CN112445844B - Big data platform financial data management control system - Google Patents

Big data platform financial data management control system Download PDF

Info

Publication number
CN112445844B
CN112445844B CN202011360661.7A CN202011360661A CN112445844B CN 112445844 B CN112445844 B CN 112445844B CN 202011360661 A CN202011360661 A CN 202011360661A CN 112445844 B CN112445844 B CN 112445844B
Authority
CN
China
Prior art keywords
data
abnormal
abnormal data
time
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011360661.7A
Other languages
Chinese (zh)
Other versions
CN112445844A (en
Inventor
卿赟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Elide Software Technology Co ltd
Original Assignee
Chongqing Medical and Pharmaceutical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical and Pharmaceutical College filed Critical Chongqing Medical and Pharmaceutical College
Priority to CN202011360661.7A priority Critical patent/CN112445844B/en
Publication of CN112445844A publication Critical patent/CN112445844A/en
Application granted granted Critical
Publication of CN112445844B publication Critical patent/CN112445844B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2477Temporal data queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/25Integrating or interfacing systems involving database management systems
    • G06F16/252Integrating or interfacing systems involving database management systems between a Database Management System and a front-end application
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/12Accounting
    • G06Q40/125Finance or payroll

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Databases & Information Systems (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Technology Law (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

本发明提出了一种大数据平台财务数据管理控制系统,包括:查询提取模块,用于通过云端数据库获取财务数据,对财务数据中的异常数据进行登录,然后开始初步查询,查询过程中对无效数据进行实时查询校验提取;异常判断模块,用于在实时查询校验提取后,设置异常数据的判断区间,在判断区间之中形成标准化数据;筛选评分模块,用于对标准化数据进行偏离度分析,分析之后通过筛选模型对异常数据进行筛选操作,并对筛选之后的异常数据进行特征评分,综合判断模块,用于经过特征评分之后,财务数据中异常数据的风险度通过综合风险判断模型进行判断输出。

Figure 202011360661

The invention proposes a financial data management and control system on a big data platform, comprising: a query and extraction module, which is used to obtain financial data through a cloud database, log in abnormal data in the financial data, and then start a preliminary query. The data is subjected to real-time query, verification and extraction; the abnormality judgment module is used to set the judgment interval of abnormal data after the real-time query, verification and extraction, and form standardized data in the judgment interval; the screening and scoring module is used to measure the deviation of the standardized data. Analysis, after the analysis, the abnormal data is screened by the screening model, and the characteristic score of the abnormal data after screening is carried out. Judgment output.

Figure 202011360661

Description

大数据平台财务数据管理控制系统Big data platform financial data management control system

技术领域technical field

本发明涉及大数据分析领域,尤其涉及一种大数据平台财务数据管理控制系统。The invention relates to the field of big data analysis, in particular to a financial data management control system of a big data platform.

背景技术Background technique

随着信息化、智能化的迅猛发展,在财务数据管理过程中,由于交易次数的增加,形成了难以计数的交易历史数据,对于交易历史数据中有多少是合规操作或者正常的交易行为,对于财务数据管理者来说通过传统的查验方式已经不能满足当前社会日益变化,日趋复杂的异常交易行为。With the rapid development of informatization and intelligence, in the process of financial data management, due to the increase in the number of transactions, innumerable transaction history data is formed. How much of the transaction history data is compliant operation or normal transaction behavior? For financial data managers, traditional inspection methods can no longer meet the changing and complex abnormal transaction behaviors of the current society.

尤其在学校,政府机关或者大型连锁企业,其交易总额和交易次数更是难以计数,通过传统的计算机累积方式或者统计学原理并不能快速准确的获取包含交易风险的交易行为,而且即使用到了一些提取算法,其对异常财务数据的把控和查验过程并不准确。这就亟需本领域技术人员解决相应的技术问题。Especially in schools, government agencies or large chain enterprises, the total amount of transactions and the number of transactions are even more difficult to count. Traditional computer accumulation methods or statistical principles cannot quickly and accurately obtain transaction behaviors that include transaction risks, and even if some are used. Extraction algorithm, its control and inspection process of abnormal financial data is not accurate. This requires those skilled in the art to solve the corresponding technical problems.

发明内容SUMMARY OF THE INVENTION

本发明旨在至少解决现有技术中存在的技术问题,特别创新地提出了一种大数据平台财务数据管理控制系统。The present invention aims to at least solve the technical problems existing in the prior art, and particularly innovatively proposes a financial data management control system on a big data platform.

为了实现本发明的上述目的,本发明提供了一种大数据平台财务数据管理控制系统,包括:In order to achieve the above-mentioned purpose of the present invention, the present invention provides a financial data management control system of a big data platform, including:

查询提取模块,用于通过云端数据库获取财务数据,对财务数据中的异常数据进行登录,然后开始初步查询,查询过程中对无效数据进行实时查询校验提取;The query extraction module is used to obtain financial data through the cloud database, log in the abnormal data in the financial data, and then start a preliminary query, and perform real-time query verification and extraction of invalid data during the query process;

异常判断模块,用于在实时查询校验提取后,设置异常数据的判断区间,在判断区间之中形成标准化数据;The abnormality judgment module is used to set the judgment interval of abnormal data after real-time query, verification and extraction, and form standardized data in the judgment interval;

筛选评分模块,用于对标准化数据进行偏离度分析,分析之后通过筛选模型对异常数据进行筛选操作,并对筛选之后的异常数据进行特征评分,The screening and scoring module is used to analyze the deviation degree of the standardized data. After the analysis, the abnormal data is screened by the screening model, and the characteristic score of the abnormal data after screening is performed.

综合判断模块,用于经过特征评分之后,财务数据中异常数据的风险度通过综合风险判断模型进行判断输出。The comprehensive judgment module is used to judge and output the risk degree of abnormal data in the financial data through the comprehensive risk judgment model after characteristic scoring.

优选的,所述查询提取模块包括:Preferably, the query extraction module includes:

在云端数据库中调取财务数据,在财务数据中获取异常数据,异常数据提取过程通过初步查询过程进行数据均衡来动态请求云端数据库的财务数据,采用动态配置的方式,设置异常数据的获取阈值,根据不同财务数据的安全控制机制和权限管理要求提取不同的异常数据进行登录操作,The financial data is retrieved from the cloud database, and abnormal data is obtained from the financial data. The abnormal data extraction process performs data balance through the preliminary query process to dynamically request the financial data of the cloud database, and uses the dynamic configuration method to set the acquisition threshold of abnormal data. According to the security control mechanism and authority management requirements of different financial data, extract different abnormal data for login operation,

在初步查询过程中,云端数据库对财务数据认证、功能访问权限信息存储在本地数据库中,进行统一财务数据认证、功能权限控制;对于财务数据对异常数据进行逻辑隔离,存放在独立数据库中;财务数据登录过程中验证用户身份并根据财务数据中异常数据访问权限信息构造该用户有权访问的异常数据集合,通过云端数据库的身份认证过程进行认证访问;如果访问失败,则返回异常数据访问失败信息;如果访问成功,则登录成功;建立用户与系统动态分配的应用服务器实例独立的通道。During the initial query process, the cloud database stores financial data authentication and functional access authority information in the local database, and performs unified financial data authentication and functional authority control; for financial data, abnormal data is logically isolated and stored in an independent database; During the data login process, the user's identity is verified, and the abnormal data set that the user has access to is constructed according to the abnormal data access authority information in the financial data, and the authentication access is performed through the identity authentication process of the cloud database; if the access fails, the abnormal data access failure information is returned. ; If the access is successful, the login is successful; establish an independent channel between the user and the application server instance dynamically allocated by the system.

优选的,所述查询提取模块包括:Preferably, the query extraction module includes:

异常数据的访问和使用过程为,在根据多个异常数据,形成异常数据关系节点,查找PaaS平台资源进行转换为树结点,生成异常数据树结点列表,将空的异常数据结点集作为当前结点集,对当前的异常数据树结点集进行遍历操作,从而判断当前遍历操作的结点集的异常数据父资源信息列表是否等于预置的异常数据根结点信息列表,若等于预置的异常数据根结点信息列表,则当前遍历操作的结点集为当前异常数据权限树的根结点,若不等于预置的异常数据根结点信息列表,继续遍历异常数据标识等于当前遍历操作的结点的父资源信息列表的资源,将该资源标记为当前遍历操作的结点的异常数据父结点。The process of accessing and using abnormal data is to form abnormal data relationship nodes according to multiple abnormal data, search for PaaS platform resources to convert them into tree nodes, generate a list of abnormal data tree nodes, and use the empty abnormal data node set as the For the current node set, perform a traversal operation on the current abnormal data tree node set, so as to determine whether the abnormal data parent resource information list of the node set of the current traversal operation is equal to the preset abnormal data root node information list, if it is equal to the preset abnormal data root node information list If it is not equal to the preset abnormal data root node information list, the node set of the current traversal operation is the root node of the current abnormal data permission tree. The resource of the parent resource information list of the node of the traversal operation is marked as the abnormal data parent node of the node of the current traversal operation.

优选的,所述查询提取模块包括:Preferably, the query extraction module includes:

对于异常数据结点是否等于当前遍历到的结点的父资源信息列表,判断当前树结点列表是否遍历完毕;若遍历完毕检测异常数据父结点信息列表,若未遍历完毕,则将当前异常数据父结点信息列表作为当前树结点的根节点,标记递归构建异常数据业务查询树;将异常数据某一节点上分配的多个异常数据查询请求,重新分配给异常数据某一计算节点并备份,以使得所述某一计算节点和所述备份计算节点中的每一个仅被分配一个子查询。For whether the abnormal data node is equal to the parent resource information list of the currently traversed node, it is judged whether the current tree node list has been traversed; if the traversal is completed, the abnormal data parent node information list is detected. The data parent node information list is used as the root node of the current tree node, and the abnormal data service query tree is constructed recursively by marking; multiple abnormal data query requests allocated on a certain abnormal data node are reassigned to a certain abnormal data computing node and Backup so that each of the certain compute node and the backup compute node is assigned only one subquery.

优选的,所述异常判断模块包括:Preferably, the abnormality judgment module includes:

经过查询校验之后,对异常数据划分判断区间,计算异常数据相似度,从而生成判断区间,将异常数据通过比例缩放计算进行标准化处理,异常大量资金转入快速分散转出的交易数据ui的转换值为u′i,异常大量分散资金转入快速集中转出的交易数据vi的转换值为v′i,异常时间点交易数据xi的转换值为x′i、异常相同数额交易数据yi的转换值为y′i、异常超限额交易数据zi的转换值为z′kAfter the query and verification, the abnormal data is divided into judgment intervals, and the similarity of the abnormal data is calculated to generate the judgment interval . The conversion value is u′ i , the conversion value of transaction data vi of abnormally large amount of scattered funds is transferred in and fast centralized transfer out is v′ i , the conversion value of transaction data xi at abnormal time point is x′ i , abnormal transaction data of the same amount The conversion value of y i is y′ i , and the conversion value of abnormal over-limit transaction data zi is z′ k ;

将转换后的交易异常数据与时间和日期变量一起代入判断模型,在统计的任一时间和日期内计算异常数据的判断值:Substitute the transformed abnormal transaction data into the judgment model together with the time and date variables, and calculate the judgment value of the abnormal data at any time and date of the statistics:

Figure BDA0002803831260000031
Figure BDA0002803831260000031

其中,B(t,d)为异常数据在任一时间t和日期d的判断值;f(u′i;t,d)为一个异常大量资金转入快速分散转出的交易数据的时间和日期的判断值;f(v′i;t,d)为一个异常大量分散资金转入快速集中转出的交易数据的时间和日期的判断值;f(x′i;t,d)为一个异常时间点交易数据的时间和日期的判断值;f(y′i;t,d)为一个异常相同数额交易数据的时间和日期的判断值;f(z′i;t,d)为一个异常超限额交易数据的判断值;i最大为60是为了保证一分钟内每一秒的异常数据都进行实时监控判断。Among them, B(t,d) is the judgment value of abnormal data at any time t and date d; f( u′i ; t,d) is the time and date of an abnormally large amount of funds transferred in and out of transaction data quickly dispersed The judgment value of ; f(v′ i ; t, d) is the judgment value of the time and date of the transaction data of an abnormally large amount of decentralized funds transferred into the fast centralized transfer; f(x′ i ; t, d) is an abnormal The judgment value of the time and date of the transaction data at the time point; f(y′ i ; t, d) is the judgment value of the time and date of an abnormal transaction data of the same amount; f (z′ i ; t, d) is an abnormal Judgment value of over-quota transaction data; the maximum i is 60 is to ensure that every second of abnormal data within one minute is monitored and judged in real time.

优选的,所述异常判断模块包括:Preferably, the abnormality judgment module includes:

计算每一个异常数据在时间和日期上的实际和判断值的差值,通过残差平方和对离散的异常数据进行线性曲线拟合过程,从而对异常数据的风险趋势进行判断,Calculate the difference between the actual and judged values of each abnormal data on time and date, and perform a linear curve fitting process on the discrete abnormal data through the residual sum of squares, so as to judge the risk trend of abnormal data.

Figure BDA0002803831260000041
Figure BDA0002803831260000041

其中,W为每个异常数据的残差平方和;B0(t,d)为每个异常数据在该时间和日期的实际值;B(t,d)为每个异常数据在该时间和日期的判断值;M为统计的时间最大的时刻或者日期的最多天数。Among them, W is the residual sum of squares of each abnormal data; B 0 (t,d) is the actual value of each abnormal data at this time and date; B(t, d) is the sum of each abnormal data at this time Judgment value of the date; M is the time with the largest time or the maximum number of days of the date.

优选的,所述异常判断模块包括:Preferably, the abnormality judgment module includes:

然后计算异常数据的偏离度Then calculate the deviation of abnormal data

Figure BDA0002803831260000042
Figure BDA0002803831260000042

其中,F为计算常数,通过调节系数λ进行调节,由于W增大,故取的计算常数F较大;通过增加异常数据准确获取值Hj,对全部N个异常数据准确获取值累加之后进行特征值e的偏离收敛,β为特征阈值。Among them, F is the calculation constant, which is adjusted by the adjustment coefficient λ. Since W increases, the calculation constant F is larger; the value H j is accurately obtained by increasing the abnormal data, and the accurately obtained values are accumulated for all N abnormal data. The deviation of the eigenvalue e converges, and β is the feature threshold.

优选的,所述筛选评分模块包括:Preferably, the screening scoring module includes:

异常数据偏离度分析后,通过先验概率分布在异常数据中进行统计信息计算;计算异常数据先验条件概率分布,设置第一异常数据集合C与第二异常数据集合E的内部属性,其中第一异常数据集合包括ui和vi,第二异常数据集合包括xi、yi和zi,通过定义异常数据的时间类属性G和日期类属性I,在概率分布条件下分别计算条件概率

Figure BDA0002803831260000043
Figure BDA0002803831260000044
计算得到:After the deviation degree of abnormal data is analyzed, statistical information is calculated in the abnormal data through the prior probability distribution; the prior conditional probability distribution of abnormal data is calculated, and the internal attributes of the first abnormal data set C and the second abnormal data set E are set, wherein the first abnormal data set C and the second abnormal data set E are set. An abnormal data set includes u i and v i , and the second abnormal data set includes xi , yi and zi . By defining the time class attribute G and date class attribute I of the abnormal data, the conditional probability is calculated respectively under the condition of probability distribution
Figure BDA0002803831260000043
and
Figure BDA0002803831260000044
Calculated:

Figure BDA0002803831260000045
Figure BDA0002803831260000045

继续推导得到,

Figure BDA0002803831260000046
continue to derive,
Figure BDA0002803831260000046

其中

Figure BDA0002803831260000047
表示第一异常数据集合
Figure BDA0002803831260000048
和时间类属性G和日期类属性I联合概率分布,遍历第一异常数据集合
Figure BDA0002803831260000049
和时间类属性G的全部值得到其条件概率分布
Figure BDA0002803831260000051
以及第一异常数据集合
Figure BDA0002803831260000052
和日期类属性I的全部值得到其条件概率分布
Figure BDA0002803831260000053
时间类属性条件概率Q(G),日期类属性条件概率Q(I);in
Figure BDA0002803831260000047
Represents the first abnormal data set
Figure BDA0002803831260000048
Joint probability distribution with time class attribute G and date class attribute I, and traverse the first abnormal data set
Figure BDA0002803831260000049
and all the values of the time class attribute G to get its conditional probability distribution
Figure BDA0002803831260000051
and the first abnormal data set
Figure BDA0002803831260000052
and all values of the date class attribute I get its conditional probability distribution
Figure BDA0002803831260000053
Time class attribute conditional probability Q(G), date class attribute conditional probability Q(I);

然后计算:Then calculate:

Figure BDA0002803831260000054
Figure BDA0002803831260000054

继续推导得到,

Figure BDA0002803831260000055
continue to derive,
Figure BDA0002803831260000055

其中

Figure BDA0002803831260000056
表示第二异常数据集合
Figure BDA0002803831260000057
和时间类属性G和日期类属性I联合概率分布,遍历第二异常数据集合
Figure BDA0002803831260000058
和时间类属性G的全部值得到其条件概率分布
Figure BDA0002803831260000059
以及第二异常数据集合
Figure BDA00028038312600000510
和日期类属性I的全部值得到其条件概率分布
Figure BDA00028038312600000511
in
Figure BDA0002803831260000056
Represents the second abnormal data set
Figure BDA0002803831260000057
Joint probability distribution with time class attribute G and date class attribute I, and traverse the second abnormal data set
Figure BDA0002803831260000058
and all the values of the time class attribute G to get its conditional probability distribution
Figure BDA0002803831260000059
and the second set of abnormal data
Figure BDA00028038312600000510
and all values of the date class attribute I get its conditional probability distribution
Figure BDA00028038312600000511

优选的,所述筛选评分模块包括:Preferably, the screening scoring module includes:

第一异常数据集合C中每个异常数据节点与第二异常数据集合E中美个异常数据节点时间属性和日期属性的条件信息联合概率分布值如下;The joint probability distribution values of the condition information of the time attribute and date attribute of each abnormal data node in the first abnormal data set C and the US abnormal data nodes in the second abnormal data set E are as follows;

Figure BDA00028038312600000512
Figure BDA00028038312600000512

选取异常数据的类属性J放入大数据平台中;将第一异常数据集合C中和第二异常数据集合E的内部属性以类属性J为父节点,构造朴素贝叶斯网络;Select the class attribute J of the abnormal data and put it into the big data platform; take the class attribute J as the parent node of the internal attributes of the first abnormal data set C and the second abnormal data set E, and construct a Naive Bayesian network;

将第一异常数据集合C中和第二异常数据集合E中的节点逐个放入贝叶斯网络中;若第一异常数据集合C中

Figure BDA00028038312600000513
则将
Figure BDA00028038312600000514
放入网络作为其父节点;;若第二异常数据集合E中
Figure BDA00028038312600000515
则将
Figure BDA00028038312600000516
放入网络作为其父节点;从而得到用于异常数据等级筛选排序的贝叶斯网络。Put the nodes in the first abnormal data set C and the second abnormal data set E into the Bayesian network one by one; if the first abnormal data set C
Figure BDA00028038312600000513
will
Figure BDA00028038312600000514
Put it into the network as its parent node; if the second abnormal data set E is
Figure BDA00028038312600000515
will
Figure BDA00028038312600000516
Put it into the network as its parent node; thus get a Bayesian network for rank screening and sorting of abnormal data.

优选的,所述综合判断模块包括:Preferably, the comprehensive judgment module includes:

结合风险度权重计算,对异常大量资金转入快速分散转出的交易数据ui进行计算:Combined with the calculation of risk weight, calculate the transaction data ui of abnormally large amount of funds transferred in and out quickly and dispersedly:

Figure BDA0002803831260000061
Figure BDA0002803831260000061

其中,Ttotal为总基准时间;pui为异常大量资金转入快速分散转出的交易数据权重的动态变化分量;Vtotal为总基准日期,U为交易数据检测时刻分量;K为交易数据检测日期分量;Among them, T total is the total reference time; p ui is the dynamic change component of the transaction data weight of the abnormally large amount of funds transferred in and out quickly and dispersedly; V total is the total reference date, U is the transaction data detection time component; K is the transaction data detection date component;

对异常大量分散资金转入快速集中转出的交易数据vi计算风险度权重,Calculate the risk weight for the transaction data v i of the abnormally large amount of decentralized funds transferred in and out quickly and in a centralized manner,

Figure BDA0002803831260000062
Figure BDA0002803831260000062

其中,

Figure BDA0002803831260000063
为异常大量分散资金转入快速集中转出的交易数据vi权重的动态变化分量;in,
Figure BDA0002803831260000063
It is the dynamic change component of the weight of transaction data v i for the transfer of an abnormally large amount of decentralized funds in and out of the rapid centralized transfer;

对异常时间点交易数据xi计算风险度权重,Calculate the risk weight for the transaction data x i at the abnormal time point,

Figure BDA0002803831260000064
Figure BDA0002803831260000064

其中,hxi为异常时间点交易数据xi的动态变化分量;Among them, h xi is the dynamic change component of transaction data xi at abnormal time point;

对异常相同数额交易数据yi计算风险度权重,Calculate the risk weight for the abnormal transaction data yi of the same amount,

Figure BDA0002803831260000065
Figure BDA0002803831260000065

其中,

Figure BDA0002803831260000066
为异常相同数额交易数据yi的动态变化分量;in,
Figure BDA0002803831260000066
is the dynamic change component of abnormal transaction data yi of the same amount;

对异常超限额交易数据zi计算风险度权重,Calculate the risk weight for the abnormal over-limit transaction data zi ,

Figure BDA0002803831260000067
Figure BDA0002803831260000067

综合风险判断模型的定义:The definition of comprehensive risk judgment model:

Figure BDA0002803831260000071
Figure BDA0002803831260000071

其中,

Figure BDA0002803831260000072
为异常大量资金转入快速分散转出的交易数据预测值;
Figure BDA0002803831260000073
为异常大量资金转入快速分散转出的交易数据的判断阈值,
Figure BDA0002803831260000074
为异常大量分散资金转入快速集中转出的交易数据预测值;
Figure BDA0002803831260000075
为异常大量分散资金转入快速集中转出的交易数据的判断阈值,
Figure BDA0002803831260000076
为异常时间点交易数据预测值;
Figure BDA0002803831260000077
为异常时间点交易数据的判断阈值,
Figure BDA0002803831260000078
为异常相同数额交易数据预测值;
Figure BDA0002803831260000079
为异常相同数额交易数据的判断阈值,
Figure BDA00028038312600000710
为异常超限额交易数据预测值;
Figure BDA00028038312600000711
为异常超限额交易数据的判断阈值,ε为判断校正系数。in,
Figure BDA0002803831260000072
Predicted value of transaction data for abnormally large amount of funds transferred in and out quickly and dispersedly;
Figure BDA0002803831260000073
It is the judgment threshold for the transaction data of abnormally large amount of funds transferred in and quickly dispersed and transferred out.
Figure BDA0002803831260000074
Predicted value of transaction data for the transfer of abnormally large amount of scattered funds in and out of rapid centralized transfer;
Figure BDA0002803831260000075
It is the judgment threshold for the transaction data of abnormally large amount of decentralized funds transferred into and out of rapid centralized transfer.
Figure BDA0002803831260000076
Predicted values for transaction data at abnormal time points;
Figure BDA0002803831260000077
is the judgment threshold of transaction data at abnormal time points,
Figure BDA0002803831260000078
Predicted values for abnormal transaction data of the same amount;
Figure BDA0002803831260000079
is the judgment threshold for abnormal transaction data of the same amount,
Figure BDA00028038312600000710
It is the predicted value of abnormal over-limit transaction data;
Figure BDA00028038312600000711
is the judgment threshold of abnormal over-limit transaction data, and ε is the judgment correction coefficient.

综上所述,由于采用了上述技术方案,本发明的有益效果是:To sum up, due to the adoption of the above-mentioned technical solutions, the beneficial effects of the present invention are:

在学校,政府机关或者大型连锁企业,其交易总额和交易次数更是难以计数,通过传统的计算机累积方式或者统计学原理并不能快速准确的获取包含交易风险的交易行为,而且即使用到了一些提取算法,在财务交易总额和交易次数中的计数,对异常财务数据的把控和查验过程并不准确。尤其在对数据筛选过程中的计算过程存在诸多不合理的收敛阈值和判断条件,本申请通过神经网络学习算法,提取出相对准确的异常交易行为,并通过大数据平台对异常行为进行筛选评价和风险控制,提高了工作效率,并能够在海量财务数据提取管理过程中提高数据的安全性、预判性和交易稳定性。In schools, government agencies or large chain enterprises, the total amount of transactions and the number of transactions are even more difficult to count. Traditional computer accumulation methods or statistical principles cannot quickly and accurately obtain transaction behaviors containing transaction risks, and even if some extraction methods are used. Algorithms, counting in the total amount of financial transactions and the number of transactions, are inaccurate in the process of controlling and checking abnormal financial data. In particular, there are many unreasonable convergence thresholds and judgment conditions in the calculation process in the data screening process. This application uses a neural network learning algorithm to extract relatively accurate abnormal transaction behaviors, and uses the big data platform to screen, evaluate and evaluate abnormal behaviors. Risk control improves work efficiency and improves data security, predictability and transaction stability in the process of extracting and managing massive financial data.

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be set forth, in part, from the following description, and in part will be apparent from the following description, or may be learned by practice of the invention.

附图说明Description of drawings

本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:

图1是本发明总体示意图。Figure 1 is an overall schematic diagram of the present invention.

具体实施方式Detailed ways

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present invention, and should not be construed as a limitation of the present invention.

如图1所示,本发明公开一种大数据平台财务数据管理控制系统,包括如下步骤:As shown in Figure 1, the present invention discloses a financial data management control system for a big data platform, comprising the following steps:

S1,通过云端数据库获取财务数据,对财务数据中的异常数据进行登录,然后开始初步查询,查询过程中对无效数据进行实时查询校验提取;S1, obtain financial data through the cloud database, log in the abnormal data in the financial data, and then start a preliminary query, and perform real-time query, verification and extraction of invalid data during the query process;

S2,在实时查询校验提取后,设置异常数据的判断区间,在判断区间之中形成标准化数据;S2, after real-time query verification and extraction, set a judgment interval for abnormal data, and form standardized data in the judgment interval;

S3,对标准化数据进行偏离度分析,分析之后通过筛选模型对异常数据进行筛选操作,并对筛选之后的异常数据进行特征评分,S3, carry out deviation degree analysis on the standardized data, after the analysis, carry out the screening operation on the abnormal data through the screening model, and carry out the feature score for the abnormal data after screening,

S4,经过特征评分之后,财务数据中异常数据的风险度通过综合风险判断模型进行判断输出。S4, after feature scoring, the risk degree of abnormal data in the financial data is judged and output by a comprehensive risk judgment model.

