CN112444841B - 基于分尺度多输入卷积网络的含薄层岩性地震预测方法 - Google Patents
基于分尺度多输入卷积网络的含薄层岩性地震预测方法 Download PDFInfo
- Publication number
- CN112444841B CN112444841B CN202011429211.9A CN202011429211A CN112444841B CN 112444841 B CN112444841 B CN 112444841B CN 202011429211 A CN202011429211 A CN 202011429211A CN 112444841 B CN112444841 B CN 112444841B
- Authority
- CN
- China
- Prior art keywords
- lithology
- attribute
- thin
- scale
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000012549 training Methods 0.000 claims abstract description 22
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 17
- 238000004458 analytical method Methods 0.000 claims abstract description 6
- 238000012795 verification Methods 0.000 claims description 13
- 239000003245 coal Substances 0.000 claims description 4
- 238000010200 validation analysis Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 12
- 238000013135 deep learning Methods 0.000 description 4
- 238000011176 pooling Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/01—Measuring or predicting earthquakes
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明涉及一种基于分尺度多输入卷积网络的含薄层岩性地震预测方法,包括以下步骤:1)建立包含井位处的岩性标签以及对应叠前和叠后地震记录数据的学习样本;2)对叠前和叠后地震记录数据进行提取、反演和时频分析,得到卷积神经网络模型的输入数据,包括属性集、叠前地震记录数据以及分频属性数据;3)构建分尺度多输入的卷积神经网络模型并进行训练;4)采用训练好的卷积神经网络模型进行含薄层岩性地震预测。与现有技术相比,本发明具有实现含薄层岩性的准确有效预测、数据维度小等优点。
Description
技术领域
本发明涉及地震预测领域,尤其是涉及一种在深度学习框架下基于分尺度多输入卷积网络的含薄层岩性地震预测方法。
背景技术
传统的基于模型驱动的叠前反演和叠后地震储层预测技术受限于地震分辨率很难对薄层进行有效预测,而现有的分频地震技术只能对薄层进行定性和半定量描述,并且缺乏和叠前地震道集和多地震属性的联合使用。此外,这些方法大多依赖于物理模型,对于复杂隐蔽储层,含煤层干扰储层等情况很难进行有效识别。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于分尺度多输入卷积网络的含薄层岩性地震预测方法。
本发明的目的可以通过以下技术方案来实现:
一种基于分尺度多输入卷积网络的含薄层岩性地震预测方法,包括以下步骤:
1)建立包含井位处的岩性标签以及对应叠前和叠后地震记录数据的学习样本;
2)对叠前和叠后地震记录数据进行提取、反演和时频分析,得到卷积神经网络模型的输入数据,包括属性集、叠前地震记录数据以及分频属性数据;
3)构建分尺度多输入的卷积神经网络模型并进行训练;
4)采用训练好的卷积神经网络模型进行含薄层岩性地震预测。
所述的步骤1)中,岩性标签包括泥岩、砂岩和煤层。
所述的步骤2)中,属性集具体包括AVO截距、AVO梯度属性、纵波阻抗、纵横波速度比和瞬时地震属性。
所述的瞬时地震属性包括瞬时振幅,瞬时相位和瞬时频率。
所述的AVO截距和AVO梯度属性根据叠前地震记录数据提取得到,所述的纵波阻抗和纵横波速度比通过叠前地震记录数据进行反演得到,所述的瞬时地震属性根据叠后地震记录数据提取得到。
所述的分频属性数据通过对叠后地震记录数据进行时频分析结果提取获得。
所述的步骤3)中,以属性集、叠前地震记录数据以及分频属性数据分别作为卷积神经网络模型的三个输入,其中,属性集和叠前地震记录数据采用一维卷积结构,分频属性数据采用二维卷积结构,以防止过拟合。
所述的步骤3)中,根据学习样本中验证集的准确率调整模型学习率,并以此判断是否停止训练来防止过拟合。
根据学习样本中验证集的准确率调整模型学习率具体为:
当验证集的准确率validation accuracy在patiencelr个轮次的训练内没有提高时,则降低学习率:
learning ratenew=learning rateold×factor
