CN112436078A - 一种提高发光效率的GaN基LED外延结构 - Google Patents

一种提高发光效率的GaN基LED外延结构 Download PDF

Info

Publication number
CN112436078A
CN112436078A CN202011195544.XA CN202011195544A CN112436078A CN 112436078 A CN112436078 A CN 112436078A CN 202011195544 A CN202011195544 A CN 202011195544A CN 112436078 A CN112436078 A CN 112436078A
Authority
CN
China
Prior art keywords
gan
barrier
layer
gag
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011195544.XA
Other languages
English (en)
Inventor
程立文
罗雨中
李侦伟
曾祥华
林星宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202011195544.XA priority Critical patent/CN112436078A/zh
Publication of CN112436078A publication Critical patent/CN112436078A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种提高发光效率的GaN基LED外延结构,该外延结构的发光层由势垒层和量子阱层交替构成,其中,势垒层命名为GaN‑Al x Ga 1‑x N‑GaN势垒层,简称GAG势垒层,按生长顺序该势垒层依次由GaN势垒、Al x Ga 1‑x N势垒和GaN势垒构成,Al x Ga 1‑x N势垒中的x沿生长方向从0到0.15再到0渐变。本发明采用GAG势垒结构可以在不增大器件发光层内的极化电场的情况下,有效提高势垒层对发光层中载流子的限制能力,从而达到提高GaN基LED的光电性能的目的。

Description

一种提高发光效率的GaN基LED外延结构
技术领域
本发明涉及GaN基LED设计应用领域,特别涉及一种提高电子和空穴有效辐射复合速率的外延结构及其生长方法。
背景技术
GaN基LED作为新一代照明光源,被广泛用于背景照明,医疗照明等,是形成白光的重要光源之一,但是随着工业生产的需求,GaN基LED越来越被要求在大电流下进行工作,随之而来的是,GaN基LED工作时出现了较大的效率衰减的现象,严重降低其光电性能,在目前研究中,较大的电子泄漏和较差的空穴注入是造成效率衰减的重要原因。
目前,对于改善载流子的输运,提高其光电效率的主要方法是通过在发光层和p型GaN层之间生长AlGaN电子阻挡层,然而生长AlGaN电子阻挡层虽然能有效提高电子势垒,抑制电子泄漏,但是还会带来空穴势垒的提高,进而造成更差的空穴注入,并不能更好的提升GaN基LED的光电性能。
除了生长AlGaN电子阻挡层以外,业内还提出了通过能带工程,生长不同结构的发光层结构以改善发光层中载流子的输运和分布情况,例如,生长最后一层AlGaN势垒层,这能从一定程度上减少极化效应,降低有效空穴势垒,并提高空穴和电子在最后一个量子阱中的有效辐射复合,但是带来的是发光层中较大的极化电场,从而引起较大的量子斯塔克效应,降低发光层中载流子的有效辐射复合速率。
发明内容
为了有效降低GaN基LED的效率下降问题,本发明提供了一种提高发光效率的GaN基LED外延结构。
实现本发明目的的技术解决方案是:一种提高发光效率的GaN基LED外延结构的发光层,该发光层由势垒层和量子阱层交替构成,其中,势垒层为GaN- Al x Ga 1-x N -GaN(GAG)势垒层,按生长顺序该势垒层依次由GaN势垒、Al x Ga 1-x N势垒和GaN势垒构成,Al x Ga 1-x N势垒中的x沿生长方向从0到0.15再到0渐变。
较佳的,量子阱层采用In y Ga1-y N量子阱层,y为0.1~0.3,每一层量子阱层的厚度为2nm。
较佳的,每一层势垒层的厚度为9nm~15nm。
一种提高发光效率的GaN基LED外延结构,该外延结构从下向上的顺序依次包括:衬底、低温成核层GaN、非掺杂u-GaN层、掺杂Si的n-GaN层、上述GAG势垒的发光层、AlGaN电子阻挡层和p-GaN层。
一种提高发光效率的GaN基LED外延结构的发光层的生长方法,采用GAG三角形势垒结构代替传统的GaN势垒结构,包括如下步骤:
S1,生长GAG势垒层
S101,在温度800℃ ~950℃ ,保持反应腔压力100 Torr~500 Torr, 采用MO源TEGa,TMIn和SiH4, 生长厚度为3 nm~5 nm的GaN势垒,并对GaN势垒进行Si掺杂, Si掺杂浓度为8× 1016 atoms/cm3~6× 1017 atoms/cm3
S102,保持反应腔的压力为20 Torr~200 Torr, 温度为900℃ ~1100℃ 下, 通入MO源TMAl、 TMGa和NH3, 持续生长厚度为3 nm~5 nm的P型Al x Ga 1-x N,x沿生长方向从0到0.15再到0渐变,生长时间为20 s~40 s;
S103, 降低温度至800℃ ~950℃ , 保持反应腔压力100 Torr~500 Torr, 采用MO源TEGa,TMIn和SiH4, 生长厚度为3 nm~5 nm的GaN势垒, 并对GaN势垒进行Si掺杂, Si掺杂浓度为8× 1016 atoms/cm3~6× 1017 atoms/cm3
S2,生长量子阱层
在反应腔压力为100 Torr~500 Torr,温度为700 ℃~800 ℃,使用TEGa,TMIn和SiH4作为MO源,生长掺杂In的In y Ga1-y N量子阱层,y为0.1~0.3;
S3,步骤S1和步骤S2交替进行,交替生长GAG/In y Ga1-y N发光层。
与现有技术相比,本发明的有益效果是:
本发明中提供一种有效提高发光效率外延结构:在发光层中,采用GAG三角形势垒结构代替传统的GaN势垒结构。采用GAG势垒层后,一方面,GAG势垒中的AlGaN材料具有相对较大的禁带宽度,能够提高势垒层的有效高度,从而可以更好地限制发光层中的载流子;另一方面,采用GAG势垒以后,相较于传统的GaN势垒,GAG势垒层与InGaN量子阱层的接触界面仍为InGaN-GaN界面,并不会增加势垒层与量子阱层界面上的极化电荷。因此,采用GAG势垒结构可以在不增大器件发光层内的极化电场的情况下,有效提高势垒层对发光层中载流子的限制能力,从而达到提高GaN基LED的光电性能的目的。
附图说明
图1为一般GaN基LED的能带图。
图2 为采用AlGaN势垒的GaN基LED的能带图。
图3 为本发明提出的采用GAG势垒的GaN基LED能带图。
图4为本发明提出的GaN基LED的外延生长方法的制备流程示意图。
具体实施方式
本发明将发光层中的GaN势垒替换成特殊的GAG三角形势垒。
由图1,图2和图3我们可以看出,采用GAG三角形势垒层后,一方面,GAG势垒中的AlGaN材料具有相对较大的禁带宽度,能够提高势垒层的有效高度,从而可以更好地限制发光层中的载流子;另一方面,采用GAG势垒以后,相较于传统的GaN势垒,GAG势垒层与InGaN量子阱层的接触界面仍为InGaN-GaN界面,并不会增加势垒层与量子阱层界面上的极化电荷。因此,采用GAG三角形势垒结构可以在不增大器件发光层内的极化电场的情况下,有效提高势垒层对发光层中载流子的限制能力,从而达到提高GaN基LED的光电性能的目的。
结合图4,本发明提出的GaN基LED的外延结构的生长方法如下:
运用VEECO MOCVD来生长高亮度GaN基LED外延片。采用高纯度的H2或者高纯度N2或高纯度H2与高纯度N2的混合气体作为载气,高纯度NH3(NH3纯度为99.999%)为N源,金属有机源三甲基镓(TMGa)和金属有机源三乙基镓(TEGa),三甲基铟(TMIn)作为铟源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),衬底为(0001)面蓝宝石,反应压力在100 Torr到1000 Torr之间,具体生长过程如下:
在氢气气氛,温度为1050 ℃~1150 ℃下将蓝宝石衬底进行退火,清洁衬底表面。
在500 ℃~610 ℃,反应腔压力为400 Torr~650 Torr,通入氨气和TMGa,在蓝宝石衬底上生长厚度为20 nm~40 nm的低温成核层GaN。
在1050 ℃~1200 ℃,保持反应腔压力为100 Torr~500 Torr,通入氨气和TMGa,在低温成核层GaN上持续生长厚度为1 μm~3 μm的非掺杂u-GaN层。
在1050 ℃~1200 ℃,保持反应腔压力为100 Torr~600 Torr,通入氨气,TMGa和SiH4,在非掺杂u-GaN层上持续生长一层掺杂浓度稳定的,厚度为2 μm~4 μm掺杂Si的n-GaN层,其中,Si掺杂浓度为8×1018 atoms/cm3~2×1019atoms/cm3
在温度800℃ ~950℃ ,保持反应腔压力100 Torr~500 Torr, 采用MO源TEGa,TMIn和SiH4, 生长厚度为3 nm~5 nm的GaN势垒,并对GaN势垒进行Si掺杂, Si掺杂浓度为8× 1016 atoms/cm3~6× 1017 atoms/cm3
保持反应腔的压力为20 Torr~200 Torr, 温度为900℃ ~1100℃ 下, 通入MO源TMAl、TMGa和NH3, 持续生长厚度为3 nm~5 nm的P型Al x Ga 1-x N,x沿生长方向从0到0.15再到0渐变,生长时间为20 s~40 s;
降低温度至800℃ ~950℃ , 保持反应腔压力100 Torr~500 Torr, 采用MO源TEGa,TMIn和SiH4, 生长厚度为3 nm~5 nm的GaN势垒, 并对GaN势垒进行Si掺杂, Si掺杂浓度为8× 1016 atoms/cm3~6× 1017 atoms/cm3
在反应腔压力为100 Torr~500 Torr,温度为700 ℃~800 ℃,使用TEGa,TMIn和SiH4作为MO源,在GAG势垒层生长掺杂In的In y Ga1-y N量子阱层,y为0.1~0.3;
重复生长GAG三角形势垒层,重复In y Ga1-y N量子阱层的生长,交替生长含特殊势垒的In y Ga1-y N/GAG发光层,控制In y Ga1-y N量子阱层的生长周期为6个。
保持反应腔的压力为20 Torr~200 Torr,温度为900 ℃~1100 ℃,通入MO源为TMAl,TMGa和CP2Mg,在In y Ga1-y N/GAG发光层上持续生长厚度为50 nm~200nm的P型AlGaN电子阻挡层,生长时间为3 min~100 min,Al的摩尔组分为10 %~30 %,Mg掺杂浓度1×1018atoms/cm3~1×1021 atoms/cm3
保持反应腔压力100 Torr~500 Torr,温度850 ℃~1050 ℃,通入MO源为TEGa和CP2Mg,在AlGaN电子阻挡层上持续生长厚度200 nm的掺杂Mg的P型GaN接触层,Mg掺杂浓度1×1019 atoms/cm3~1×1022 atoms/cm3
外延生长结束后,将反应的温度降低到650 ℃~800 ℃,采用纯氮气氛围进行退火处理5 min~10 min,然后降至室温,结束生长。

Claims (5)

1.一种提高发光效率的GaN基LED外延结构的发光层,其特征在于,该发光层由势垒层和量子阱层交替构成,其中,势垒层为GaN-Al x Ga 1-x N-GaN势垒层,简称为GAG势垒层,按生长顺序该势垒层依次由GaN势垒、Al x Ga 1-x N势垒和GaN势垒构成,Al x Ga 1-x N势垒中的x沿生长方向从0到0.15再到0渐变。
2.如权利要求1所述的发光层,其特征在于,量子阱层采用In y Ga1-y N量子阱层,y为0.1~0.3,每一层量子阱层的厚度为2nm。
3.如权利要求1所述的发光层,其特征在于,每一层势垒层的厚度为9nm~15nm。
4.一种提高发光效率的GaN基LED外延结构,该外延结构从下向上的顺序依次包括:衬底、低温成核层GaN、非掺杂u-GaN层、掺杂Si的n-GaN层、含GAG势垒的发光层、AlGaN电子阻挡层和p-GaN层,其特征在于,含GAG势垒的发光层为如权利要求1-3所述的发光层。
5. 一种提高发光效率的GaN基LED外延结构的发光层的生长方法,其特征在于,包括如下步骤:
S1,生长GAG势垒层
S101,在温度800℃ ~950℃ ,保持反应腔压力100 Torr~500 Torr, 采用MO源TEGa,TMIn和SiH4, 生长厚度为3 nm~5 nm的GaN势垒,并对GaN势垒进行Si掺杂, Si掺杂浓度为8× 1016 atoms/cm3~6× 1017 atoms/cm3
S102,保持反应腔的压力为20 Torr~200 Torr, 温度为900℃ ~1100℃ 下, 通入MO源TMAl、 TMGa和NH3, 持续生长厚度为3 nm~5 nm的P型Al x Ga 1-x N,x沿生长方向从0到0.15再到0渐变,生长时间为20 s~40 s;
S103, 降低温度至800℃ ~950℃ , 保持反应腔压力100 Torr~500 Torr, 采用MO源TEGa,TMIn和SiH4, 生长厚度为3 nm~5 nm的GaN势垒, 并对GaN势垒进行Si掺杂, Si掺杂浓度为8× 1016 atoms/cm3~6× 1017 atoms/cm3
S2,生长量子阱层
在反应腔压力为100 Torr~500 Torr,温度为700 ℃~800 ℃,使用TEGa,TMIn和SiH4作为MO源,生长掺杂In的In y Ga1-y N量子阱层,y为0.1~0.3;
S3,步骤S1和步骤S2交替进行,交替生长GAG/In y Ga1-y N发光层。
CN202011195544.XA 2020-10-31 2020-10-31 一种提高发光效率的GaN基LED外延结构 Pending CN112436078A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011195544.XA CN112436078A (zh) 2020-10-31 2020-10-31 一种提高发光效率的GaN基LED外延结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011195544.XA CN112436078A (zh) 2020-10-31 2020-10-31 一种提高发光效率的GaN基LED外延结构

Publications (1)

Publication Number Publication Date
CN112436078A true CN112436078A (zh) 2021-03-02

Family

ID=74696546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011195544.XA Pending CN112436078A (zh) 2020-10-31 2020-10-31 一种提高发光效率的GaN基LED外延结构

Country Status (1)

Country Link
CN (1) CN112436078A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299223A (zh) * 2011-09-19 2011-12-28 厦门乾照光电股份有限公司 一种发光二极管的外延结构及其制造方法
CN103441196A (zh) * 2009-12-21 2013-12-11 晶元光电股份有限公司 发光元件及其制造方法
CN103545406A (zh) * 2012-07-16 2014-01-29 展晶科技(深圳)有限公司 多量子阱结构及发光二极管
CN104157746A (zh) * 2014-08-15 2014-11-19 湘能华磊光电股份有限公司 新型量子阱势垒层的led外延生长方法及外延层

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441196A (zh) * 2009-12-21 2013-12-11 晶元光电股份有限公司 发光元件及其制造方法
CN102299223A (zh) * 2011-09-19 2011-12-28 厦门乾照光电股份有限公司 一种发光二极管的外延结构及其制造方法
CN103545406A (zh) * 2012-07-16 2014-01-29 展晶科技(深圳)有限公司 多量子阱结构及发光二极管
CN104157746A (zh) * 2014-08-15 2014-11-19 湘能华磊光电股份有限公司 新型量子阱势垒层的led外延生长方法及外延层

Similar Documents

Publication Publication Date Title
CN109119515B (zh) 一种发光二极管外延片及其制造方法
CN103730552B (zh) 一种提高led发光效率的外延生长方法
CN110718612B (zh) 发光二极管外延片及其制造方法
CN114975704B (zh) 一种led外延片及制备方法
CN107195739B (zh) 一种发光二极管及其制造方法
CN109545924B (zh) 一种发光二极管外延片及其制造方法
CN103227251A (zh) 一种GaN基发光二极管外延结构的生长方法
CN113690350B (zh) 微型发光二极管外延片及其制造方法
CN115986018B (zh) 一种外延片、外延片制备方法及发光二极管
CN114695612A (zh) 一种氮化镓基发光二极管外延结构及其制备方法
CN110911529B (zh) 一种发光二极管外延结构生长方法
CN113161453B (zh) 发光二极管外延片及其制造方法
CN112366256B (zh) 发光二极管外延片及其制造方法
CN113410353A (zh) 提高发光效率的发光二极管外延片及其制备方法
CN109802022B (zh) 一种GaN基发光二极管外延片及其制备方法
CN116978992A (zh) 发光二极管及其制备方法
CN111952418A (zh) 一种提升发光效率的led多量子阱层生长方法
CN113571607B (zh) 高发光效率的发光二极管外延片及其制造方法
CN113113515B (zh) 发光二极管外延片的生长方法
CN113690351B (zh) 微型发光二极管外延片及其制造方法
CN112436082A (zh) 提高发光区中载流子分布均匀性的led外延结构及其生长方法
CN113193083B (zh) 发光二极管外延片制备方法
CN112366260B (zh) 发光二极管外延片及其制造方法
CN112436078A (zh) 一种提高发光效率的GaN基LED外延结构
CN110061104B (zh) 氮化镓基发光二极管外延片的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210302

RJ01 Rejection of invention patent application after publication