所述S1包括:The S1 includes:

S1-1,在云端数据库中调取财务数据,在财务数据中获取异常数据,异常数据提取过程通过初步查询过程进行数据均衡来动态请求云端数据库的财务数据,采用动态配置的方式,设置异常数据的获取阈值,根据不同财务数据的安全控制机制和权限管理要求提取不同的异常数据进行登录操作,S1-1, retrieve financial data from the cloud database, and obtain abnormal data from the financial data. The abnormal data extraction process performs data balance through the preliminary query process to dynamically request the financial data of the cloud database, and uses dynamic configuration to set abnormal data. According to the security control mechanism and authority management requirements of different financial data, different abnormal data are extracted for login operations.

S1-2,在初步查询过程中,云端数据库对财务数据认证、功能访问权限信息存储在本地数据库中,进行统一财务数据认证、功能权限控制;对于财务数据对异常数据进行逻辑隔离,存放在独立数据库中;财务数据登录过程中验证用户身份并根据财务数据中异常数据访问权限信息构造该用户有权访问的异常数据集合,通过云端数据库的身份认证过程进行认证访问;如果访问失败,则返回异常数据访问失败信息;如果访问成功,则登录成功;建立用户与系统动态分配的应用服务器实例独立的通道,S1-2, in the preliminary query process, the cloud database stores financial data authentication and functional access authority information in the local database, and performs unified financial data authentication and functional authority control; for financial data, logically isolates abnormal data and stores it in an independent In the database; the user's identity is verified during the financial data login process, and the abnormal data set that the user has access to is constructed according to the abnormal data access permission information in the financial data, and the access is authenticated through the identity authentication process of the cloud database; if the access fails, an exception is returned. Data access failure information; if the access is successful, the login is successful; establish an independent channel between the user and the application server instance dynamically allocated by the system,

S1-3,异常数据的访问和使用过程为,在根据多个异常数据,形成异常数据关系节点,查找PaaS平台资源进行转换为树结点,生成异常数据树结点列表,将空的异常数据结点集作为当前结点集,对当前的异常数据树结点集进行遍历操作,从而判断当前遍历操作的结点集的异常数据父资源信息列表是否等于预置的异常数据根结点信息列表,若等于预置的异常数据根结点信息列表,则当前遍历操作的结点集为当前异常数据权限树的根结点,若不等于预置的异常数据根结点信息列表,继续遍历异常数据标识等于当前遍历操作的结点的父资源信息列表的资源,将该资源标记为当前遍历操作的结点的异常数据父结点,S1-3, the process of accessing and using abnormal data is: forming abnormal data relationship nodes according to multiple abnormal data, searching for PaaS platform resources to convert them into tree nodes, generating a list of abnormal data tree nodes, and converting empty abnormal data The node set is used as the current node set to traverse the current abnormal data tree node set, so as to determine whether the abnormal data parent resource information list of the current traversing node set is equal to the preset abnormal data root node information list , if it is equal to the preset exception data root node information list, the node set of the current traversal operation is the root node of the current exception data permission tree, if not equal to the preset exception data root node information list, continue to traverse the exception The resource whose data identifier is equal to the parent resource information list of the node of the current traversal operation is marked as the abnormal data parent node of the node of the current traversal operation,

S1-4,对于异常数据结点是否等于当前遍历到的结点的父资源信息列表,判断当前树结点列表是否遍历完毕;若遍历完毕检测异常数据父结点信息列表,若未遍历完毕,则将当前异常数据父结点信息列表作为当前树结点的根节点,标记递归构建异常数据业务查询树;将异常数据某一节点上分配的多个异常数据查询请求,重新分配给异常数据某一计算节点并备份,以使得所述某一计算节点和所述备份计算节点中的每一个仅被分配一个子查询;S1-4, for whether the abnormal data node is equal to the parent resource information list of the currently traversed node, it is judged whether the current tree node list is traversed; if the traversal is completed, the abnormal data parent node information list is detected. Then, the current abnormal data parent node information list is used as the root node of the current tree node, and the abnormal data business query tree is constructed recursively by marking; multiple abnormal data query requests allocated on a certain abnormal data node are reassigned to the abnormal data certain node. a computing node and backup, such that each of the certain computing node and the backup computing node is assigned only one subquery;

通过结点树方式进行异常数据的查询过程,起到初步判定异常数据的作用,如果进一步进行数据提取还需要将数据进行深层次挖掘。The query process of abnormal data through the node tree method plays the role of preliminary judgment of abnormal data. If further data extraction is performed, the data needs to be deeply excavated.

所述S2包括:The S2 includes:

S2-1,经过查询校验之后,对异常数据划分判断区间,计算异常数据相似度,从而生成判断区间,将异常数据通过比例缩放计算进行标准化处理,异常大量资金转入快速分散转出的交易数据ui的转换值为u′i,异常大量分散资金转入快速集中转出的交易数据vi的转换值为v′i,异常时间点交易数据xi的转换值为x′i、异常相同数额交易数据yi的转换值为y′i、异常超限额交易数据zi的转换值为z′kS2-1, after the query and verification, the abnormal data is divided into judgment intervals, and the similarity of the abnormal data is calculated, so as to generate the judgment interval, and the abnormal data is standardized through the scaling calculation, and the abnormally large amount of funds are transferred to the transaction that is quickly dispersed and transferred out. The conversion value of data ui is u′ i , the conversion value of transaction data vi of abnormally large amount of scattered funds is transferred in and fast centralized transfer is v′ i , the conversion value of transaction data x i at abnormal time point is x′ i , abnormal The conversion value of transaction data yi of the same amount is y′ i , and the conversion value of abnormal over-limit transaction data zi is z′ k ;

将转换后的交易异常数据与时间和日期变量一起代入判断模型,在统计的任一时间和日期内计算异常数据的判断值:Substitute the transformed abnormal transaction data into the judgment model together with the time and date variables, and calculate the judgment value of the abnormal data at any time and date of the statistics:

Figure BDA0002803831260000101
Figure BDA0002803831260000101

其中,B(t,d)为异常数据在任一时间t和日期d的判断值;f(u′i;t,d)为一个异常大量资金转入快速分散转出的交易数据的时间和日期的判断值;f(v′i;t,d)为一个异常大量分散资金转入快速集中转出的交易数据的时间和日期的判断值;f(x′i;t,d)为一个异常时间点交易数据的时间和日期的判断值;f(y′i;t,d)为一个异常相同数额交易数据的时间和日期的判断值;f(z′i;t,d)为一个异常超限额交易数据的判断值;i最大为60是为了保证一分钟内每一秒的异常数据都进行实时监控判断;Among them, B(t,d) is the judgment value of abnormal data at any time t and date d; f( u′i ; t,d) is the time and date of an abnormally large amount of funds transferred in and out of transaction data quickly dispersed The judgment value of ; f(v′ i ; t, d) is the judgment value of the time and date of the transaction data of an abnormally large amount of decentralized funds transferred into the fast centralized transfer; f(x′ i ; t, d) is an abnormal The judgment value of the time and date of the transaction data at the time point; f(y′ i ; t, d) is the judgment value of the time and date of an abnormal transaction data of the same amount; f (z′ i ; t, d) is an abnormal Judgment value of over-limit transaction data; the maximum value of i is 60 to ensure that every second of abnormal data within one minute is monitored and judged in real time;

S2-2,计算每一个异常数据在时间和日期上的实际和判断值的差值,通过残差平方和对离散的异常数据进行线性曲线拟合过程,从而对异常数据的风险趋势进行判断,S2-2: Calculate the difference between the actual and judged values of each abnormal data on time and date, and perform a linear curve fitting process on the discrete abnormal data through the residual sum of squares, so as to judge the risk trend of the abnormal data.

Figure BDA0002803831260000102
Figure BDA0002803831260000102

其中,W为每个异常数据的残差平方和;B0(t,d)为每个异常数据在该时间和日期的实际值;B(t,d)为每个异常数据在该时间和日期的判断值;M为统计的时间最大的时刻或者日期的最多天数;Among them, W is the residual sum of squares of each abnormal data; B 0 (t,d) is the actual value of each abnormal data at this time and date; B(t, d) is the sum of each abnormal data at this time Judgment value of the date; M is the time with the largest statistical time or the maximum number of days of the date;

S2-3,然后计算异常数据的偏离度S2-3, then calculate the deviation of abnormal data

Figure BDA0002803831260000103
Figure BDA0002803831260000103

其中,F为计算常数,通过调节系数λ进行调节,由于W增大,故取的计算常数F较大;通过增加异常数据准确获取值Hj,对全部N个异常数据准确获取值累加之后进行特征值e的偏离收敛,β为特征阈值。Among them, F is the calculation constant, which is adjusted by the adjustment coefficient λ. Since W increases, the calculation constant F is larger; the value H j is accurately obtained by increasing the abnormal data, and the accurately obtained values are accumulated for all N abnormal data. The deviation of the eigenvalue e converges, and β is the feature threshold.