其中,learning ratenew为调整后的学习率,learning rateold为调整前的学习率,factor为学习因子。
在训练过程中,初始学习率learning rateinitial=0.0001,学习因子factor=0.1,轮次patiencelr=10,当验证集的准确率validation accuracy在patienceearly stop个轮次的训练内没有提高时,则停止训练,其中,patienceearly stop=40。
与现有技术相比,本发明具有以下优点:
一、针对薄层大量发育储层的地震岩性预测而言,叠前地震记录可以完整地反映不同岩性的AVO变化,叠前反演得到的纵横波速度比与岩性分类也有密切的关系,叠后提取属性则可以突出煤层的影响,同时,考虑分频数据对薄层的识别能力,本发明在深度学习框架下,提出同时将叠前地震记录、叠前反演结果及叠后提取属性、分频数据作为输入,构建分尺度多输入的卷积神经网络模型,该模型可以更有效地提取多维度地震信息的高维特征,实现含薄层岩性的准确预测。
二、与统一尺度输入相比,分尺度输入可以用更少的数据维度,实现更好的预测结果,本发明的岩性预测流程不仅可以有效利用原始的叠前地震记录,同时也可以利用二维卷积结构去捕捉分频数据中的薄层信息,最终实现薄岩的有效预测。
附图说明
图1为本发明的方法流程图。
图2为分尺度多输入卷积神经网络模型的示意图。
图3为七种不同属性集作为模型输入,十口井统一训练、验证(训练集:验证集=8:2)的砂岩F1值统计结果图。
图4为三种不同属性集和卷积方式的十口井统一训练、验证(训练集:验证集=8:2)的预测结果图,其中,图(4a)为统一尺度卷积预测结果图,图(4b)为分尺度卷积预测结果图,图(4c)为输入属性集为分频数据、叠前地震记录、七属性集的预测结果图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
如图1所示,本发明提供一种在深度学习框架下基于分尺度多输入卷积网络的含薄层岩性地震预测方法,提出了在深度学习框架下,同时利用叠前地震记录,叠前反演及叠后提取属性,分频数据作为模型输入,构建分尺度多输入卷积神经网络模型,实现对含薄层岩性的精细描述,具体技术流程及原理如下:
1)建立学习样本:根据钻井、测井和地震资料获取井位处的岩性(泥岩、砂岩、煤层)标签及其对应的叠前、叠后地震记录。
2)利用叠前地震数据提取AVO截距和AVO梯度属性;利用叠前反演得到纵波阻抗和纵横波速度比;利用叠后地震记录提取瞬时地震属性;对叠后地震记录进行时频分析,提取分频体属性。
3)构建分尺度多输入的卷积神经网络模型:考虑到同时利用多维度的地震记录信息预测岩性可能会导致过拟合,为防止过拟合以及实现一维卷积、二维卷积的同时利用,提出分尺度多输入的卷积模型,即叠前地震记录、叠前反演结果和叠后提取属性集、分频数据作为模型的三个输入,其中,前两者采用一维卷积结构,分频数据采用二维卷积结构。
4)利用构建的神经网络模型对步骤一的数据集进行训练和测试,并通过验证集的准确率变化指导模型学习率的变化,以及判断是否停止训练来防止过拟合。
图2为分尺度多输入卷积神经网络模型的示意图,其中左侧输入层的输入属性为七属性集(纵波阻抗,纵横波速度比,AVO截距,AVO梯度,瞬时振幅,瞬时相位,瞬时频率),采用两层一维卷积结构+一层最大池化层;中间输入层的输入属性为叠前地震记录,同样采用两层一维卷积结构+一层最大池化层;右侧输入层的输入属性为分频数据,采用一层二维卷积结构+一层最大池化层。三个输入层经过上述卷积池化后,都会进行节点丢弃操作以防止过拟合,三条路经的所有特征在融合层拼接后进入全连接层,最后连接输出层,完成从输入到输出的正向传播。
图3为七种不同属性集作为模型输入,十口井统一训练、验证(训练集:验证集=8:2)的砂岩F1值统计结果图,每个属性集选取三个依次增大的窗口,每个窗口进行五次重复实验,利用箱型图表示五次结果的分布,三角形代表均值,圆圈代表离群点,横线代表中位数;
横坐标1-7的输入属性集分别为,1:叠后地震记录,2:叠前地震记录,3:分频数据,4:叠后地震记录+七属性集,5:叠前地震记录+七属性集(相同尺度),6:叠前地震记录+七属性集(分尺度),7:分频数据+叠前地震记录+七属性集;
七属性集表示:纵波阻抗,纵横波速度比,AVO截距,AVO梯度,瞬时振幅,瞬时相位,瞬时频率;
图3的结果表明,输入属性的时间(或深度)窗口越大,意味着更多维的信息,卷积神经网络的表征效果更好;分尺度卷积(属性集6)与统一尺度卷积(属性集5)相比,砂岩F1值更高,即分尺度能够以更少的维度信息,取得更好的表征效果;分频数据的加入(属性集7)对砂岩F1值有一定的提高。
图4为三种不同属性集和卷积方式的十口井统一训练、验证(训练集:验证集=8:2)的预测结果图,b)(分尺度)与a)(相同尺度)相比,十口井均有明显改善,特别是在十口井的下段,分尺度卷积对砂泥岩的区分度明显提高;c)(加入分频数据)与b)(未加入分频数据)相比,多口井的薄层得到改善,加入分频数据后,W1,W3,W5,W9的中下段以及W6,W7,W8的上段的薄层预测更为准确。
图3-图4通过对统计结果和预测结果的分析,证明了所提出的岩性预测流程的有效性,即分尺度卷积相比统一尺度卷积对岩性的区分能力更好,分频数据的加入能够改善模型对薄层的识别能力。
Claims (9)
1.一种基于分尺度多输入卷积网络的含薄层岩性地震预测方法,其特征在于,包括以下步骤:
1)建立包含井位处的岩性标签以及对应叠前和叠后地震记录数据的学习样本;
2)对叠前和叠后地震记录数据进行提取、反演和时频分析,得到卷积神经网络模型的输入数据,包括属性集、叠前地震记录数据以及分频属性数据;
3)构建分尺度多输入的卷积神经网络模型并进行训练,以属性集、叠前地震记录数据以及分频属性数据分别作为卷积神经网络模型的三个输入,其中,属性集和叠前地震记录数据采用一维卷积结构,分频属性数据采用二维卷积结构,以防止过拟合;
4)采用训练好的卷积神经网络模型进行含薄层岩性地震预测。
2.根据权利要求1所述的一种基于分尺度多输入卷积网络的含薄层岩性地震预测方法,其特征在于,所述的步骤1)中,岩性标签包括泥岩、砂岩和煤层。
3.根据权利要求1所述的一种基于分尺度多输入卷积网络的含薄层岩性地震预测方法,其特征在于,所述的步骤2)中,属性集具体包括AVO截距、AVO梯度属性、纵波阻抗、纵横波速度比和瞬时地震属性。
4.根据权利要求3所述的一种基于分尺度多输入卷积网络的含薄层岩性地震预测方法,其特征在于,所述的瞬时地震属性包括瞬时振幅,瞬时相位和瞬时频率。
5.根据权利要求3所述的一种基于分尺度多输入卷积网络的含薄层岩性地震预测方法,其特征在于,所述的AVO截距和AVO梯度属性根据叠前地震记录数据提取得到,所述的纵波阻抗和纵横波速度比通过叠前地震记录数据进行反演得到,所述的瞬时地震属性根据叠后地震记录数据提取得到。
6.根据权利要求1所述的一种基于分尺度多输入卷积网络的含薄层岩性地震预测方法,其特征在于,所述的分频属性数据通过对叠后地震记录数据进行时频分析结果提取获得。
7.根据权利要求1所述的一种基于分尺度多输入卷积网络的含薄层岩性地震预测方法,其特征在于,所述的步骤3)中,根据学习样本中验证集的准确率调整模型学习率,并以此判断是否停止训练来防止过拟合。
8.根据权利要求7所述的一种基于分尺度多输入卷积网络的含薄层岩性地震预测方法,其特征在于,根据学习样本中验证集的准确率调整模型学习率具体为:
当验证集的准确率validation accuracy在patiencelr个轮次的训练内没有提高时,则降低学习率:
learning ratenew=learning rateold×factor
其中,learning ratenew为调整后的学习率,learning rateold为调整前的学习率,factor为学习因子。
9.根据权利要求8所述的一种基于分尺度多输入卷积网络的含薄层岩性地震预测方法,其特征在于,在训练过程中,初始学习率learning rateinitial=0.0001,学习因子factor=0.1,轮次patiencelr=10,当验证集的准确率validation accuracy在patienceearly stop个轮次的训练内没有提高时,则停止训练,其中,patienceearly stop=40。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011429211.9A CN112444841B (zh) | 2020-12-09 | 2020-12-09 | 基于分尺度多输入卷积网络的含薄层岩性地震预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011429211.9A CN112444841B (zh) | 2020-12-09 | 2020-12-09 | 基于分尺度多输入卷积网络的含薄层岩性地震预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112444841A CN112444841A (zh) | 2021-03-05 |
CN112444841B true CN112444841B (zh) | 2021-10-08 |
Family
ID=74739020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011429211.9A Active CN112444841B (zh) | 2020-12-09 | 2020-12-09 | 基于分尺度多输入卷积网络的含薄层岩性地震预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112444841B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113344258A (zh) * | 2021-05-25 | 2021-09-03 | 同济大学 | 一种基于分歧的半监督学习的地震岩性预测方法 |
CN115407424A (zh) * | 2021-05-28 | 2022-11-29 | 中国石油化工股份有限公司 | 一种基于频相特征的智能岩性识别方法 |
CN114002744B (zh) * | 2021-10-29 | 2023-07-14 | 重庆科技学院 | 一种基于深度学习的致密砂岩储层流体识别方法 |
CN114330593B (zh) * | 2022-01-06 | 2022-09-20 | 中国科学院地质与地球物理研究所 | Avo属性的分析方法、装置以及电子设备 |
CN114609668B (zh) * | 2022-03-11 | 2023-09-19 | 西安交通大学 | 一种基于散射变换和神经网络的优质储层识别方法、装置、设备及存储介质 |
CN115616665B (zh) * | 2022-09-30 | 2023-07-21 | 中国科学院地质与地球物理研究所 | 卷积神经网络的处理方法、装置和电子设备 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5859925A (en) * | 1995-08-08 | 1999-01-12 | Apple Computer, Inc. | Classifying system having a single neural network architecture for multiple input representations |
FR3070208A1 (fr) * | 2017-08-18 | 2019-02-22 | Landmark Graphics Corporation | Detection de failles souterraines sur la base de l’interpretation des donnees sismiques |
CA3070479C (en) * | 2017-08-25 | 2023-01-17 | Exxonmobil Upstream Research Company | Automated seismic interpretation using fully convolutional neural networks |
CN109635726B (zh) * | 2018-12-11 | 2023-03-24 | 陕西科技大学 | 一种基于对称式深度网络结合多尺度池化的滑坡识别方法 |
CN111580161A (zh) * | 2020-05-21 | 2020-08-25 | 长江大学 | 基于多尺度卷积自编码神经网络的地震随机噪音压制方法 |
-
2020
- 2020-12-09 CN CN202011429211.9A patent/CN112444841B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112444841A (zh) | 2021-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112444841B (zh) | 基于分尺度多输入卷积网络的含薄层岩性地震预测方法 | |
US11016214B2 (en) | Dolomite reservoir prediction method and system based on well and seismic combination, and storage medium | |
CN111596978A (zh) | 用人工智能进行岩相分类的网页显示方法、模块和系统 | |
US11397279B2 (en) | Comparison of wells using a dissimilarity matrix | |
CN104769458A (zh) | 一种基于柯西分布的叠后波阻抗反演方法 | |
CN105652323A (zh) | 一种储层预测方法 | |
CN106597543A (zh) | 一种地层沉积相划分方法 | |
CN111505713A (zh) | 基于多点地质统计的叠前地震反演方法 | |
CN114529110A (zh) | 一种基于深度神经网络模型的岩相反演方法及系统 | |
CN114114414A (zh) | 一种页岩储层“甜点”信息人工智能预测方法 | |
CN110988997A (zh) | 一种基于机器学习的烃源岩三维空间展布定量预测技术 | |
CN117452518B (zh) | 基于多学科数据融合聚类算法的储层岩性预测方法 | |
CN112578475B (zh) | 基于数据挖掘的致密储层双甜点识别方法 | |
CN114065909A (zh) | 一种基于CNN_AB_Bi-LSTM的测井曲线补全方法 | |
CN110118994B (zh) | 一种基于地震反演和机器学习的陆相烃源岩定量预测方法 | |
CN115877464B (zh) | 一种岩性识别方法、装置、计算机设备及存储介质 | |
CN116520394A (zh) | 基于地震测井双驱动融合多尺度信息直接预测孔隙度方法 | |
CN115880455A (zh) | 基于深度学习的三维智能插值方法 | |
CN112462421B (zh) | 储层信息预测方法、装置、电子设备及存储介质 | |
CN113267809B (zh) | I类页岩储层预测方法及装置 | |
CN112147676A (zh) | 一种煤层及夹矸厚度预测方法 | |
CN113608258A (zh) | 一种构建高分辨率波阻抗反演标签的自洽深度学习方法 | |
CN112198554B (zh) | 一种地震波形驱动的建立高精度反演初始模型的方法 | |
CN114063169B (zh) | 一种波阻抗反演方法、系统、设备和存储介质 | |
CN117434591A (zh) | 地震频相智能反演虚拟井及其地震响应合成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |