的目标区域特征图与背景区域的特征图的分割准确性提高,即能够在获取目标区域的特征图时避免受到背景区域的影响。换而言之,通过目标区域分类损失函数、背景区域损失函数以及协同损失函数整体训练不断调整网络的参数,使得可以使得目标神经网络在对待处理图像进行分类处理时,使得提取的目标区域特征图的准确率和背景区域特征图的准确率相互促进协同提高。
可选地,协同损失函数可以是通过第一协同损失函数和第二协同损失函数加权处理得到的,其中,第一协同损失函数可以是基于样本图像的目标区域特征图与样本图像的背景区域掩膜相乘得到的;第二协同损失函数可以是基于样本图像的背景区域特征图与样本图像的目标区域掩膜相乘得到的。
其中,样本图像的背景区域掩膜可以表示获取的样本图像的背景区域特征图中每个像素点所在位置属于样本图像的背景区域的概率值;样本图像的目标区域掩膜可以表示获取的样本图像的目标区域特征图中每个像素点所在位置属于所述样本图像的目标区域的概率值。
例如,目标区域掩膜中每个像素点对应的值表示该像素点所在的位置属于目标区域的概率值,概率值的取值范围可以为[0,1];0可以表示该像素点所在的位置属于目标区域的概率为0;1可以表示该像素点所在的位置属于目标区域的概率为1。
同理,背景区域掩膜中每个像素点对应的值表示该像素点所在的位置属于背景区域的概率值,概率值的取值范围可以为[0,1];0可以表示该像素点所在的位置属于背景区域的概率为0;1可以表示该像素点所在的位置属于背景区域的概率为1。
上述目标区域掩膜等同于目标区域注意力图;上述背景区域掩膜等同于背景区域注意力图。
需要说明的是,在本申请中图像的目标区域特征图、背景区域特征图、目标区域掩膜以及背景区域掩膜中任意两个的尺度大小相同。
例如,协同损失可以通过以下等式得到的:
Figure BDA0002188675130000221
其中,Lt表示协同损失函数,N表示样本图像中像素点的数量,Fi表示样本图像的目标区域中第i个像素点,
Figure BDA0002188675130000222
表示样本图像的目标区域掩膜中第i个像素点的概率值,Bi表示样本图像的背景区域中第i个像素点,
Figure BDA0002188675130000223
表示样本图像的背景区域掩膜中第i个像素点的概率值,⊙可以用于表示对应元素进行相乘,N为大于1的整数,i为大于或等于1且小于或等于N的整数。
在本申请的实施例中,为了便于通过前景区域分类损失函数、背景区域分类损失函数以及协同损失函数训练神经网络得到用于图像分类的目标神经网络。设计神经网络时可以包括两个分支,第一分支可以用于对样本图像的目标区域进行处理,第二分支可以用于对样本图像的背景区域进行处理,通过协同损失函数可以协同第一分支与第二分支进行训练,使得提取的目标区域特征图的准确率和背景区域特征图的准确率相互促进协同提高。
示例性地,目标神经网络可以包括第一分支和第二分支,其中,第一分支可以用于对样本图像的目标区域进行处理,得到样本图像的目标区域特征图和样本图像的目标区域掩膜;第二分支可以用于对样本图像的背景区域进行处理,得到样本图像的背景区域特征图和样本图像的背景区域掩膜。
在一种可能的实现方式中,目标区域掩膜是通过提取的目标区域特征图训练得到的;背景区域掩膜是通过提取的背景区域特征图训练得到的。
需要说明的是,上述目标区域分类损失函数用于表示样本图像的目标区域特征图对应的预测分类结果与目标区域标注分类结果之间的损失值,其中,样本图像的目标区域特征图也可以是指样本图像的目标区域增强特征图,比如目标区域增强特征图是通过提取的目标区域的低层特征图与目标区域掩膜中对应像素点相乘得到的;同理,背景区域分类损失函数用于表示所述样本图像的背景区域特征图对应的预测分类结果与背景区域标注分类结果之间的损失值,其中,背景区域特征图也可以是指背景区域的增强特征图,比如背景区域增强特征图是通过提取的背景区域的低层特征图与背景区域掩膜中对应像素点相乘得到的。
在一个可能的实现方式中,在本申请的实施例中可以获取待处理图像,待处理图像包括待识别的目标区域以及背景区域;通过目标神经网络对该待处理图像进行特征提取,得到该目标区域特征图以及该背景区域特征图;通过该目标神经网络对该目标区域特征图以及该背景区域特征图进行分类,得到该目标区域的分类结果以及该背景区域的分类结果。
可选地,目标神经网络可以包括第一分支与第二分支,目标区域特征图可以是目标区域增强特征图,背景区域特征图可以是背景区域增强特征图;比如,可以通过目标神经网络的第一分支对待处理图像的目标区域进行处理,得到待处理图像的目标区域增强特征图,其中,目标区域增强特征图可以是提取的目标区域层特征图与和目标区域掩膜中对应的像素点相乘得到的;基于目标区域增强特征图进行分类,得到待处理图像中目标区域的预测分类结果。
同理,可以通过目标神经网络的第二分支对待处理图像的背景区域进行处理,得到待处理图像的背景区域增强特征图,其中,背景区域增强特征图可以是提取的背景区域特征图与和背景区域掩膜中对应的像素点相乘得到的;基于背景区域增强特征图进行分类,得到待处理图像中背景区域的预测分类结果。
需要说明的是,目标神经网络中的第一分支与第二分支可以同时对待处理图像进行分类处理,或者,目标神经网络中也可以是以先第一分支再第二分支的顺序对待处理图像进行分类处理,或者,目标神经网络中也可以是以先第二分支再第一分支的顺序对待处理图像进行分类处理。
进一步地,通过目标区域的预测分类结果与目标区域标注分类结果之间的偏差可以得到目标区域分类损失函数,通过背景区域的预测分类结果与背景区域标注分类结果之间的偏差可以得到背景区域分类损失函数。
在本申请中,目标神经网络是通过目标区域分类损失函数、背景区域损失函数以及协同损失函数训练得到的,使得预先训练的目标神经网络能够准确地分离待处理图像中目标区域特征图与背景区域的特征图。因此,目标神经网络在对待处理图像进行分类时,通过分离待处理图像中目标区域特征图以及背景区域特征图,不仅可以得到目标区域的分类结果以及背景区域的分类结果,同时在获取目标区域的特征图时还能避免受到背景区域的影响,提高待处理图像中目标区域分类结果的准确性。
图10示出了本申请实施例提供的图像分类模型的训练方法700的示意性流程图,该方法可以由能够进行图像分类装置执行,例如,该方法可以由图8中的执行设备510执行,或者,也可以由本地设备520执行。其中,方法700包括步骤710至步骤740,下面分别对这些步骤进行详细的描述。
步骤710、获取训练数据,其中,训练数据包括样本图像、样本图像的目标区域标注分类结果、样本图像的背景区域标注分类结果。
例如,目标区域为样本图像中目标对象所在的区域,目标对象可以是行人、动物以及车辆等任意一项。
示例性地,训练数据可以是指包含行人A的样本图像、行人A的标识以及样本图像中背景区域图像的标识,比如,可以是获取样本图像的摄像头的标识。
应理解,对于同一摄像头可以近似看作其获取的背景区域不变,则可以通过摄像头的标识确定背景区域图像对应的标识信息。
步骤720、根据神经网络提取的样本图像的目标区域特征图,得到样本图像的目标区域预测分类结果。
在一种可能的实现方式中,可以是对样本图像进行卷积运算,得到样本图像的低层全局特征;对样本图像的低层全局特征进行卷积运算,得到样本图像的目标区域特征图。
在另一种可能的实现方式中,可以是对样本图像进行卷积运算,直接得到样本图像的目标区域特征图。
进一步地,可以根据提取的目标区域特征图,得到目标区域掩膜。