所述S3包括:The S3 includes:

S3-1,异常数据偏离度分析后,通过先验概率分布在异常数据中进行统计信息计算;计算异常数据先验条件概率分布,设置第一异常数据集合C与第二异常数据集合E的内部属性,其中第一异常数据集合包括ui和vi,第二异常数据集合包括xi、yi和zi,通过定义异常数据的时间类属性G和日期类属性I,在概率分布条件下分别计算条件概率

Figure BDA0002803831260000111
Figure BDA0002803831260000112
计算得到:S3-1, after analyzing the deviation degree of the abnormal data, calculate the statistical information in the abnormal data through the prior probability distribution; attribute, wherein the first abnormal data set includes u i and v i , and the second abnormal data set includes xi , yi and z i , by defining the time class attribute G and date class attribute I of the abnormal data, under the condition of probability distribution Calculate conditional probabilities separately
Figure BDA0002803831260000111
and
Figure BDA0002803831260000112
Calculated:

Figure BDA0002803831260000113
Figure BDA0002803831260000113

继续推导得到,

Figure BDA0002803831260000114
continue to derive,
Figure BDA0002803831260000114

其中

Figure BDA0002803831260000115
表示第一异常数据集合
Figure BDA0002803831260000116
和时间类属性G和日期类属性I联合概率分布,遍历第一异常数据集合
Figure BDA0002803831260000117
和时间类属性G的全部值得到其条件概率分布
Figure BDA0002803831260000118
以及第一异常数据集合
Figure BDA0002803831260000119
和日期类属性I的全部值得到其条件概率分布
Figure BDA00028038312600001110
时间类属性条件概率Q(G),日期类属性条件概率Q(I);in
Figure BDA0002803831260000115
Represents the first abnormal data set
Figure BDA0002803831260000116
Joint probability distribution with time class attribute G and date class attribute I, and traverse the first abnormal data set
Figure BDA0002803831260000117
and all the values of the time class attribute G to get its conditional probability distribution
Figure BDA0002803831260000118
and the first abnormal data set
Figure BDA0002803831260000119
and all values of the date class attribute I get its conditional probability distribution
Figure BDA00028038312600001110
Time class attribute conditional probability Q(G), date class attribute conditional probability Q(I);

然后计算:Then calculate:

Figure BDA00028038312600001111
Figure BDA00028038312600001111

继续推导得到,

Figure BDA00028038312600001112
continue to derive,
Figure BDA00028038312600001112

其中

Figure BDA00028038312600001113
表示第二异常数据集合
Figure BDA00028038312600001114
和时间类属性G和日期类属性I联合概率分布,遍历第二异常数据集合
Figure BDA00028038312600001115
和时间类属性G的全部值得到其条件概率分布
Figure BDA00028038312600001116
以及第二异常数据集合
Figure BDA00028038312600001117
和日期类属性I的全部值得到其条件概率分布
Figure BDA00028038312600001118
in
Figure BDA00028038312600001113
Represents the second abnormal data set
Figure BDA00028038312600001114
Joint probability distribution with time class attribute G and date class attribute I, and traverse the second abnormal data set
Figure BDA00028038312600001115
and all the values of the time class attribute G to get its conditional probability distribution
Figure BDA00028038312600001116
and the second set of abnormal data
Figure BDA00028038312600001117
and all values of the date class attribute I get its conditional probability distribution
Figure BDA00028038312600001118

S3-2,第一异常数据集合C中每个异常数据节点与第二异常数据集合E中美个异常数据节点时间属性和日期属性的条件信息联合概率分布值如下;S3-2, the joint probability distribution value of the condition information of each abnormal data node in the first abnormal data set C and the time attribute and date attribute of the abnormal data nodes in the second abnormal data set E is as follows;

Figure BDA00028038312600001119
Figure BDA00028038312600001119

选取异常数据的类属性J放入大数据平台中;将第一异常数据集合C中和第二异常数据集合E的内部属性以类属性J为父节点,构造朴素贝叶斯网络;Select the class attribute J of the abnormal data and put it into the big data platform; take the class attribute J as the parent node of the internal attributes of the first abnormal data set C and the second abnormal data set E, and construct a Naive Bayesian network;

S3-3,将第一异常数据集合C中和第二异常数据集合E中的节点逐个放入贝叶斯网络中;若第一异常数据集合C中

Figure BDA0002803831260000121
则将
Figure BDA0002803831260000122
放入网络作为其父节点;;若第二异常数据集合E中
Figure BDA0002803831260000123
则将
Figure BDA0002803831260000124
放入网络作为其父节点;从而得到用于异常数据等级筛选排序的贝叶斯网络;S3-3, put the nodes in the first abnormal data set C and the nodes in the second abnormal data set E into the Bayesian network one by one;
Figure BDA0002803831260000121
will
Figure BDA0002803831260000122
Put it into the network as its parent node; if the second abnormal data set E is
Figure BDA0002803831260000123
will
Figure BDA0002803831260000124
Put it into the network as its parent node; thus get a Bayesian network for the level screening and sorting of abnormal data;

S3-4,计算类属性J的概率质量函数

Figure BDA0002803831260000125
得到异常数据中属性值最突出的概率分布;S3-4, calculate the probability mass function of class attribute J
Figure BDA0002803831260000125
Obtain the probability distribution with the most prominent attribute value in the abnormal data;

Figure BDA0002803831260000126
Figure BDA0002803831260000126

其中

Figure BDA0002803831260000127
表示J关联的所有第一异常数据集合C中和第二异常数据集合E节点的条件概率的乘积;由大数据平台对财务异常数据根据概率分布的情况,向贝叶斯网络中第一异常数据集合C中和第二异常数据集合E的各个属性节点赋值;轮流将异常数据的基本属性代入贝叶斯网络中通过概率质量函数;按照计算数值从大到小的顺序对异常数据排列。in
Figure BDA0002803831260000127
Represents the product of the conditional probabilities of all the first abnormal data set C associated with J and the second abnormal data set E; the big data platform sends the financial abnormal data to the first abnormal data in the Bayesian network according to the probability distribution. Assign values to each attribute node in the set C and the second abnormal data set E; alternately substitute the basic attributes of the abnormal data into the Bayesian network to pass the probability mass function; arrange the abnormal data in descending order of the calculated values.

所述S4包括:The S4 includes:

S4-1,结合风险度权重计算,对异常大量资金转入快速分散转出的交易数据ui进行计算:S4-1, combined with the calculation of the risk degree weight, calculate the transaction data ui of the abnormally large amount of funds transferred in and out quickly and dispersedly:

Figure BDA0002803831260000128
Figure BDA0002803831260000128

其中,Ttotal为总基准时间;pui为异常大量资金转入快速分散转出的交易数据权重的动态变化分量;Vtotal为总基准日期,U为交易数据检测时刻分量;K为交易数据检测日期分量;Among them, T total is the total reference time; p ui is the dynamic change component of the transaction data weight of the abnormally large amount of funds transferred in and out quickly and dispersedly; V total is the total reference date, U is the transaction data detection time component; K is the transaction data detection date component;

S4-2,对异常大量分散资金转入快速集中转出的交易数据vi计算风险度权重,S4-2, calculate the risk weight for the transaction data v i of the abnormally large amount of decentralized funds transferred in and quickly centralized transferred out,

Figure BDA0002803831260000131
Figure BDA0002803831260000131

其中,

Figure BDA0002803831260000132
为异常大量分散资金转入快速集中转出的交易数据vi权重的动态变化分量;in,
Figure BDA0002803831260000132
It is the dynamic change component of the weight of transaction data v i for the transfer of an abnormally large amount of decentralized funds in and out of the rapid centralized transfer;

S4-3,对异常时间点交易数据xi计算风险度权重,S4-3, calculate the risk degree weight for the transaction data x i at the abnormal time point,

Figure BDA0002803831260000133
Figure BDA0002803831260000133

其中,

Figure BDA0002803831260000134
为异常时间点交易数据xi的动态变化分量;in,
Figure BDA0002803831260000134
is the dynamic change component of transaction data xi at abnormal time point;

S4-4,对异常相同数额交易数据yi计算风险度权重,S4-4, calculate the risk weight for the abnormal transaction data yi of the same amount,

Figure BDA0002803831260000135
Figure BDA0002803831260000135

其中,

Figure BDA0002803831260000136
为异常相同数额交易数据yi的动态变化分量;in,
Figure BDA0002803831260000136
is the dynamic change component of abnormal transaction data yi of the same amount;

S4-5,对异常超限额交易数据zi计算风险度权重,S4-5, calculate the risk weight for the abnormal over-limit transaction data zi ,

Figure BDA0002803831260000137
Figure BDA0002803831260000137

综合风险判断模型的定义:The definition of comprehensive risk judgment model:

Figure BDA0002803831260000138
Figure BDA0002803831260000138

其中,

Figure BDA0002803831260000139
为异常大量资金转入快速分散转出的交易数据预测值;
Figure BDA00028038312600001310
为异常大量资金转入快速分散转出的交易数据的判断阈值,
Figure BDA00028038312600001311
为异常大量分散资金转入快速集中转出的交易数据预测值;
Figure BDA00028038312600001312
为异常大量分散资金转入快速集中转出的交易数据的判断阈值,
Figure BDA00028038312600001313
为异常时间点交易数据预测值;
Figure BDA00028038312600001314
为异常时间点交易数据的判断阈值,
Figure BDA0002803831260000141
为异常相同数额交易数据预测值;
Figure BDA0002803831260000142
为异常相同数额交易数据的判断阈值,
Figure BDA0002803831260000143
为异常超限额交易数据预测值;
Figure BDA0002803831260000144
为异常超限额交易数据的判断阈值,ε为判断校正系数。in,
Figure BDA0002803831260000139
Predicted value of transaction data for abnormally large amount of funds transferred in and out quickly and dispersedly;
Figure BDA00028038312600001310
It is the judgment threshold for the transaction data of abnormally large amount of funds transferred in and quickly dispersed and transferred out.
Figure BDA00028038312600001311
Predicted value of transaction data for the transfer of abnormally large amount of scattered funds in and out of rapid centralized transfer;
Figure BDA00028038312600001312
It is the judgment threshold for the transaction data of abnormally large amount of decentralized funds transferred into and out of rapid centralized transfer.
Figure BDA00028038312600001313
Predicted values for transaction data at abnormal time points;
Figure BDA00028038312600001314
is the judgment threshold of transaction data at abnormal time points,
Figure BDA0002803831260000141
Predicted values for abnormal transaction data of the same amount;
Figure BDA0002803831260000142
is the judgment threshold for abnormal transaction data of the same amount,
Figure BDA0002803831260000143
It is the predicted value of abnormal over-limit transaction data;
Figure BDA0002803831260000144
is the judgment threshold of abnormal over-limit transaction data, and ε is the judgment correction coefficient.

尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those of ordinary skill in the art that various changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the invention, The scope of the invention is defined by the claims and their equivalents.

Claims (7)

1.一种大数据平台财务数据管理控制系统,其特征在于,包括:1. a big data platform financial data management control system, is characterized in that, comprises: 查询提取模块,用于通过云端数据库获取财务数据,对财务数据中的异常数据进行登录,然后开始初步查询,查询过程中对无效数据进行实时查询校验提取;The query extraction module is used to obtain financial data through the cloud database, log in the abnormal data in the financial data, and then start a preliminary query, and perform real-time query verification and extraction of invalid data during the query process; 异常判断模块,用于在实时查询校验提取后,设置异常数据的判断区间,在判断区间之中形成标准化数据;The abnormality judgment module is used to set the judgment interval of abnormal data after real-time query, verification and extraction, and form standardized data in the judgment interval; 所述异常判断模块包括:The abnormality judgment module includes: 经过查询校验之后,对异常数据划分判断区间,计算异常数据相似度,从而生成判断区间,将异常数据通过比例缩放计算进行标准化处理,异常大量资金转入快速分散转出的交易数据ui的转换值为u′i,异常大量分散资金转入快速集中转出的交易数据vi的转换值为v′i,异常时间点交易数据xi的转换值为x′i、异常相同数额交易数据yi的转换值为y′i、异常超限额交易数据zi的转换值为z′kAfter the query and verification, the abnormal data is divided into judgment intervals, and the similarity of the abnormal data is calculated to generate the judgment interval . The conversion value is u′ i , the conversion value of transaction data vi of abnormally large amount of scattered funds is transferred in and fast centralized transfer out is v′ i , the conversion value of transaction data xi at abnormal time point is x′ i , abnormal transaction data of the same amount The conversion value of y i is y′ i , and the conversion value of abnormal over-limit transaction data zi is z′ k ; 将转换后的交易异常数据与时间和日期变量一起代入判断模型,在统计的任一时间和日期内计算异常数据的判断值:Substitute the transformed abnormal transaction data into the judgment model together with the time and date variables, and calculate the judgment value of the abnormal data at any time and date of the statistics:
Figure FDA0003508647250000011
Figure FDA0003508647250000011
其中,B(t,d)为异常数据在任一时间t和日期d的判断值;f(u′i;t,d)为一个异常大量资金转入快速分散转出的交易数据的时间和日期的判断值;f(v′i;t,d)为一个异常大量分散资金转入快速集中转出的交易数据的时间和日期的判断值;f(x′i;t,d)为一个异常时间点交易数据的时间和日期的判断值;f(y′i;t,d)为一个异常相同数额交易数据的时间和日期的判断值;f(z′i;t,d)为一个异常超限额交易数据的判断值;i最大为60是为了保证一分钟内每一秒的异常数据都进行实时监控判断;Among them, B(t,d) is the judgment value of abnormal data at any time t and date d; f( u′i ; t,d) is the time and date of an abnormally large amount of funds transferred in and out of transaction data quickly dispersed The judgment value of ; f(v′ i ; t, d) is the judgment value of the time and date of the transaction data of an abnormally large amount of decentralized funds transferred into the fast centralized transfer; f(x′ i ; t, d) is an abnormal The judgment value of the time and date of the transaction data at the time point; f(y′ i ; t, d) is the judgment value of the time and date of an abnormal transaction data of the same amount; f (z′ i ; t, d) is an abnormal Judgment value of over-limit transaction data; the maximum value of i is 60 to ensure that every second of abnormal data within one minute is monitored and judged in real time; 计算每一个异常数据在时间和日期上的实际和判断值的差值,通过残差平方和对离散的异常数据进行线性曲线拟合过程,从而对异常数据的风险趋势进行判断,Calculate the difference between the actual and judged values of each abnormal data on time and date, and perform a linear curve fitting process on the discrete abnormal data through the residual sum of squares, so as to judge the risk trend of abnormal data.
Figure FDA0003508647250000021
Figure FDA0003508647250000021
其中,W为每个异常数据的残差平方和;B0(t,d)为每个异常数据在该时间和日期的实际值;B(t,d)为每个异常数据在该时间和日期的判断值;M为统计的时间最大的时刻或者日期的最多天数;Among them, W is the residual sum of squares of each abnormal data; B 0 (t,d) is the actual value of each abnormal data at this time and date; B(t, d) is the sum of each abnormal data at this time Judgment value of the date; M is the time with the largest statistical time or the maximum number of days of the date; 计算异常数据的偏离度Calculate the deviation of abnormal data
Figure FDA0003508647250000022
Figure FDA0003508647250000022
其中,F为计算常数,通过调节系数λ进行调节,通过增加异常数据准确获取值Hj,对全部N个异常数据准确获取值累加之后进行特征值e的偏离收敛,β为特征阈值;Among them, F is the calculation constant, which is adjusted by the adjustment coefficient λ, and the value H j is accurately obtained by adding abnormal data. After accumulating the accurately obtained values of all N abnormal data, the deviation convergence of the characteristic value e is performed, and β is the characteristic threshold; 筛选评分模块,用于对标准化数据进行偏离度分析,分析之后通过筛选模型对异常数据进行筛选操作,并对筛选之后的异常数据进行特征评分,The screening and scoring module is used to analyze the deviation degree of the standardized data. After the analysis, the abnormal data is screened by the screening model, and the characteristic score of the abnormal data after screening is performed. 综合判断模块,用于经过特征评分之后,财务数据中异常数据的风险度通过综合风险判断模型进行判断输出。The comprehensive judgment module is used to judge and output the risk degree of abnormal data in the financial data through the comprehensive risk judgment model after characteristic scoring.
2.根据权利要求1所述的大数据平台财务数据管理控制系统,其特征在于,所述查询提取模块包括:2. The big data platform financial data management control system according to claim 1, wherein the query extraction module comprises: 在云端数据库中调取财务数据,在财务数据中获取异常数据,异常数据提取过程通过初步查询过程进行数据均衡来动态请求云端数据库的财务数据,采用动态配置的方式,设置异常数据的获取阈值,根据不同财务数据的安全控制机制和权限管理要求提取不同的异常数据进行登录操作,The financial data is retrieved from the cloud database, and abnormal data is obtained from the financial data. The abnormal data extraction process performs data balance through the preliminary query process to dynamically request the financial data of the cloud database, and uses the dynamic configuration method to set the acquisition threshold of abnormal data. According to the security control mechanism and authority management requirements of different financial data, extract different abnormal data for login operation, 在初步查询过程中,云端数据库对财务数据认证、功能访问权限信息存储在本地数据库中,进行统一财务数据认证、功能权限控制;对于财务数据对异常数据进行逻辑隔离,存放在独立数据库中;财务数据登录过程中验证用户身份并根据财务数据中异常数据访问权限信息构造该用户有权访问的异常数据集合,通过云端数据库的身份认证过程进行认证访问;如果访问失败,则返回异常数据访问失败信息;如果访问成功,则登录成功;建立用户与系统动态分配的应用服务器实例独立的通道。During the initial query process, the cloud database stores financial data authentication and functional access authority information in the local database, and performs unified financial data authentication and functional authority control; for financial data, abnormal data is logically isolated and stored in an independent database; During the data login process, the user's identity is verified, and the abnormal data set that the user has access to is constructed according to the abnormal data access authority information in the financial data, and the authentication access is performed through the identity authentication process of the cloud database; if the access fails, the abnormal data access failure information is returned. ; If the access is successful, the login is successful; establish an independent channel between the user and the application server instance dynamically allocated by the system. 3.根据权利要求1所述的大数据平台财务数据管理控制系统,其特征在于,所述查询提取模块包括:3. The big data platform financial data management control system according to claim 1, wherein the query extraction module comprises: 异常数据的访问和使用过程为,在根据多个异常数据,形成异常数据关系节点,查找PaaS平台资源进行转换为树结点,生成异常数据树结点列表,将空的异常数据结点集作为当前结点集,对当前的异常数据树结点集进行遍历操作,从而判断当前遍历操作的结点集的异常数据父资源信息列表是否等于预置的异常数据根结点信息列表,若等于预置的异常数据根结点信息列表,则当前遍历操作的结点集为当前异常数据权限树的根结点,若不等于预置的异常数据根结点信息列表,继续遍历异常数据标识等于当前遍历操作的结点的父资源信息列表的资源,将该资源标记为当前遍历操作的结点的异常数据父结点。The process of accessing and using abnormal data is to form abnormal data relationship nodes according to multiple abnormal data, search for PaaS platform resources to convert them into tree nodes, generate a list of abnormal data tree nodes, and use the empty abnormal data node set as the For the current node set, perform a traversal operation on the current abnormal data tree node set, so as to determine whether the abnormal data parent resource information list of the node set of the current traversal operation is equal to the preset abnormal data root node information list, if it is equal to the preset abnormal data root node information list If it is not equal to the preset abnormal data root node information list, the node set of the current traversal operation is the root node of the current abnormal data permission tree. The resource of the parent resource information list of the node of the traversal operation is marked as the abnormal data parent node of the node of the current traversal operation. 4.根据权利要求1所述的大数据平台财务数据管理控制系统,其特征在于,所述查询提取模块包括:4. The big data platform financial data management control system according to claim 1, wherein the query extraction module comprises: 对于异常数据结点是否等于当前遍历到的结点的父资源信息列表,判断当前树结点列表是否遍历完毕;若遍历完毕检测异常数据父结点信息列表,若未遍历完毕,则将当前异常数据父结点信息列表作为当前树结点的根节点,标记递归构建异常数据业务查询树;将异常数据某一节点上分配的多个异常数据查询请求,重新分配给异常数据某一计算节点并备份,以使得所述某一计算节点和所述备份计算节点中的每一个仅被分配一个子查询。For whether the abnormal data node is equal to the parent resource information list of the currently traversed node, it is judged whether the current tree node list has been traversed; if the traversal is completed, the abnormal data parent node information list is detected. The data parent node information list is used as the root node of the current tree node, and the abnormal data service query tree is constructed recursively by marking; multiple abnormal data query requests allocated on a certain abnormal data node are reassigned to a certain abnormal data computing node and Backup so that each of the certain compute node and the backup compute node is assigned only one subquery. 5.根据权利要求1所述的大数据平台财务数据管理控制系统,其特征在于,所述筛选评分模块包括:5. The big data platform financial data management control system according to claim 1, wherein the screening and scoring module comprises: 异常数据偏离度分析后,通过先验概率分布在异常数据中进行统计信息计算;计算异常数据先验条件概率分布,设置第一异常数据集合C与第二异常数据集合E的内部属性,其中第一异常数据集合包括ui和vi,第二异常数据集合包括xi、yi和zi,通过定义异常数据的时间类属性G和日期类属性I,在概率分布条件下分别计算条件概率
Figure FDA0003508647250000041
Figure FDA0003508647250000042
计算得到:
After the deviation degree of abnormal data is analyzed, statistical information is calculated in the abnormal data through the prior probability distribution; the prior conditional probability distribution of abnormal data is calculated, and the internal attributes of the first abnormal data set C and the second abnormal data set E are set, wherein the first abnormal data set C and the second abnormal data set E are set. An abnormal data set includes u i and v i , and the second abnormal data set includes xi , yi and zi . By defining the time class attribute G and date class attribute I of the abnormal data, the conditional probability is calculated respectively under the condition of probability distribution
Figure FDA0003508647250000041
and
Figure FDA0003508647250000042
Calculated:
Figure FDA0003508647250000043
Figure FDA0003508647250000043
继续推导得到,
Figure FDA0003508647250000044
continue to derive,
Figure FDA0003508647250000044
其中
Figure FDA0003508647250000045
表示第一异常数据集合
Figure FDA0003508647250000046
和时间类属性G和日期类属性I联合概率分布,遍历第一异常数据集合
Figure FDA0003508647250000047
和时间类属性G的全部值得到其条件概率分布
Figure FDA0003508647250000048
以及第一异常数据集合
Figure FDA0003508647250000049
和日期类属性I的全部值得到其条件概率分布
Figure FDA00035086472500000410
时间类属性条件概率Q(G),日期类属性条件概率Q(I);
in
Figure FDA0003508647250000045
Represents the first abnormal data set
Figure FDA0003508647250000046
Joint probability distribution with time class attribute G and date class attribute I, and traverse the first abnormal data set
Figure FDA0003508647250000047
and all the values of the time class attribute G to get its conditional probability distribution
Figure FDA0003508647250000048
and the first abnormal data set
Figure FDA0003508647250000049
and all values of the date class attribute I get its conditional probability distribution
Figure FDA00035086472500000410
Time class attribute conditional probability Q(G), date class attribute conditional probability Q(I);
然后计算:Then calculate:
Figure FDA00035086472500000411
Figure FDA00035086472500000411
继续推导得到,
Figure FDA00035086472500000412
continue to derive,
Figure FDA00035086472500000412
其中
Figure FDA00035086472500000413
表示第二异常数据集合
Figure FDA00035086472500000414
和时间类属性G和日期类属性I联合概率分布,遍历第二异常数据集合
Figure FDA00035086472500000415
和时间类属性G的全部值得到其条件概率分布
Figure FDA00035086472500000416
以及第二异常数据集合
Figure FDA00035086472500000417
和日期类属性I的全部值得到其条件概率分布
Figure FDA00035086472500000418
in
Figure FDA00035086472500000413
Represents the second abnormal data set
Figure FDA00035086472500000414
Joint probability distribution with time class attribute G and date class attribute I, and traverse the second abnormal data set
Figure FDA00035086472500000415
and all the values of the time class attribute G to get its conditional probability distribution
Figure FDA00035086472500000416
and the second set of abnormal data
Figure FDA00035086472500000417
and all values of the date class attribute I get its conditional probability distribution
Figure FDA00035086472500000418
6.根据权利要求1所述的大数据平台财务数据管理控制系统,其特征在于,所述筛选评分模块包括:6. The big data platform financial data management control system according to claim 1, wherein the screening and scoring module comprises: 第一异常数据集合C中每个异常数据节点与第二异常数据集合E中每个异常数据节点时间属性和日期属性的条件信息联合概率分布值如下;The joint probability distribution value of the condition information of the time attribute and date attribute of each abnormal data node in the first abnormal data set C and each abnormal data node in the second abnormal data set E is as follows;
Figure FDA0003508647250000051
Figure FDA0003508647250000051
选取异常数据的类属性J放入大数据平台中;将第一异常数据集合C中和第二异常数据集合E的内部属性以类属性J为父节点,构造朴素贝叶斯网络;Select the class attribute J of the abnormal data and put it into the big data platform; take the class attribute J as the parent node of the internal attributes of the first abnormal data set C and the second abnormal data set E, and construct a Naive Bayesian network; 将第一异常数据集合C中和第二异常数据集合E中的节点逐个放入贝叶斯网络中;若第一异常数据集合C中
Figure FDA0003508647250000052
则将
Figure FDA0003508647250000053
放入网络作为其父节点;若第二异常数据集合E中
Figure FDA0003508647250000054
则将
Figure FDA0003508647250000055
放入网络作为其父节点;从而得到用于异常数据等级筛选排序的贝叶斯网络。
Put the nodes in the first abnormal data set C and the second abnormal data set E into the Bayesian network one by one; if the first abnormal data set C
Figure FDA0003508647250000052
will
Figure FDA0003508647250000053
Put it into the network as its parent node; if the second abnormal data set E is
Figure FDA0003508647250000054
will
Figure FDA0003508647250000055
Put it into the network as its parent node; thus get a Bayesian network for rank screening and sorting of abnormal data.
7.根据权利要求1所述的大数据平台财务数据管理控制系统,其特征在于,所述综合判断模块包括:7. The big data platform financial data management control system according to claim 1, wherein the comprehensive judgment module comprises: 结合风险度权重计算,对异常大量资金转入快速分散转出的交易数据ui进行计算:Combined with the calculation of risk weight, calculate the transaction data ui of abnormally large amount of funds transferred in and out quickly and dispersedly:
Figure FDA0003508647250000056
Figure FDA0003508647250000056
其中,Ttotal为总基准时间;
Figure FDA0003508647250000057
为异常大量资金转入快速分散转出的交易数据权重的动态变化分量;Vtotal为总基准日期,U为交易数据检测时刻分量;K为交易数据检测日期分量;
Among them, T total is the total reference time;
Figure FDA0003508647250000057
is the dynamic change component of the transaction data weight of abnormally large amount of funds transferred in and out quickly and dispersedly; V total is the total base date, U is the transaction data detection time component; K is the transaction data detection date component;
对异常大量分散资金转入快速集中转出的交易数据vi计算风险度权重,Calculate the risk weight for the transaction data v i of the abnormally large amount of decentralized funds transferred in and out quickly and in a centralized manner,
Figure FDA0003508647250000058
Figure FDA0003508647250000058
其中,
Figure FDA0003508647250000059
为异常大量分散资金转入快速集中转出的交易数据vi权重的动态变化分量;
in,
Figure FDA0003508647250000059
It is the dynamic change component of the weight of transaction data v i for the transfer of an abnormally large amount of decentralized funds in and out of the fast centralized transfer;
对异常时间点交易数据xi计算风险度权重,Calculate the risk weight for the transaction data x i at the abnormal time point,
Figure FDA0003508647250000061
Figure FDA0003508647250000061
其中,
Figure FDA0003508647250000062
为异常时间点交易数据xi的动态变化分量;
in,
Figure FDA0003508647250000062
is the dynamic change component of transaction data xi at abnormal time point;
对异常相同数额交易数据yi计算风险度权重,Calculate the risk weight for the abnormal transaction data yi of the same amount,
Figure FDA0003508647250000063
Figure FDA0003508647250000063
其中,
Figure FDA0003508647250000064
为异常相同数额交易数据yi的动态变化分量;
in,
Figure FDA0003508647250000064
is the dynamic change component of abnormal transaction data yi of the same amount;
对异常超限额交易数据zi计算风险度权重,Calculate the risk weight for the abnormal over-limit transaction data zi ,
Figure FDA0003508647250000065
Figure FDA0003508647250000065
综合风险判断模型的定义:The definition of comprehensive risk judgment model:
Figure FDA0003508647250000066
Figure FDA0003508647250000066
其中,
Figure FDA0003508647250000067
为异常大量资金转入快速分散转出的交易数据预测值;
Figure FDA0003508647250000068
为异常大量资金转入快速分散转出的交易数据的判断阈值,
Figure FDA0003508647250000069
为异常大量分散资金转入快速集中转出的交易数据预测值;
Figure FDA00035086472500000610
为异常大量分散资金转入快速集中转出的交易数据的判断阈值,
Figure FDA00035086472500000611
为异常时间点交易数据预测值;
Figure FDA00035086472500000612
为异常时间点交易数据的判断阈值,
Figure FDA00035086472500000613
为异常相同数额交易数据预测值;
Figure FDA00035086472500000614
为异常相同数额交易数据的判断阈值,
Figure FDA00035086472500000615
为异常超限额交易数据预测值;
Figure FDA00035086472500000616
为异常超限额交易数据的判断阈值,ε为判断校正系数。
in,
Figure FDA0003508647250000067
Predicted value of transaction data for abnormally large amount of funds transferred in and out quickly and dispersedly;
Figure FDA0003508647250000068
It is the judgment threshold for the transaction data of abnormally large amount of funds transferred in and out quickly and dispersedly.
Figure FDA0003508647250000069
Predicted value of transaction data for the transfer of abnormally large amount of decentralized funds into and out of rapid centralized transfer;
Figure FDA00035086472500000610
It is the judgment threshold for the transaction data of the abnormally large amount of decentralized funds transferred in and out of the rapid centralized transfer.
Figure FDA00035086472500000611
Predicted values for transaction data at abnormal time points;
Figure FDA00035086472500000612
is the judgment threshold of transaction data at abnormal time points,
Figure FDA00035086472500000613
Predicted values for abnormal transaction data of the same amount;
Figure FDA00035086472500000614
is the judgment threshold for abnormal transaction data of the same amount,
Figure FDA00035086472500000615
It is the predicted value of abnormal over-limit transaction data;
Figure FDA00035086472500000616
is the judgment threshold of abnormal over-limit transaction data, and ε is the judgment correction coefficient.
CN202011360661.7A 2020-11-27 2020-11-27 Big data platform financial data management control system Active CN112445844B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011360661.7A CN112445844B (en) 2020-11-27 2020-11-27 Big data platform financial data management control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011360661.7A CN112445844B (en) 2020-11-27 2020-11-27 Big data platform financial data management control system

Publications (2)

Publication Number Publication Date
CN112445844A CN112445844A (en) 2021-03-05
CN112445844B true CN112445844B (en) 2022-04-01

Family

ID=74737870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011360661.7A Active CN112445844B (en) 2020-11-27 2020-11-27 Big data platform financial data management control system

Country Status (1)

Country Link
CN (1) CN112445844B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114997684A (en) * 2022-06-16 2022-09-02 上海起策教育科技有限公司 Financial data safety management system
CN115545872B (en) * 2022-11-28 2023-04-07 杭州工猫科技有限公司 Risk early warning method in application of RPA financial robot based on AI
CN116485198A (en) * 2023-04-13 2023-07-25 中国地质大学(武汉) Knowledge-enhanced performance evaluation method, device and storage device
CN116912003B (en) * 2023-09-12 2024-01-12 国网山西省电力公司营销服务中心 Power resource dispatching method and system for multiple trading varieties

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111598438A (en) * 2020-05-14 2020-08-28 哈尔滨工业大学(威海) Anomaly detection method of civil aviation engine air path based on segmental fitting analysis and evaluation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050222929A1 (en) * 2004-04-06 2005-10-06 Pricewaterhousecoopers Llp Systems and methods for investigation of financial reporting information
CN109993645A (en) * 2017-12-29 2019-07-09 北京京东尚科信息技术有限公司 Financial forecast method, system, computer system and computer readable storage medium
US20190311428A1 (en) * 2018-04-07 2019-10-10 Brighterion, Inc. Credit risk and default prediction by smart agents
CN110874778B (en) * 2018-08-31 2023-04-25 阿里巴巴集团控股有限公司 Abnormal order detection method and device
CN110210973A (en) * 2019-05-31 2019-09-06 三峡大学 Insider trading recognition methods based on random forest and model-naive Bayesian
CN111861472B (en) * 2020-07-30 2024-04-09 中国工商银行股份有限公司 Service monitoring processing method and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111598438A (en) * 2020-05-14 2020-08-28 哈尔滨工业大学(威海) Anomaly detection method of civil aviation engine air path based on segmental fitting analysis and evaluation

Also Published As

Publication number Publication date
CN112445844A (en) 2021-03-05

Similar Documents

Publication Publication Date Title
CN112445844B (en) Big data platform financial data management control system
CN112102111B (en) Intelligent processing system for power plant data
WO2022083576A1 (en) Analysis method and apparatus for operating data of network function virtualization device
CN112527774B (en) Data center construction method, system and storage medium
CN112487053B (en) Abnormal control extraction working method for mass financial data
CN111199361A (en) Electric power information system health assessment method and system based on fuzzy reasoning theory
CN109213752A (en) A kind of data cleansing conversion method based on CIM
CN112463853B (en) The working method of financial data behavior screening through cloud platform
CN116662371A (en) A cross-domain data fusion method
Chaudhuri et al. Foundations of automated database tuning.
US8782341B1 (en) Embedded advisory framework for storage configuration management
Välja et al. A requirements based approach for automating enterprise it architecture modeling using multiple data sources
CN118972162B (en) Network resource access control method and system based on identity authentication and port perception
CN119201620A (en) Cloud computing analysis method, device, equipment and storage medium for SaaS system
CN119149623B (en) Data development method and platform based on multi-source data integration
Rost et al. Evolution of degree metrics in large temporal graphs
CN106961441B (en) User dynamic access control method for Hadoop cloud platform
Chen et al. Information-based massive data retrieval method based on distributed decision tree algorithm
Wang et al. Multilayered fault detection and localization with transformer for microservice systems
CN118972172B (en) Cloud environment network security situation awareness method and system
CN119323013A (en) Visual display method for data management
CN118821093A (en) Role data management method and device based on three members of the system
CN118708593A (en) A data processing method and system in a high-concurrency scenario of a data center
Liu et al. Big Data architecture for IT incident management
CN117934186A (en) Financial data whole-flow management platform based on digitization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230811

Address after: 712000 No. 2311, Block B, Huayu Shuangzixing, Chenyangzhai, Fengxi New City, Xixian New District, Xianyang City, Shaanxi Province

Patentee after: Shaanxi Elide Software Technology Co.,Ltd.

Address before: 401331 No. 82 Middle Road, University Town, Shapingba District, Chongqing

Patentee before: CHONGQING MEDICAL AND PHARMACEUTICAL College