CN112446096A - 一种基于航行大数据的船舶主机油耗动态预估方法 - Google Patents

一种基于航行大数据的船舶主机油耗动态预估方法 Download PDF

Info

Publication number
CN112446096A
CN112446096A CN202011344234.XA CN202011344234A CN112446096A CN 112446096 A CN112446096 A CN 112446096A CN 202011344234 A CN202011344234 A CN 202011344234A CN 112446096 A CN112446096 A CN 112446096A
Authority
CN
China
Prior art keywords
data
oil consumption
navigation data
speed
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011344234.XA
Other languages
English (en)
Inventor
张焱飞
罗天朗
乔继潘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ship and Shipping Research Institute Co Ltd
Original Assignee
Shanghai Ship and Shipping Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ship and Shipping Research Institute Co Ltd filed Critical Shanghai Ship and Shipping Research Institute Co Ltd
Priority to CN202011344234.XA priority Critical patent/CN112446096A/zh
Publication of CN112446096A publication Critical patent/CN112446096A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Geometry (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Computer Hardware Design (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Marketing (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computational Mathematics (AREA)
  • Game Theory and Decision Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Biology (AREA)
  • Operations Research (AREA)

Abstract

一种基于航行大数据的船舶主机油耗动态预估方法,包括如下步骤:将当前艏吃水、艉吃水、转速、时间以及地点的经纬度输入数据分类模块,获得对应数据种类类型;以及基于当前时间和经纬度获得当前对应的气象数据,包括风速、风向、浪高、浪向、浪周期、流速、流向;动态油耗预估模块根据数据种类类型选择所对应的油耗预估模型,之后将艏吃水、艉吃水、转速以及当前对应的气象数据输入所选择的油耗预估模型;输出船舶对地航速、功率以及每小时主机油耗。其优点是:利用实时采集的航行数据构建而成,通过增量学习方法进行动态学习,无须学习大量过往数据,并能够保证该系统可以根据实时的船舶性能而精确预估船舶油耗。

Description

一种基于航行大数据的船舶主机油耗动态预估方法
技术领域
本发明涉及船舶航线航速优化技术领域,尤其涉及一种基于航行大数据的船舶主机油耗动态预估方法。
背景技术
2008年以来,航运业的不景气让航运公司不断采取新的措施来降低营运成本,降速航行或者优化航速成为营运船舶的主要选择。此外,随着全球变暖日渐加剧,世界各国都制定了降低航运业碳排放计划,欧洲各国都制定了相关的航运碳排放法规。因此,如何准确预估燃油消耗成为营运船舶节能减排的关键技术,特别是结合实时的气象以及营运船舶的性能准确预估船舶的主机油耗可以极大提高营运船舶的营运性能。
现阶段国内外进行油耗预估的方法主要分为三种:1.结合目标船舶模型实验数据以及阻力计算公式进行油耗预估,该方法可以根据气象数据以及目标船的性能数据准确获得相应的主机油耗模型,但是该方法要求的基础数据较多且基础数据需要较为精确,特别是船舶模型的性能数据,一般而言,对于新造船而言,此类数据较为容易得到,而较多的营运船舶较难获得;2.利用众多营运船舶的采集主机油耗数据拟合出经验公式,从而进行油耗预估;此类方法利用多种船型的航行数据进行拟合,但是每个船舶的性能都是不一样的,特别是非同类船型,因此该方法存在较大的预估误差;3.利用船上填报的航行数据以及油耗数据,学习得到符合目标船的油耗模型,该方法利用船员填报的数据进行预估,而船员一般一天填报一次数据,所以填报的船舶遭遇的气象会存在较大误差,且油耗值都是人工测量值,这方法学习得到的模型较为粗糙。
因此现有技术中油耗预估方案的缺点可以简单概括为:
1.构建油耗模型的传统方法需要较多较为精确地目标船舶模型水动力性能实验数据;
2.拟合得到的油耗经验公式不能体现目标船舶的特性,因此由经验公式得到的油耗模型性能较为粗糙,且该油耗模型未考虑航行中遭遇的气象因素;
3.基于船员填报数据的油耗模型计算得到的油耗值会因为船员观测的误差而不能准确计算得到真实的油耗;
4.传统的油耗模型只适用于某一时间段的营运船舶,例如,同一船舶在刚造好后的航行性能与航行一年后的航行性能不同,因为对比刚造那段时间,航行一段时间后,目标船的主机会老化,且船体会出现污底,这些都会严重影响船舶的航行性能,从而影响主机油耗。
对现有技术存在的缺陷,提出本发明。
发明内容
目的是针对现有技术结构上的缺点,提出一种基于航行大数据的船舶主机油耗动态预估方法,该油耗预估方法利用实时采集的航行数据构建而成,通过增量学习方法进行动态学习,无须学习大量过往数据,并能够保证该系统可以根据实时的船舶性能而精确预估船舶油耗。
为了达到上述发明目的,本发明提出的一种基于航行大数据的船舶主机油耗动态预估方法,通过以下技术方案实现的:
一种基于航行大数据的船舶主机油耗动态预估方法,其特征在于该方法包括如下步骤:
S1:对船舶航行数据基于KMeans聚类为多吃水低转速、多吃水高转速、低吃水低转速、低吃水高转速四类数据种类,训练获得动态航行数据分类模块;
S2:将船舶航行数据放入动态航行数据分类模型中一一分类形成四类航行数据,并提取每条航行数据对应的气象数据;将每条航行数据和对应气象数据中的主机转速、艏吃水、艉吃水、艏向角、风速、风向、浪高、浪向、浪周期、流速、流向作为输入量输入多层神经网络,将每条航行数据的对地航速、主机功率和主机油耗作为输出量输入多层神经网络算法,训练获得四种与所述四类数据种类一一对应的油耗预估模型;
S3:将当前艏吃水、艉吃水、转速、时间以及地点的经纬度输入数据分类模块,获得对应数据种类类型;
以及基于当前时间和经纬度获得当前对应的气象数据,包括风速、风向、浪高、浪向、浪周期、流速、流向;
S4:动态油耗预估模块根据数据种类类型选择所对应的油耗预估模型,之后将艏吃水、艉吃水、转速以及当前对应的气象数据输入所选择的油耗预估模型;
S5:输出船舶对地航速、功率以及每小时主机油耗。
所述的步骤S1包括如下子步骤:
S101:对历史航行数据进行KMeans聚类,获得历史分类模型;
S102:对新入库的增量航行数据进行KMeans聚类,本步骤中KMeans聚类算法的基础参数来源于步骤S101中历史分类模型,经训练获得增量分类模型;
S103:将历史分类模型中的算法参数替换成增量分类模型的算法参数,从而生成动态航行数据分类模块。
所述的步骤S101和S102均包括如下步骤:将航行数据中经度、纬度、时间、对地航速、艏吃水、艉吃水、艏向角、主机功率、主机油耗、主机转速缺失或超限数据删除,并对筛选后航行数据进行KMeans聚类。
所述的步骤S2包括如下子步骤:
S201:将船舶历史航行数据放入动态航行数据分类模型中得到四类航行数据;以及根据每条历史航行数据中时间、经度、纬度由历史气象数据库提取对应的气象数据,并利用B样条曲线的插值方法得到与每条历史航行数据的时间点和经纬度对应的风速、风向、浪高、浪向、浪周期、流速、流向;
S202:将每条历史航行数据和对应气象数据中的主机转速、艏吃水、艉吃水、艏向角、风速、风向、浪高、浪向、浪周期、流速、流向作为输入量输入多层神经网络,将每条航行数据的对地航速、主机功率和主机油耗作为输出量输入多层神经网络算法,训练获得四种与所述四类数据种类一一对应的油耗预估历史学习模型;
S203:对新入库的增量航行数据执行如步骤S201相同的操作,获得增量航行数据的分类类型和对应气象数据;
S204:对所述增量航行数据执行如步骤S202相同的操作,且本步骤中多层神经网络算法的基础参数来源于所述油耗预估历史学习模型,经训练获得四种基于增量航行数据的油耗预估增量模型;
S205:将油耗预估历史学习模型中的算法参数替换成油耗预估增量模型的算法参数,从而生成动态油耗预估模块。
所述的步骤S201和S203均包括如下步骤:将航行数据中经度、纬度、时间、对地航速、艏吃水、艉吃水、艏向角、主机功率、主机油耗、主机转速缺失或超限数据删除,并将筛选后航行数据输入多层神经网络算法。
所述步骤S2中基于当前时间和经纬度获得当前对应的气象数据的具体方法是:基于当前时间、经度、纬度由全球气象预报数据库中提取对应的气象数据,并利用B样条曲线的插值方法得到与时间点和经纬度对应的风速、风向、浪高、浪向、浪周期、流速、流向。
相对现有技术,本发明的有益效果是:
1.该油耗预估方法利用实时采集的航行数据构建而成,因此,该油耗预估模型无需目标船的模型性能实验数据;
2.该油耗预估方法针对特定的船舶数据进行学习,且结合实时的气象来构建油耗模型;
3.该油耗预估方法利用船上实时采集的航行数据进行学习,学习数据的对象为10分钟数据,此外,将航行数据分类处理,不同类别的航行数据有不同的预估参数,从而极大提高系统预估的性能;
4.该油耗预估方法利用增量学习方法进行动态学习,无需学习大量过往数据,基于历史的模型,每一个月重新学习一下航行数据,重构预估方法,从而保证该系统能够根据实时的船舶性能精确预估船舶油耗。
附图说明
通过下面结合附图对其示例性实施例进行的描述,本发明上述特征和优点将会变得更加清楚和容易理解。
图1为本发明基于航行大数据的船舶主机油耗动态预估方法的简化流程图;
图2为本发明实施例动态航行数据分类模型的构建流程图;
图3为本发明实施例动态油耗预估模块的构建流程图;
图4为本发明实施例基于神经网络的模型构建流程图。
具体实施方式
下面结合附图对本发明作进一步详细说明,以便于同行业技术人员的理解:
参见图1所示,本发明实施例提供一种基于航行大数据的船舶主机油耗动态预估方法,采用该方法输入船舶的艏吃水、艉吃水、转速、时间以及经纬度,可以预估得到船舶对地航速、功率以及每小时主机油耗。
其在实时预估油耗时,具体采用的步骤如下:
将当前艏吃水、艉吃水、转速、时间以及地点的经纬度输入数据分类模块,获得对应数据种类类型;
以及利用当前时间和经纬度从全球气象预报数据库中提取气象,协同气象三维差值模块得到精确的气象值(风速、风向、浪高、浪向、浪周期、流速、流向)。
在此,气象插值模型具体指的是,如计算东经120.3°北纬20.3°在2020-8-2714:20的气象,需要对整点整经纬度气象进行三维插值,气象数据都是预报每天0、6、12、18点的数据,且经纬度都是以整数出现(如120°)。因此,进行三维(经度维度、纬度维度、时间维度)插值,利用B样条曲线的插值方法可以得到较为精准的气象数据。
动态油耗预估模块根据数据种类类型选择所对应的油耗预估模型,之后将艏吃水、艉吃水、转速以及当前对应的气象数据输入所选择的油耗预估模型;
输出船舶对地航速、功率以及每小时主机油耗。
因此本实施例中主机油耗动态预估方法的关键在于动态航行数据分类模块以及动态油耗预估模块。该两个模块构建的主要流程如下:
一、动态航行数据分类模块主要流程(见图二):
该动态航行数据分类模块利用KMeans聚类算法,主要将航行数据分为四大类,该分类的准则主要依据吃水和转速,该四类数据种类分别是多吃水低转速、多吃水高转速、低吃水低转速、低吃水高转速。对于该模块而言,利用艏吃水、艉吃水的高低来评判吃水的高低。
动态航行数据分类模块构建的主要流程如下:
①输入历史航行数据;
②对航行数据进行数据筛选,将航行数据中经度、纬度、时间、对地航速、艏吃水、艉吃水、艏向角、主机功率、主机油耗、主机转速缺失或超限数据删除,从而保证数据符合正常逻辑;
③对筛选后的航行数据进行分类,分类算法采用KMeans算法,依据艏吃水、艉吃水、主机转速进行分类;
④根据初步算法得到第一次分类航行数据后的分类模型,以此为初次训练基准为后续动态地模型调整提供依据;
⑤动态学习新入库的增量航行数据,数据筛选方法同第②步;
⑥对筛选后的增量航行数据进行分类,分类算法依然采用初始的KMeans算法,算法的基础参数来源于历史分类模型,并在此基础上,优化算法的参数;
⑦得到增量分类模型,并将历史模型中的算法参数替换成优化后的算法参数;
⑧生成动态航行数据分类模块。
二、动态油耗预估模块主要流程(见图三):
该动态油耗预估模块的构建主要分为两大步骤:构建基于历史数据的油耗预估历史学习模型、构建基于增量数据以及历史模型的油耗预估增量模型。构建油耗预估历史学习模型是动态油耗预估模块的基础,基于历史航行数据和全球气象历史数据学习而成。构建油耗预估增量模型,需要利用实时增量的航行数据以及实时更新的全球气象数据学习而成。
构建动态油耗预估模块的主要步骤流程如下:
①输入历史航行数据以及历史气象数据;
②筛选历史航行数据,将航行数据中经度、纬度、时间、对地航速、艏吃水、艉吃水、艏向角、主机功率、主机油耗、主机转速缺失或超限数据删除,从而保证学习数据符合正常逻辑,将筛选后的历史航行数据放入动态航行数据分类模型中,按照分类规则可以得到4类航行数据;
提取每条航行数据对应的气象。根据时间、经度、纬度从历史气象数据库中提取对应范围的气象数据,利用气象插值模型得到该时间点、该经纬度下的气象:风速、风向、浪高、浪向、浪周期、流速、流向。
③4类历史航行数据以及相对应的气象数据依次进行初次学习。利用多层神经网络的机器学习方法进行学习,模型输入量:主机转速、艏吃水、艉吃水、艏向角、风速、风向、浪高、浪向、浪周期、流速、流向,输出量:对地航速、主机功率、主机油耗。如图四所示。
④根据初步算法得到第一次训练后的油耗预估历史学习模型,以此为初次训练基准为后续动态地模型调整提供依据;
⑤动态学习新入库的增量航行数据,数据筛选分类方法以及气象提取方法同第②步;
⑥对分类后的增量航行数据进行学习,学习算法依然采用初始的多层神经网络算法,算法的基础参数来源于油耗预估历史学习模型,并在此基础上,优化算法的参数;
⑦得到基于增量数据的油耗预估增量模型,并将油耗预估历史学习模型中的算法参数替换成基于增量数据优化后的油耗预估增量模型的算法参数;
⑧生成动态油耗预估模块。
相对现有技术,本发明的有益效果是:
1.该油耗预估方法利用实时采集的航行数据构建而成,因此,该油耗预估模型无需目标船的模型性能实验数据;
2.该油耗预估方法针对特定的船舶数据进行学习,且结合实时的气象来构建油耗模型;
3.该油耗预估方法利用船上实时采集的航行数据进行学习,学习数据的对象为10分钟数据,此外,将航行数据分类处理,不同类别的航行数据有不同的预估参数,从而极大提高系统预估的性能;
4.该油耗预估方法利用增量学习方法进行动态学习,无需学习大量过往数据,基于历史的模型,每一个月重新学习一下航行数据,重构预估方法,从而保证该系统能够根据实时的船舶性能精确预估船舶油耗。
以上通过实施例对于本发明的发明意图和实施方式进行详细说明,但是本发明所属领域的一般技术人员可以理解,本发明以上实施例仅为本发明的优选实施例之一,为篇幅限制,这里不能逐一列举所有实施方式,任何可以体现本发明权利要求技术方案的实施,都在本发明的保护范围内。

Claims (6)

1.一种基于航行大数据的船舶主机油耗动态预估方法,其特征在于该方法包括如下步骤:
S1:对船舶航行数据基于KMeans聚类为多吃水低转速、多吃水高转速、低吃水低转速、低吃水高转速四类数据种类,训练获得动态航行数据分类模块;
S2:将船舶航行数据放入动态航行数据分类模型中一一分类形成四类航行数据,并提取每条航行数据对应的气象数据;将每条航行数据和对应气象数据中的主机转速、艏吃水、艉吃水、艏向角、风速、风向、浪高、浪向、浪周期、流速、流向作为输入量输入多层神经网络,将每条航行数据的对地航速、主机功率和主机油耗作为输出量输入多层神经网络算法,训练获得四种与所述四类数据种类一一对应的油耗预估模型;
S3:将当前艏吃水、艉吃水、转速、时间以及地点的经纬度输入数据分类模块,获得对应数据种类类型;
以及基于当前时间和经纬度获得当前对应的气象数据,包括风速、风向、浪高、浪向、浪周期、流速、流向;
S4:动态油耗预估模块根据数据种类类型选择所对应的油耗预估模型,之后将艏吃水、艉吃水、转速以及当前对应的气象数据输入所选择的油耗预估模型;
S5:输出船舶对地航速、功率以及每小时主机油耗。
2.根据权利要求1所述的一种基于航行大数据的船舶主机油耗动态预估方法,其特征在于,所述的步骤S1包括如下子步骤:
S101:对历史航行数据进行KMeans聚类,获得历史分类模型;
S102:对新入库的增量航行数据进行KMeans聚类,本步骤中KMeans聚类算法的基础参数来源于步骤S101中历史分类模型,经训练获得增量分类模型;
S103:将历史分类模型中的算法参数替换成增量分类模型的算法参数,从而生成动态航行数据分类模块。
3.根据权利要求2所述的一种基于航行大数据的船舶主机油耗动态预估方法,其特征在于,所述的步骤S101和S102均包括如下步骤:将航行数据中经度、纬度、时间、对地航速、艏吃水、艉吃水、艏向角、主机功率、主机油耗、主机转速缺失或超限数据删除,并对筛选后航行数据进行KMeans聚类。
4.根据权利要求3所述的一种基于航行大数据的船舶主机油耗动态预估方法,其特征在于,所述的步骤S2包括如下子步骤:
S201:将船舶历史航行数据放入动态航行数据分类模型中得到四类航行数据;以及根据每条历史航行数据中时间、经度、纬度由历史气象数据库提取对应的气象数据,并利用B样条曲线的插值方法得到与每条历史航行数据的时间点和经纬度对应的风速、风向、浪高、浪向、浪周期、流速、流向;
S202:将每条历史航行数据和对应气象数据中的主机转速、艏吃水、艉吃水、艏向角、风速、风向、浪高、浪向、浪周期、流速、流向作为输入量输入多层神经网络,将每条航行数据的对地航速、主机功率和主机油耗作为输出量输入多层神经网络算法,训练获得四种与所述四类数据种类一一对应的油耗预估历史学习模型;
S203:对新入库的增量航行数据执行如步骤S201相同的操作,获得增量航行数据的分类类型和对应气象数据;
S204:对所述增量航行数据执行如步骤S202相同的操作,且本步骤中多层神经网络算法的基础参数来源于所述油耗预估历史学习模型,经训练获得四种基于增量航行数据的油耗预估增量模型;
S205:将油耗预估历史学习模型中的算法参数替换成油耗预估增量模型的算法参数,从而生成动态油耗预估模块。
5.根据权利要求4所述的一种基于航行大数据的船舶主机油耗动态预估方法,其特征在于,所述的步骤S201和S203均包括如下步骤:将航行数据中经度、纬度、时间、对地航速、艏吃水、艉吃水、艏向角、主机功率、主机油耗、主机转速缺失或超限数据删除,并将筛选后航行数据输入多层神经网络算法。
6.根据权利要求5所述的一种基于航行大数据的船舶主机油耗动态预估方法,其特征在于,所述步骤S2中基于当前时间和经纬度获得当前对应的气象数据的具体方法是:基于当前时间、经度、纬度由全球气象预报数据库中提取对应的气象数据,并利用B样条曲线的插值方法得到与时间点和经纬度对应的风速、风向、浪高、浪向、浪周期、流速、流向。
CN202011344234.XA 2020-11-26 2020-11-26 一种基于航行大数据的船舶主机油耗动态预估方法 Pending CN112446096A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011344234.XA CN112446096A (zh) 2020-11-26 2020-11-26 一种基于航行大数据的船舶主机油耗动态预估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011344234.XA CN112446096A (zh) 2020-11-26 2020-11-26 一种基于航行大数据的船舶主机油耗动态预估方法

Publications (1)

Publication Number Publication Date
CN112446096A true CN112446096A (zh) 2021-03-05

Family

ID=74737714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011344234.XA Pending CN112446096A (zh) 2020-11-26 2020-11-26 一种基于航行大数据的船舶主机油耗动态预估方法

Country Status (1)

Country Link
CN (1) CN112446096A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113240201A (zh) * 2021-06-08 2021-08-10 兰州大学 一种基于gmm-dnn混合模型预测船舶主机功率方法
CN113682443A (zh) * 2021-09-17 2021-11-23 中远海运科技(北京)有限公司 Vlcc船舶在指令航速下的理论日燃油消耗确定方法
CN115456451A (zh) * 2022-09-28 2022-12-09 中远海运科技股份有限公司 一种基于ais的船舶油耗估算方法及系统
CN115660137A (zh) * 2022-09-07 2023-01-31 中远海运科技股份有限公司 一种船舶风浪航行能耗精准估算方法
TWI792418B (zh) * 2021-07-14 2023-02-11 國立成功大學 預測船舶油耗的方法
CN115907172A (zh) * 2022-11-29 2023-04-04 中远海运散货运输有限公司 船舶油耗量预测方法、装置、设备及介质
CN115936188A (zh) * 2022-11-21 2023-04-07 上海船舶运输科学研究所有限公司 理论模型加自动采集数据的船舶营运油耗模型建立方法
CN116522211A (zh) * 2023-07-03 2023-08-01 亿海蓝(北京)数据技术股份公司 船舶油耗可解释性灰箱估计方法、装置和可读存储介质
WO2024121137A1 (en) * 2022-12-06 2024-06-13 Cetasol Ab A virtual fuel consumption sensor system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108052707A (zh) * 2017-11-28 2018-05-18 中国船舶工业系统工程研究院 一种基于聚类分析的船舶航行工况划分方法
CN110705797A (zh) * 2019-10-09 2020-01-17 浙江海洋大学 一种基于船舶传感网的船舶油耗数据预测方法
CN111046491A (zh) * 2019-11-28 2020-04-21 中国船舶工业系统工程研究院 预估大型船舶柴油主机油耗的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108052707A (zh) * 2017-11-28 2018-05-18 中国船舶工业系统工程研究院 一种基于聚类分析的船舶航行工况划分方法
CN110705797A (zh) * 2019-10-09 2020-01-17 浙江海洋大学 一种基于船舶传感网的船舶油耗数据预测方法
CN111046491A (zh) * 2019-11-28 2020-04-21 中国船舶工业系统工程研究院 预估大型船舶柴油主机油耗的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
冯亮等: "基于航行数据的船舶航行油耗模型建立方法", 《上海船舶运输科学研究所学报》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113240201A (zh) * 2021-06-08 2021-08-10 兰州大学 一种基于gmm-dnn混合模型预测船舶主机功率方法
CN113240201B (zh) * 2021-06-08 2024-02-09 兰州大学 一种基于gmm-dnn混合模型预测船舶主机功率方法
TWI792418B (zh) * 2021-07-14 2023-02-11 國立成功大學 預測船舶油耗的方法
CN113682443A (zh) * 2021-09-17 2021-11-23 中远海运科技(北京)有限公司 Vlcc船舶在指令航速下的理论日燃油消耗确定方法
CN113682443B (zh) * 2021-09-17 2022-05-31 中远海运科技(北京)有限公司 Vlcc船舶在指令航速下的理论日燃油消耗确定方法
CN115660137B (zh) * 2022-09-07 2023-08-11 中远海运科技股份有限公司 一种船舶风浪航行能耗精准估算方法
CN115660137A (zh) * 2022-09-07 2023-01-31 中远海运科技股份有限公司 一种船舶风浪航行能耗精准估算方法
CN115456451A (zh) * 2022-09-28 2022-12-09 中远海运科技股份有限公司 一种基于ais的船舶油耗估算方法及系统
CN115456451B (zh) * 2022-09-28 2023-10-31 中远海运科技股份有限公司 一种基于ais的船舶油耗估算方法及系统
CN115936188A (zh) * 2022-11-21 2023-04-07 上海船舶运输科学研究所有限公司 理论模型加自动采集数据的船舶营运油耗模型建立方法
CN115907172B (zh) * 2022-11-29 2024-01-30 中远海运散货运输有限公司 船舶油耗量预测方法、装置、设备及介质
CN115907172A (zh) * 2022-11-29 2023-04-04 中远海运散货运输有限公司 船舶油耗量预测方法、装置、设备及介质
WO2024121137A1 (en) * 2022-12-06 2024-06-13 Cetasol Ab A virtual fuel consumption sensor system
CN116522211A (zh) * 2023-07-03 2023-08-01 亿海蓝(北京)数据技术股份公司 船舶油耗可解释性灰箱估计方法、装置和可读存储介质
CN116522211B (zh) * 2023-07-03 2024-02-02 亿海蓝(北京)数据技术股份公司 船舶油耗可解释性灰箱估计方法、装置和可读存储介质

Similar Documents

Publication Publication Date Title
CN112446096A (zh) 一种基于航行大数据的船舶主机油耗动态预估方法
CN113033073A (zh) 一种基于数据驱动的无人船能效数字孪生方法及系统
JP2013104690A (ja) 船舶の最適航路計算システム、船舶の運航支援システム、船舶の最適航路計算方法、及び船舶の運航支援方法
Perera et al. Machine intelligence based data handling framework for ship energy efficiency
US20220194533A1 (en) Method and system for reducing vessel fuel consumption
CN110705797A (zh) 一种基于船舶传感网的船舶油耗数据预测方法
US20180341729A1 (en) Systems and methods for vessel fuel utilization
CN105539797A (zh) 一种基于ecdis的风力助航船舶的航行方法及系统
CN113705090B (zh) 一种长江航道内河船舶航速实时优化方法
CN115660137B (zh) 一种船舶风浪航行能耗精准估算方法
CN112347218B (zh) 无人船艇的环境地图生成方法及无人船艇感知系统
Kee et al. Prediction of ship fuel consumption and speed curve by using statistical method
CN115423176A (zh) 用于船舶航行性能实时分析系统及营运碳排放优化方法
CN112214721B (zh) 一种基于ais数据的动态化船舶排放清单建立方法
CN110778398B (zh) 一种船用柴油机燃油管理控制系统
CN112784473A (zh) 智能分析航行信息优化能量的船舶燃料节约系统及其方法
Krata et al. Bayesian approach to ship speed prediction based on operational data
CN117742346A (zh) 一种船舶的实时航行状态分析与能源消耗控制方法
CN117332510A (zh) 一种基于混合预测模型的远洋船舶航速损失预测方法
Perera et al. Ship speed power performance under relative wind profiles
CN111824357A (zh) 测试方法、装置、电子设备及计算机可读存储介质
Lei et al. Prediction of main engine speed and fuel consumption of inland ships based on deep learning
CN116127846A (zh) 一种减摇技术的智能评估方法及系统
CN115600311A (zh) 船舶纵倾优化方法和系统
Filippopoulos et al. Multi-sensor data fusion for the vessel trim analyzer and optimization platform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210305