例如,可以利用全卷积网络对目标区域特征图进行卷积运算,得到目标区域特的目标区域掩膜,其中,目标区域掩膜用于表示目标区域特征图中每个像素点所在的位置属于目标区域的概率值,比如,目标区域掩膜的取值范围可以为[0,1],0可以表示该像素点所在的位置属于目标区域的概率为0;1可以表示该像素点所在的位置属于目标区域的概率为1。
可选地,根据神经网络提取的样本图像的目标区域特征图,得到样本图像的目标区域预测分类结果,包括:
可以通过目标神经网络对样本图像的目标区域进行处理,得到样本图像的目标区域增强特征图,其中,目标区域增强特征图可以是提取的目标区域低层特征图与和目标区域掩膜中对应的像素点相乘得到的;基于目标区域增强特征图进行分类,得到样本图像中目标区域的预测分类结果。
例如,上述根据基于目标区域增强特征图进行分类可以采用现有技术中的softmax算法进行分类,此处不再赘述。
例如,对于一个输入X,若需要确定X是N个类别中的哪一类,则假设通过一个模型可以对输入X输出N个类别的评分,评分越高说明X属于这个类别的可能性越大,评分最高的被认为是X正确的类别。然而,这样的评分范围很广,softmax算法可以将(-∞,+∞)的一组评分转化为一组概率,并使得这组概率的和为1的归一化的函数;此外这个函数具有保序性,即原来评分高的转换后概率值较大,评分小的对应的概率值较小。
示例性地,当样本图像中包括行人A时,则输出目标区域的分类结果可以是行人A的标识信息,比如,可以是行人A的身份号码、或者行人A的ID,上述标识信息可以用于识别行人A。
示例性地,当样本图像中包括一只猫,则输出目标区域的分类结果可以是动物-猫。
步骤730、根据神经网络提取的样本图像的背景区域特征图,得到样本图像的背景区域预测分类结果。
在一种可能的实现方式中,可以是对样本图像进行卷积运算,得到样本图像的低层全局特征;对样本图像的低层全局特征进行卷积运算,得到样本图像的背景区域特征图。
在另一种可能的实现方式中,可以是对样本图像进行卷积运算,直接得到样本图像的背景区域特征图。
进一步地,可以根据提取的目标区域特征图,得到背景区域掩膜。
例如,可以利用全卷积网络对背景区域特征图进行卷积运算,得到背景区域对应的背景区域掩膜,其中,背景区域掩膜用于表示背景区域特征图中每个像素点所在的位置属于背景区域的概率值,比如,背景区域掩膜的取值范围可以是[0,1],0可以表示该像素点所在的位置属于背景区域的概率为0;1可以表示该像素点所在的位置属于背景区域的概率为1。
可选地,根据神经网络提取的样本图像的背景区域特征图,得到样本图像的背景区域预测分类结果,包括:
可以通过目标神经网络对样本图像的背景区域进行处理,得到样本图像的背景区域增强特征图,其中,背景区域增强特征图可以是提取的背景区域低层特征图与和背景区域掩膜中对应的像素点相乘得到的;基于背景区域增强特征图进行分类,得到样本图像中背景区域的预测分类结果。
例如,上述根据基于背景区域增强特征图进行分类可以采用现有技术中的softmax算法进行分类,此处不再赘述。
示例性地,当样本图像中包括行人A以及街景1,则背景区域的分类结果可以是指行摄像头A的标识信息,摄像头A的标识信息可以是拍摄输入图像中街景1区域对应的摄像头的ID。
可选地,样本图像的背景区域的分类结果是指获取到样本图像的摄像头的标识。
应理解,对于同一摄像头可以近似看作其获取的背景区域不变,则可以通过摄像头的标识确定背景区域图像对应的标识信息。
步骤740、基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数,确定神经网络的参数,其中,目标区域分类损失函数用于表示样本图像的目标区域预测分类结果与目标区域标注分类结果之间的损失值,所述背景区域分类损失函数用于表示样本图像的背景区域预测分类结果与背景区域标注分类结果之间的损失值,协同损失函数用于分离样本图像的目标区域特征图与样本图像的背景区域特征图。
在一种可能的实现方式中,通过上述协同损失函数可以使得样本图像的目标区域掩膜与背景区域掩膜互补。
在一种可能的实现方式中,通过上述协同损失函数可以使得样本图像中的目标区域特征图对应的目标区域图像与样本图像中的背景区域特征图对应的背景区域图像的重叠区域近乎为零,即通过协同损失函数可以使得目标神经网络提取样本图像中目标区域特征图与背景区域特征图的划界明显,从而避免背景区域的噪声对目标区域特征图的影响。
可选地,协同损失函数可以是通过第一协同损失函数和第二协同损失函数加权处理得到的,其中,第一协同损失函数可以是基于样本图像的目标区域特征图与样本图像的背景区域掩膜中对应的像素点相乘得到的;第二协同损失函数可以是基于样本图像的背景区域特征图与样本图像的目标区域掩膜中对应的像素点相乘得到的。
需要说明的是,在本申请中图像的目标区域特征图、背景区域特征图、目标区域掩膜以及背景区域掩膜中任意两个的尺度大小相同。
例如,协同损失函数可以通过以下等式得到的:
Figure BDA0002188675130000261
其中,Lt表示协同损失函数,N表示样本图像中像素点的数量,Fi表示样本图像的目标区域中第i个像素点,
Figure BDA0002188675130000262
表示样本图像的目标区域掩膜中第i个像素点的概率值,Bi表示样本图像的背景区域中第i个像素点,
Figure BDA0002188675130000263
表示样本图像的背景区域掩膜中第i个像素点的概率值,⊙用于表示对应元素进行相乘,N为大于1的整数,i为大于或等于1且小于或等于N的整数。
例如,基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数得到的最终损失函数可以是:
Figure BDA0002188675130000264
其中,Lf可以表示目标区域分类损失函数,Lb可以表示背景区域分类损失函数,Lt可以表示协同损失函数。
在本申请的实施例中,通过协同损失函数可以使得目标神经网络提取的目标区域特征图与背景区域的特征图的分割准确性提高,即能够在获取目标区域的特征图时避免受到背景区域的影响。换而言之,通过目标区域分类损失、背景区域损失以及协同损失整体训练不断调整网络的参数,使得可以使得目标神经网络在对待处理图像进行分类处理时,使得提取的目标区域特征图的准确率和背景区域特征图的准确率相互促进协同提高。
可选地,目标神经网络可以包括第一分支和第二分支,其中,第一分支可以用于对样本图像的目标区域进行处理,得到样本图像的目标区域特征图和样本图像的目标区域掩膜;第二分支可以用于对样本图像的背景区域进行处理,得到样本图像的背景区域特征图和样本图像的背景区域掩膜。
在本申请的实施例中,为了便于通过前景区域分类损失函数、背景区域分类损失函数以及协同损失函数训练神经网络得到用于图像分类的目标神经网络。设计神经网络时可以包括两个分支,第一分支可以用于对样本图像的目标区域进行处理,第二分支可以用于对样本图像的背景区域进行处理,通过协同损失函数可以协同第一分支与第二分支进行训练,使得提取的目标区域特征图的准确率和背景区域特征图的准确率相互促进协同提高。
例如,图11所示的为本申请实施例提供的图像分类模型的训练方法800的示意性流程图。其中,方法800包括步骤801至809,下面分别对这些步骤进行详细的描述。
步骤801、输入图像。
其中,输入图像可以是用于训练图像分类模型的训练数据,训练数据包括样本图像、样本图像的目标区域标注分类结果、样本图像的背景区域标注分类结果。
例如,目标区域为样本图像中目标对象所在的区域,目标对象可以是行人、动物以及车辆等任意一项。
步骤802、提取低层特征。
例如,可以通过低层特征提取模块提取输入图像的低层特征,其中,低层特征提取模块可以采用多种构架,比如VGG16、TSN网络等。
示例性地,上述输入图像的低层特征可以是指低层特征提取模块学到的输入图像的低层纹理特征。
步骤803、提取前景区域特征。
例如,可以通过前景提取模块提取前景区域特征,前景特征提取模块可以是一个多层卷积神经网络。通过向前景特征提取模块输入低层特征,可以得到输出的前景区域特征。
需要说明的是,上述前景区域特征可以是指目标对象所在的区域,例如,目标对象可以是指行人、动物以及车辆等。
步骤804、生成前景注意力掩膜。
例如,可以通过前景注意力掩膜生成模块得到前景注意力掩膜,其中,前景注意力掩膜生成模块可以是全卷积神经网络,该全卷积神经网络可以包含两个卷积模块,每一个卷积模块可以包含三个连续的操作:卷积层、批归一化层(bach normalization,BN)、线性整流函数(rectified linear unit,ReLU)。前景注意力掩膜生成模块的输入是前景特征F,输出为前景注意力掩膜Zf
应理解,前景注意力掩膜的大小和前景特征的大小一致,前景注意力掩膜中每个位置对应的值表示该位置属于前景区域的概率,概率值的取值范围可以为[0,1],0表示该位置属于前景的概率为0,1表示该位置属于前景的概率为1。
步骤805、得到前景增强特征
其中,前景增强特征是通过前景注意力掩膜Zf增强前景特征F得到的,从而抑制背景噪声。
例如,可以通过将前景注意力掩膜Zf与前景特征F逐像素相乘,获得增强前景特征,其中,前景特征F与前景注意力掩膜Zf的大小相同,前景注意力掩膜中每个位置的值表示其属于前景区域的概率。
进一步地,可以将前景增强特征输入至前景分类器中进行分类,得到前景区域的预测分类结果。
例如,输入图像中包括行人时,其分类的结果为该输入图像属于哪一个行人ID。
示例性地,行人ID可以指行人的姓名、行人的编号或者行人的身份证号码等,行人ID可以用于区分不同的行人。
步骤806、提取背景特征。
例如,可以通过背景提取模块提取背景区域特征,背景特征提取模块可以是一个多层卷积神经网络。通过向背景特征提取模块输入低层特征,可以得到输出的背景区域特征。
步骤807、生成背景注意力掩膜。
例如,可以通过背景注意力掩膜生成模块得到背景注意力掩膜,其中,背景注意力掩膜生成模块可以是全卷积神经网络,该全卷积神经网络可以包含两个卷积模块,每一个卷积模块可以包含三个连续的操作:卷积层、批归一化层(bach normalization,BN)、线性整流函数(rectified linear unit,ReLU)。背景注意力掩膜生成模块的输入是背景特征B,输出为背景注意力掩膜Zb
应理解,背景注意力掩膜的大小和背景特征的大小一致,背景注意力掩膜中每个位置对应的值表示该位置属于背景区域的概率,概率值的取值范围可以为[0,1],0表示该位置属于背景的概率为0,1表示该位置属于背景的概率为1。
步骤808、得到背景增强特征
其中,前景增强特征是通过背景注意力掩膜Zb增强背景特征B得到的,从而抑制前景噪声。
例如,可以通过将背景注意力掩膜Zb与背景特征B逐像素相乘,获得增强背景特征,其中,背景特征B与背景注意力掩膜Zb的大小相同,背景注意力掩膜中每个位置的值表示其属于背景区域的概率。
进一步地,可以将背景增强特征输入至前景分类器中进行分类,得到背景区域的预测分类结果。
示例性地,对于同一摄像头可以近似看作其获取的背景区域不变,则可以通过摄像头ID确定背景区域图像对应的分类结果。
例如,摄像头ID可以是指摄像头的编号、摄像头所在的位置信息等。
步骤809、协同训练。
例如,可以将前景特征图与背景注意力掩膜对应相乘,同时将背景特征图与前景注意力掩膜对应相乘,生成协同训练损失函数。
在一个实施例中,对于一个训练数据可以包含输入图像、输入图像对应的行人ID以及摄像头ID,通过行人ID可以获得前景分支的softmax损失函数,通过摄像头ID可以获得背景分支的softmax损失函数;将协同训练损失函数、前景分支的softmax损失函数和背景分支的softmax损失函数加权,获得协同双路网络的最终损失函数,通过反向传播算法使得协同训练损失函数最小化,从而生成双路网络的各个参数值。
例如,上述用于图像分类的目标神经网络的训练方法的流程图如图12所示,在图12中以输入图像为行人图像进行举例说明,输入图像为行人图像时输出的前景区域的分类结果可以是行人的ID;背景区域的分类结果可以是摄像头ID,即可以是获取到输入图像的摄像头的标识。
如图12所示,目标神经神经网络的训练方法的流程可以包括以下步骤:
步骤一:将训练图像输入至特征提取模块(例如,低层特征提取模块),得到训练图像的全局特征图;
步骤二:将训练图像的全局特征图分别输入前景特征提取模块与背景特征提取模块,得到训练图像的前景特征图与背景特征图。
例如,可以同时将训练图像的全局特征图分别输入至前景特征提取模块与背景特征提取模块;或者,也可以是先将训练图像的全局特征图输入前景特征提取模块,再将训练图像的全局特征图输入至背景特征提取模块。
需要说明的是,上述前景特征提取模块与背景特征提取模块可以并行地对待训练图像的特征图进行处理,不限定输入的先后顺序。
步骤三:将前景特征图输入前景注意力掩膜生成模块,生成前景注意力掩膜;
步骤四:将背景特征图输入背景注意力掩膜生成模块,生成背景注意力掩膜;
需要说明的是,上述步骤三与步骤四可以是同时执行的,或者也可以是先执行步骤四再执行步骤三,并不对步骤三与步骤四的执行先后顺序进行任何限定。
步骤五:将前景特征图与前景注意力掩膜逐像素对应相乘,生成增强前景特征图;
例如,前景区域特征图输入至目标增强模块(target enhancement module,TEM)中可以得到增强前景特征图。
步骤六:将背景特征图与背景注意力掩膜逐像素对应相乘,生成增强背景特征图;
例如,背景区域特征图输入至目标增强模块(target enhancement module,TEM)中可以得到增强背景特征图。
应理解,图12中第一分支的TEM与第二分支的TEM可以是两个不同的模块。例如,第一分支中的TEM用于对前景区域特征图进行增强处理;第二分支的TEM用于对背景区域特征图进行增强处理。
需要说明的是,上述步骤五与步骤六可以是同时执行的,或者也可以是先执行步骤五再执行步骤六,并不对步骤五与步骤六的执行先后顺序进行任何限定。
步骤七:将增强前景特征图进行下采样,并输入前景分类器中进行分类,得到分类的类别为行人ID;
示例性地,行人ID可以是指行人的姓名、行人的编号或者行人的身份证号码等任意一项。
步骤八:将增强背景特征图进行下采样,并输入背景分类器中进行分类,得到分类的类别为摄像头ID。
示例性地,摄像头ID可以是指摄像头的编号、或者摄像头所在的位置信息等。
需要说明的是,上述为对行人ID与摄像头ID的举例说明,行人ID用于区分不同的行为,对于同一摄像头可以近似看作其获取的背景区域图像不变,即可以通过摄像头ID确定背景区域图像的分类结果,行人ID与摄像头ID的具体实现形式本申请不作任何限定。
应理解,上述步骤七与步骤八可以是同时执行的,或者也可以是先执行步骤八再执行步骤七,并不对步骤七与步骤八的执行先后顺序进行限定。
步骤九:将前景特征图与背景注意力掩膜对应相乘,同时将背景特征图与前景注意力掩膜对应相乘,生成协同训练Loss,通过反向传播算法使得协同训练Loss最小化,生成双路网络的各个参数值。
在本申请的实施例中,如图12所示的协同双路网络,通过使用行人ID和摄像头ID有监督地训练协同双路网络,使得协同双路网络能够同时提取行人特征和背景特征。通过协同训练双路网络,使得前景特征图、前景注意力掩膜、背景特征图、背景注意力掩膜的精度可以协同提高;同时,由于使用摄像头ID作为监督信息,使得本网络在提取注意力掩膜时不需要额外的标注数据集。
应理解,上述举例说明是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的上述举例说明,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
上文结合图1至图12,详细描述了本申请实施例图像分类方法,下面将结合图13和图16,详细描述本申请的装置实施例。应理解,本申请实施例中的图像分类装置可以执行前述本申请实施例的各种图像分类方法,即以下各种产品的具体工作过程,可以参考前述方法实施例中的对应过程。
图13是本申请实施例提供的图像分类装置的示意性框图。应理解,图像分类装置900可以执行图9所示的图像分类方法。该图像分类装置900包括:获取单元910和处理单元920。
其中,获取单元910用于获取待处理图像,所述待处理图像包括待识别的目标区域以及背景区域;所述处理单元920用于根据目标神经网络对所述待处理图像进行分类,得到所述待处理图像的所述目标区域的分类结果与所述背景区域的分类结果;
其中,所述目标神经网络是基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数训练得到的,所述目标区域分类损失函数用于表示样本图像的目标区域特征图对应的预测分类结果与目标区域标注分类结果之间的损失值,所述背景区域分类损失函数用于表示所述样本图像的背景区域特征图对应的预测分类结果与背景区域标注分类结果之间的损失值,所述协同损失函数用于分离所述样本图像的目标区域特征图与所述样本图像的背景区域特征图。
可选地,作为一个实施例,所述协同损失函数是通过第一协同损失函数和第二协同损失函数加权处理得到的,其中,所述第一协同损失函数是基于所述样本图像的目标区域特征图与所述样本图像的背景区域掩膜中对应的像素点相乘得到的;
所述第二协同损失函数是基于所述样本图像的背景区域特征图与所述样本图像的目标区域掩膜中对应的像素点相乘得到的。
可选地,作为一个实施例,所述目标神经网络包括第一分支和第二分支,其中,所述第一分支用于对所述样本图像的目标区域进行处理,得到所述样本图像的目标区域特征图和所述样本图像的目标区域掩膜;
所述第二分支用于对所述样本图像的背景区域进行处理,得到所述样本图像的背景区域特征图和所述样本图像的背景区域掩膜。
可选地,作为一个实施例,所述协同损失函数是通过以下等式得到的:
Figure BDA0002188675130000301
其中,Lt表示所述协同损失函数,N表示所述样本图像中像素点的数量,Fi表示所述样本图像的目标区域中第i个像素点,
Figure BDA0002188675130000302
表示所述样本图像的目标区域掩膜中第i个像素点的概率值,Bi表示所述样本图像的背景区域中第i个像素点,
Figure BDA0002188675130000303
表示所述样本图像的背景区域掩膜中第i个像素点的概率值,⊙用于表示对应元素进行相乘,N为大于1的整数,i为大于或等于1且小于或等于N的整数。
可选地,作为一个实施例,所述处理单元920具体用于:
通过所述目标神经网络的所述第一分支对所述待处理图像的目标区域进行处理,得到所述待处理图像的目标区域增强特征图,其中,所述目标区域增强特征图是通过所述待处理图像的目标区域特征图和所述待处理图像的目标区域掩膜相乘得到的;通过所述目标神经网络的所述第二分支对所述待处理图像的背景区域进行处理,得到所述待处理图像的背景区域增强特征图,其中,所述背景区域增强特征图是通过所述待处理图像的背景区域特征图和所述待处理图像的背景区域掩膜相乘得到的;
基于所述待处理图像的目标区域增强特征图与背景区域增强特征图进行分类,得到所述待处理图像的目标区域的分类结果与背景区域的分类结果。
可选地,作为一个实施例,所述待处理图像的背景区域的分类结果是指获取到所述待处理图像的摄像头的标识。
图14是本申请实施例提供的图像分类模型的训练装置的示意性框图。应理解,训练装置1000可以执行图10或图11所示的图像分类模型的训练方法。该训练装置1000包括:获取单元1010和处理单元1020。
其中,所述获取单元1010,用于获取训练数据,其中,所述训练数据包括样本图像、所述样本图像的目标区域标注分类结果、所述样本图像的背景区域标注分类结果;所述处理单元1020,用于根据神经网络提取的所述样本图像的目标区域特征图,得到所述样本图像的目标区域预测分类结果;根据所述神经网络提取的所述样本图像的背景区域特征图,得到所述样本图像的背景区域预测分类结果;基于所述样本图像的目标区域分类损失函数、背景区域分类损失函数以及协同损失函数,确定所述神经网络的参数;
其中,所述目标区域分类损失函数用于表示所述样本图像的目标区域预测分类结果与目标区域标注分类结果之间的损失值,所述背景区域分类损失函数用于表示所述样本图像的背景区域预测分类结果与背景区域标注分类结果之间的损失值,所述协同损失函数用于分离所述样本图像的目标区域特征图与所述样本图像的背景区域特征图。
可选地,作为一个实施例,所述协同损失函数是通过第一协同损失函数和第二协同损失函数加权处理得到的,其中,所述第一协同损失函数是基于所述样本图像的目标区域特征图与所述样本图像的背景区域掩膜中对应的像素点相乘得到的;
所述第二协同损失函数是基于所述样本图像的背景区域特征图与所述样本图像的目标区域掩膜中对应的像素点相乘得到的。
可选地,作为一个实施例,所述神经网络包括第一分支和第二分支,所述第一分支用于对所述样本图像的目标区域进行处理,得到所述样本图像的目标区域特征图和所述样本图像的目标区域掩膜;
所述第二分支用于对所述样本图像的背景区域进行处理,得到所述样本图像的背景区域特征图和所述样本图像的背景区域掩膜。
可选地,作为一个实施例,所述协同损失函数是通过以下等式得到的:
Figure BDA0002188675130000311
其中,Lt表示所述协同损失函数,N表示所述样本图像中像素点的数量,Fi表示所述样本图像的目标区域中第i个像素点,
Figure BDA0002188675130000312
表示所述样本图像的目标区域掩膜中第i个像素点的概率值,Bi表示所述样本图像的背景区域中第i个像素点,
Figure BDA0002188675130000313
表示所述样本图像的背景区域掩膜中第i个像素点的概率值,⊙用于表示对应元素进行相乘,N为大于1的整数,i为大于或等于1且小于或等于N的整数。
可选地,作为一个实施例,所述样本图像的目标区域预测分类结果是指获取到所述样本图像的摄像头的标识。
需要说明的是,上述图像分类装置900以及图像分类模型的训练装置1000以功能单元的形式体现。这里的术语“单元”可以通过软件和/或硬件形式实现,对此不作具体限定。
例如,“单元”可以是实现上述功能的软件程序、硬件电路或二者结合。所述硬件电路可能包括应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
因此,在本申请的实施例中描述的各示例的单元,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图15是本申请实施例提供的图像分类装置的硬件结构示意图。图15所示的图像分类装置1100(该装置1100具体可以是一种计算机设备)包括存储器1101、处理器1102、通信接口1103以及总线1104。其中,存储器1101、处理器1102、通信接口1103通过总线1104实现彼此之间的通信连接。
存储器1101可以是只读存储器(read only memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(random access memory,RAM)。存储器1101可以存储程序,当存储器1101中存储的程序被处理器1102执行时,处理器1102用于执行本申请实施例的图像分类方法的各个步骤,例如,执行图9所示的各个步骤。
应理解,本申请实施例所示的图像分类装置可以是服务器,例如,可以是云端的服务器,或者,也可以是配置于云端的服务器中的芯片。
处理器1202可以采用通用的中央处理器(central processing unit,CPU),微处理器,应用专用集成电路(application specific integrated circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序以实现本申请方法实施例的图像分类方法。
处理器1102还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的图像分类方法的各个步骤可以通过处理器1102中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器1202还可以是通用处理器、数字信号处理器(digital signalprocessing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(field programmable gatearray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1101,处理器1102读取存储器1101中的信息,结合其硬件完成本申请实施中图13所示的图像分类装置中包括的单元所需执行的功能,或者,执行本申请方法实施例的图9所示的图像分类方法。
通信接口1103使用例如但不限于收发器一类的收发装置,来实现装置1100与其他设备或通信网络之间的通信。
总线1104可包括在装置1100各个部件(例如,存储器1101、处理器1102、通信接口1103)之间传送信息的通路。
图16是本申请实施例提供的图像分类模型的训练装置的硬件结构示意图。图16所示的训练装置1200(该训练装置1200具体可以是一种计算机设备)包括存储器1201、处理器1202、通信接口1203以及总线1204。其中,存储器1201、处理器1202、通信接口1203通过总线1204实现彼此之间的通信连接。
存储器1201可以是只读存储器(read only memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(random access memory,RAM)。存储器1201可以存储程序,当存储器1201中存储的程序被处理器1202执行时,处理器1202用于执行本申请实施例的图像分类模型的训练方法的各个步骤,例如,执行图10或图11所示的各个步骤。
应理解,本申请实施例所示的训练装置可以是服务器,例如,可以是云端的服务器,或者,也可以是配置于云端的服务器中的芯片。
处理器1202可以采用通用的中央处理器(central processing unit,CPU),微处理器,应用专用集成电路(application specific integrated circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现本申请方法实施例的图像分类模型的训练方法。
处理器1202还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的图像分类模型的训练方法的各个步骤可以通过处理器1202中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器1202还可以是通用处理器、数字信号处理器(digital signalprocessing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(field programmable gatearray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1201,处理器1202读取存储器1201中的信息,结合其硬件完成图14所示的图像分类模型的训练装置中包括的单元所需执行的功能,或者,执行本申请方法实施例的图10或者图11所示的图像分类模型的训练方法。
通信接口1203使用例如但不限于收发器一类的收发装置,来实现装置1200与其他设备或通信网络之间的通信。
总线1204可包括在装置1200各个部件(例如,存储器1201、处理器1202、通信接口1203)之间传送信息的通路。
应注意,尽管上述装置1100和训练装置1200仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,装置1100和训练装置1200还可以包括实现正常运行所必须的其他器件。同时,根据具体需要本领域的技术人员应当理解,上述装置1100和训练装置1200还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,上述装置1100和训练装置1200也可仅仅包括实现本申请实施例所必须的器件,而不必包括图15或图16中所示的全部器件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

1.一种图像分类方法,其特征在于,包括:
获取待处理图像,所述待处理图像包括待识别的目标区域以及背景区域;
根据目标神经网络对所述待处理图像进行分类,得到所述待处理图像的所述目标区域的分类结果与所述背景区域的分类结果;
其中,所述目标神经网络是基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数训练得到的,所述目标区域分类损失函数用于表示样本图像的目标区域特征图对应的预测分类结果与目标区域标注分类结果之间的损失值,所述背景区域分类损失函数用于表示所述样本图像的背景区域特征图对应的预测分类结果与背景区域标注分类结果之间的损失值,所述协同损失函数用于分离所述样本图像的目标区域特征图与所述样本图像的背景区域特征图。
2.如权利要求1所述的图像分类方法,其特征在于,所述协同损失函数是通过第一协同损失函数和第二协同损失函数加权处理得到的,其中,所述第一协同损失函数是基于所述样本图像的目标区域特征图与所述样本图像的背景区域掩膜相乘得到的;
所述第二协同损失函数是基于所述样本图像的背景区域特征图与所述样本图像的目标区域掩膜相乘得到的。
3.如权利要求1或2所述的图像分类方法,其特征在于,所述目标神经网络包括第一分支和第二分支,其中,所述第一分支用于对所述样本图像的目标区域进行处理,得到所述样本图像的目标区域特征图和所述样本图像的目标区域掩膜;
所述第二分支用于对所述样本图像的背景区域进行处理,得到所述样本图像的背景区域特征图和所述样本图像的背景区域掩膜。
4.如权利要求1至3中任一项所述的图像分类方法,其特征在于,所述协同损失函数是通过以下等式得到的:
Figure FDA0002188675120000011
其中,Lt表示所述协同损失函数,N表示所述样本图像中像素点的数量,Fi表示所述样本图像的目标区域中第i个像素点,
Figure FDA0002188675120000013
表示所述样本图像的目标区域掩膜中第i个像素点的概率值,Bi表示所述样本图像的背景区域中第i个像素点,
Figure FDA0002188675120000012
表示所述样本图像的背景区域掩膜中第i个像素点的概率值,N为大于1的整数,i为大于或等于1且小于或等于N的整数。
5.如权利要求3或4所述的图像分类方法,其特征在于,所述根据目标神经网络所述待处理图像进行分类,得到所述待处理图像的目标区域的分类结果与所述背景区域的分类结果,包括:
通过所述目标神经网络的所述第一分支对所述待处理图像的目标区域进行处理,得到所述待处理图像的目标区域增强特征图,其中,所述目标区域增强特征图是通过所述待处理图像的目标区域特征图和所述待处理图像的目标区域掩膜相乘得到的;
通过所述目标神经网络的所述第二分支对所述待处理图像的背景区域进行处理,得到所述待处理图像的背景区域增强特征图,其中,所述背景区域增强特征图是通过所述待处理图像的背景区域特征图和所述待处理图像的背景区域掩膜相乘得到的;
基于所述待处理图像的目标区域增强特征图与背景区域增强特征图进行分类,得到所述待处理图像的目标区域的分类结果与背景区域的分类结果。
6.如权利要求1至5中任一项所述的图像分类方法,其特征在于,所述待处理图像的背景区域的分类结果是指获取到所述待处理图像的摄像头的标识。
7.一种图像分类模型的训练方法,其特征在于,包括:
获取训练数据,其中,所述训练数据包括样本图像、所述样本图像的目标区域标注分类结果、所述样本图像的背景区域标注分类结果;
根据神经网络提取的所述样本图像的目标区域特征图,得到所述样本图像的目标区域预测分类结果;
根据所述神经网络提取的所述样本图像的背景区域特征图,得到所述样本图像的背景区域预测分类结果;
基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数,确定所述神经网络的参数,
其中,所述目标区域分类损失函数用于表示所述样本图像的目标区域预测分类结果与目标区域标注分类结果之间的损失值,所述背景区域分类损失函数用于表示所述样本图像的背景区域预测分类结果与背景区域标注分类结果之间的损失值,所述协同损失函数用于分离所述样本图像的目标区域特征图与所述样本图像的背景区域特征图。
8.如权利要求7所述的训练方法,其特征在于,所述协同损失函数是通过第一协同损失函数和第二协同损失函数加权处理得到的,其中,所述第一协同损失函数是基于所述样本图像的目标区域特征图与所述样本图像的背景区域掩膜相乘得到的;
所述第二协同损失函数是基于所述样本图像的背景区域特征图与所述样本图像的目标区域掩膜相乘得到的。
9.如权利要求7或8所述的训练方法,其特征在于,所述神经网络包括第一分支和第二分支,所述第一分支用于对所述样本图像的目标区域进行处理,得到所述样本图像的目标区域特征图和所述样本图像的目标区域掩膜;
所述第二分支用于对所述样本图像的背景区域进行处理,得到所述样本图像的背景区域特征图和所述样本图像的背景区域掩膜。
10.如权利要求7至9中任一项所述的训练方法,其特征在于,所述协同损失函数是通过以下等式得到的:
Figure FDA0002188675120000021
其中,Lt表示所述协同损失函数,N表示所述样本图像中像素点的数量,Fi表示所述样本图像的目标区域中第i个像素点,
Figure FDA0002188675120000023
表示所述样本图像的目标区域掩膜中第i个像素点的概率值,Bi表示所述样本图像的背景区域中第i个像素点,
Figure FDA0002188675120000022
表示所述样本图像的背景区域掩膜中第i个像素点的概率值,N为大于1的整数,i为大于或等于1且小于或等于N的整数。
11.如权利要求7至10中任一项所述的训练方法,其特征在于,所述样本图像的目标区域预测分类结果是指获取到所述样本图像的摄像头的标识。
12.一种图像分类装置,其特征在于,包括:
获取单元,用于获取待处理图像,所述待处理图像包括待识别的目标区域以及背景区域;
处理单元,用于根据目标神经网络对所述待处理图像进行分类,得到所述待处理图像的所述目标区域的分类结果与所述背景区域的分类结果;
其中,所述目标神经网络是基于目标区域分类损失函数、背景区域分类损失函数以及协同损失函数训练得到的,所述目标区域分类损失函数用于表示样本图像的目标区域特征图对应的预测分类结果与目标区域标注分类结果之间的损失值,所述背景区域分类损失函数用于表示所述样本图像的背景区域特征图对应的预测分类结果与背景区域标注分类结果之间的损失值,所述协同损失函数用于分离所述样本图像的目标区域特征图与所述样本图像的背景区域特征图。
13.如权利要求12所述的图像分类装置,其特征在于,所述协同损失函数是通过第一协同损失函数和第二协同损失函数加权处理得到的,其中,所述第一协同损失函数是基于所述样本图像的目标区域特征图与所述样本图像的背景区域掩膜相乘得到的;
所述第二协同损失函数是基于所述样本图像的背景区域特征图与所述样本图像的目标区域掩膜相乘得到的。
14.如权利要求12或13所述的图像分类装置,其特征在于,所述目标神经网络包括第一分支和第二分支,其中,所述第一分支用于对所述样本图像的目标区域进行处理,得到所述样本图像的目标区域特征图和所述样本图像的目标区域掩膜;
所述第二分支用于对所述样本图像的背景区域进行处理,得到所述样本图像的背景区域特征图和所述样本图像的背景区域掩膜。
15.如权利要求12至14中任一项所述的图像分类装置,其特征在于,所述协同损失函数是通过以下等式得到的:
Figure FDA0002188675120000031
其中,Lt表示所述协同损失函数,N表示所述样本图像中像素点的数量,Fi表示所述样本图像的目标区域中第i个像素点,
Figure FDA0002188675120000033
表示所述样本图像的目标区域掩膜中第i个像素点的概率值,Bi表示所述样本图像的背景区域中第i个像素点,
Figure FDA0002188675120000032
表示所述样本图像的背景区域掩膜中第i个像素点的概率值,N为大于1的整数,i为大于或等于1且小于或等于N的整数。
16.如权利要求14或15所述的图像分类装置,其特征在于,所述处理单元具体用于:
通过所述目标神经网络的所述第一分支对所述待处理图像的目标区域进行处理,得到所述待处理图像的目标区域增强特征图,其中,所述目标区域增强特征图是通过所述待处理图像的目标区域特征图和所述待处理图像的目标区域掩膜相乘得到的;
通过所述目标神经网络的所述第二分支对所述待处理图像的背景区域进行处理,得到所述待处理图像的背景区域增强特征图,其中,所述背景区域增强特征图是通过所述待处理图像的背景区域特征图和所述待处理图像的背景区域掩膜相乘得到的;
基于所述待处理图像的目标区域增强特征图与背景区域增强特征图进行分类,得到所述待处理图像的目标区域的分类结果与背景区域的分类结果。
17.如权利要求12至16中任一项所述的图像分类装置,其特征在于,所述待处理图像的背景区域的分类结果是指获取到所述待处理图像的摄像头的标识。
18.一种图像分类模型的训练装置,其特征在于,包括:
获取单元,用于获取训练数据,其中,所述训练数据包括样本图像、所述样本图像的目标区域标注分类结果、所述样本图像的背景区域标注分类结果;
处理单元,用于根据神经网络提取的所述样本图像的目标区域特征图,得到所述样本图像的目标区域预测分类结果;根据所述神经网络提取的所述样本图像的背景区域特征图,得到所述样本图像的背景区域预测分类结果;基于所述样本图像的目标区域分类损失函数、背景区域分类损失函数以及协同损失函数,确定所述神经网络的参数,
其中,所述目标区域分类损失函数用于表示所述样本图像的目标区域预测分类结果与目标区域标注分类结果之间的损失值,所述背景区域分类损失函数用于表示所述样本图像的背景区域预测分类结果与背景区域标注分类结果之间的损失值,所述协同损失函数用于分离所述样本图像的目标区域特征图与所述样本图像的背景区域特征图。
19.如权利要求18所述的训练装置,其特征在于,所述协同损失函数是通过第一协同损失函数和第二协同损失函数加权处理得到的,其中,所述第一协同损失函数是基于所述样本图像的目标区域特征图与所述样本图像的背景区域掩膜相乘得到的;
所述第二协同损失函数是基于所述样本图像的背景区域特征图与所述样本图像的目标区域掩膜相乘得到的。
20.如权利要求18或19所述的训练装置,其特征在于,所述神经网络包括第一分支和第二分支,所述第一分支用于对所述样本图像的目标区域进行处理,得到所述样本图像的目标区域特征图和所述样本图像的目标区域掩膜;
所述第二分支用于对所述样本图像的背景区域进行处理,得到所述样本图像的背景区域特征图和所述样本图像的背景区域掩膜。
21.如权利要求18至20中任一项所述的训练装置,其特征在于,所述协同损失函数是通过以下等式得到的:
Figure FDA0002188675120000041
其中,Lt表示所述协同损失函数,N表示所述样本图像中像素点的数量,Fi表示所述样本图像的目标区域中第i个像素点,
Figure FDA0002188675120000043
表示所述样本图像的目标区域掩膜中第i个像素点的概率值,Bi表示所述样本图像的背景区域中第i个像素点,
Figure FDA0002188675120000042
表示所述样本图像的背景区域掩膜中第i个像素点的概率值,N为大于1的整数,i为大于或等于1且小于或等于N的整数。
22.如权利要求18至21中任一项所述的训练装置,其特征在于,所述样本图像的目标区域预测分类结果是指获取到所述样本图像的摄像头的标识。
23.一种图像分类装置,其特征在于,包括处理器和存储器,所述存储器用于存储程序指令,所述处理器用于调用所述程序指令来执行权利要求1至6中任一项所述的图像分类方法。
24.一种图像分类模型的训练装置,其特征在于,包括处理器和存储器,所述存储器用于存储程序指令,所述处理器用于调用所述程序指令来执行权利要求7至11中任一项所述的训练方法。
25.一种计算机可读存储介质,其特征在于,所述计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行如权利要求1至6中任一项所述的图像分类方法。
26.一种计算机可读存储介质,其特征在于,所述计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行如权利要求7至11中任一项所述的训练方法。
27.一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,以执行如权利要求1至6中任一项所述的图像分类方法。
28.一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,以执行如权利要求7至11中任一项所述的训练方法。
CN201910824602.1A 2019-09-02 2019-09-02 图像分类方法以及装置 Pending CN112446398A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910824602.1A CN112446398A (zh) 2019-09-02 2019-09-02 图像分类方法以及装置
PCT/CN2020/112694 WO2021043112A1 (zh) 2019-09-02 2020-08-31 图像分类方法以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910824602.1A CN112446398A (zh) 2019-09-02 2019-09-02 图像分类方法以及装置

Publications (1)

Publication Number Publication Date
CN112446398A true CN112446398A (zh) 2021-03-05

Family

ID=74734189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910824602.1A Pending CN112446398A (zh) 2019-09-02 2019-09-02 图像分类方法以及装置

Country Status (2)

Country Link
CN (1) CN112446398A (zh)
WO (1) WO2021043112A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113222055A (zh) * 2021-05-28 2021-08-06 新疆爱华盈通信息技术有限公司 一种图像分类方法、装置、电子设备及存储介质
CN113836790A (zh) * 2021-08-25 2021-12-24 成都鲁易科技有限公司 电动单车智能化等级的测评方法、装置及计算机设备
CN114943909A (zh) * 2021-03-31 2022-08-26 华为技术有限公司 运动区域识别的方法、装置、设备及系统
WO2022199500A1 (zh) * 2021-03-22 2022-09-29 华为技术有限公司 一种模型训练方法、场景识别方法及相关设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113222899B (zh) * 2021-04-15 2022-09-30 浙江大学 一种基于深度学习通过ct检测分割分类肝脏肿瘤的方法
CN113673332A (zh) * 2021-07-15 2021-11-19 浙江大华技术股份有限公司 对象识别方法、装置以及计算机可读存储介质
CN113408662A (zh) * 2021-07-19 2021-09-17 北京百度网讯科技有限公司 图像识别、图像识别模型的训练方法和装置
CN113591736A (zh) * 2021-08-03 2021-11-02 北京百度网讯科技有限公司 特征提取网络、活体检测模型的训练方法和活体检测方法
CN113516201B (zh) * 2021-08-09 2023-10-31 中国农业大学 一种基于深度神经网络的肉兔料盒中余料量的估算方法
CN113642515B (zh) * 2021-08-30 2023-11-24 北京航空航天大学 基于姿态关联的行人识别方法与装置、电子设备和介质
CN113837205B (zh) * 2021-09-28 2023-04-28 北京有竹居网络技术有限公司 用于图像特征表示生成的方法、设备、装置和介质
CN113989857B (zh) * 2021-12-27 2022-03-18 四川新网银行股份有限公司 一种基于深度学习的人像照片内容解析方法及系统
CN114661904B (zh) * 2022-03-10 2023-04-07 北京百度网讯科技有限公司 文档处理模型的训练方法、装置、设备、存储介质及程序

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920243A (zh) * 2017-03-09 2017-07-04 桂林电子科技大学 改进的全卷积神经网络的陶瓷材质件序列图像分割方法
CN108230354A (zh) * 2017-05-18 2018-06-29 深圳市商汤科技有限公司 目标跟踪、网络训练方法、装置、电子设备和存储介质
CN108764370A (zh) * 2018-06-08 2018-11-06 Oppo广东移动通信有限公司 图像处理方法、装置、计算机可读存储介质和计算机设备
CN109145979A (zh) * 2018-08-15 2019-01-04 上海嵩恒网络科技股份有限公司 敏感图像鉴定方法及终端系统
WO2019095118A1 (zh) * 2017-11-14 2019-05-23 深圳和而泰智能控制股份有限公司 一种皮肤瑕疵点分类方法及电子设备
CN110096960A (zh) * 2019-04-03 2019-08-06 罗克佳华科技集团股份有限公司 目标检测方法及装置
CN110188835A (zh) * 2019-06-05 2019-08-30 国家广播电视总局广播电视科学研究院 基于生成式对抗网络模型的数据增强行人再识别方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10127475B1 (en) * 2013-05-31 2018-11-13 Google Llc Classifying images
CN108229543A (zh) * 2017-12-22 2018-06-29 中国科学院深圳先进技术研究院 图像分类模型设计方法及装置
CN109829849B (zh) * 2019-01-29 2023-01-31 达闼机器人股份有限公司 一种训练数据的生成方法、装置和终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920243A (zh) * 2017-03-09 2017-07-04 桂林电子科技大学 改进的全卷积神经网络的陶瓷材质件序列图像分割方法
CN108230354A (zh) * 2017-05-18 2018-06-29 深圳市商汤科技有限公司 目标跟踪、网络训练方法、装置、电子设备和存储介质
WO2019095118A1 (zh) * 2017-11-14 2019-05-23 深圳和而泰智能控制股份有限公司 一种皮肤瑕疵点分类方法及电子设备
CN108764370A (zh) * 2018-06-08 2018-11-06 Oppo广东移动通信有限公司 图像处理方法、装置、计算机可读存储介质和计算机设备
CN109145979A (zh) * 2018-08-15 2019-01-04 上海嵩恒网络科技股份有限公司 敏感图像鉴定方法及终端系统
CN110096960A (zh) * 2019-04-03 2019-08-06 罗克佳华科技集团股份有限公司 目标检测方法及装置
CN110188835A (zh) * 2019-06-05 2019-08-30 国家广播电视总局广播电视科学研究院 基于生成式对抗网络模型的数据增强行人再识别方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022199500A1 (zh) * 2021-03-22 2022-09-29 华为技术有限公司 一种模型训练方法、场景识别方法及相关设备
CN114943909A (zh) * 2021-03-31 2022-08-26 华为技术有限公司 运动区域识别的方法、装置、设备及系统
CN114943909B (zh) * 2021-03-31 2023-04-18 华为技术有限公司 运动区域识别的方法、装置、设备及系统
CN113222055A (zh) * 2021-05-28 2021-08-06 新疆爱华盈通信息技术有限公司 一种图像分类方法、装置、电子设备及存储介质
CN113222055B (zh) * 2021-05-28 2023-01-10 新疆爱华盈通信息技术有限公司 一种图像分类方法、装置、电子设备及存储介质
CN113836790A (zh) * 2021-08-25 2021-12-24 成都鲁易科技有限公司 电动单车智能化等级的测评方法、装置及计算机设备
CN113836790B (zh) * 2021-08-25 2024-02-02 成都鲁易科技有限公司 电动单车智能化等级的测评方法、装置及计算机设备

Also Published As

Publication number Publication date
WO2021043112A1 (zh) 2021-03-11

Similar Documents

Publication Publication Date Title
CN112446398A (zh) 图像分类方法以及装置
CN110378381B (zh) 物体检测方法、装置和计算机存储介质
WO2021043168A1 (zh) 行人再识别网络的训练方法、行人再识别方法和装置
CN111291809B (zh) 一种处理装置、方法及存储介质
WO2021147325A1 (zh) 一种物体检测方法、装置以及存储介质
CN111368972B (zh) 一种卷积层量化方法及其装置
CN112639828A (zh) 数据处理的方法、训练神经网络模型的方法及设备
CN110222718B (zh) 图像处理的方法及装置
CN111882031A (zh) 一种神经网络蒸馏方法及装置
CN111832592B (zh) Rgbd显著性检测方法以及相关装置
EP4006777A1 (en) Image classification method and device
WO2022007867A1 (zh) 神经网络的构建方法和装置
CN112287954A (zh) 图像分类方法、图像分类模型的训练方法及其装置
CN112464930A (zh) 目标检测网络构建方法、目标检测方法、装置和存储介质
CN112529904A (zh) 图像语义分割方法、装置、计算机可读存储介质和芯片
CN111797882A (zh) 图像分类方法及装置
CN113011562A (zh) 一种模型训练方法及装置
CN113361549A (zh) 一种模型更新方法以及相关装置
CN113191489A (zh) 二值神经网络模型的训练方法、图像处理方法和装置
CN110705564B (zh) 图像识别的方法和装置
CN111695673A (zh) 训练神经网络预测器的方法、图像处理方法及装置
CN113449548A (zh) 更新物体识别模型的方法和装置
WO2022217434A1 (zh) 感知网络、感知网络的训练方法、物体识别方法及装置
US20230401826A1 (en) Perception network and data processing method
CN113449550A (zh) 人体重识别数据处理的方法、人体重识别的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination