CN112427644A - Preparation method of authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap - Google Patents

Preparation method of authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap Download PDF

Info

Publication number
CN112427644A
CN112427644A CN202011212865.6A CN202011212865A CN112427644A CN 112427644 A CN112427644 A CN 112427644A CN 202011212865 A CN202011212865 A CN 202011212865A CN 112427644 A CN112427644 A CN 112427644A
Authority
CN
China
Prior art keywords
spot welding
welding electrode
electrode cap
copper
ceramic particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011212865.6A
Other languages
Chinese (zh)
Other versions
CN112427644B (en
Inventor
张冬冬
何西亚
刘宇
高亚丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202011212865.6A priority Critical patent/CN112427644B/en
Publication of CN112427644A publication Critical patent/CN112427644A/en
Application granted granted Critical
Publication of CN112427644B publication Critical patent/CN112427644B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a preparation method of a authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap, which is characterized by comprising the steps of turning and manufacturing an electrode tip, preparing an electrode tip supporting connector material by ball milling, cold-pressing and prefabricating the spot welding electrode cap by a mould, and sintering and forming the spot welding electrode cap by hot pressing, wherein the electrode tip supporting connector material prepared by ball milling is an authigenic ceramic particle reinforced copper-based composite material, the weight fraction of authigenic ceramic particles is 5-30 wt%, and the balance is copper; the external part is a ball milling prepared electrode tip supporting connector, so that the loss of an external load to the electrode can be reduced; the autogenous ceramic particles have higher bonding strength with the interface, so that the reinforcing effect of the external supporting connector is better. The method has the advantages of scientific and reasonable method, strong applicability, good effect and the like, and the spot welding electrode cap manufactured by the method has the advantages of long service life, excellent mechanical property and the like.

Description

Preparation method of authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap
Technical Field
The invention belongs to the application field of authigenic ceramic particle reinforced metal matrix composite materials, and particularly relates to a preparation method of an authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap.
Background
With the rapid development of the automobile, electrical and electronic industries and the continuous improvement of the technological level, higher requirements are put forward on copper and copper alloy, such as: (1) harsh requirements of service environment: with the use process, the temperature of the electrode is gradually increased under the action of electric energy and mechanical energy, and when the temperature reaches over 500 ℃, copper and copper alloy can be softened, deformed and corroded, so that the contact resistance is increased, and overhigh conductive temperature rise is generated, so that the loss of a spot welding electrode is serious, and the service life is shortened; (2) reliability and service life requirements: along with the complication and deterioration of service environment, the requirements for the performance of copper alloy are changed along the direction of high quality and long service life; (3) the concept of saving and reducing consumption is as follows: taking a manipulator spot welding electrode as an example, the service life of the spot welding electrode commonly used at present is about 1000 welding spots, and the number of the welding spots in the shell of a small car is between 3500 welding spots and 6000 welding spots. If the service life of the spot welding electrode can be prolonged, the cost can be greatly reduced; (4) the efficient production concept is as follows: efficient production can effectively improve production efficiency, also can reduce and change the electrode number of times, shortens operating time, promotes automobile manufacturing production efficiency greatly, reduce cost and manpower consumption.
Disclosure of Invention
The invention aims to solve the technical problem of overcoming the defects of the prior art and providing a preparation method of the authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap, which is scientific, reasonable, strong in applicability and good in effect; the spot welding electrode cap manufactured by the method has the advantages of long service life, excellent mechanical property and the like.
In order to solve the technical problems, the invention adopts the technical scheme that the preparation method of the authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap is characterized by comprising the following steps of:
1) electrode tip made by turning
Using a chromium-zirconium-copper alloy round bar, turning by using a lathe according to the requirements of the drawing and technical conditions of the electrode tip product to manufacture an electrode tip finished product, and then cleaning the surface of the electrode tip finished product for later use;
2) material for preparing electrode tip supporting connector by ball milling
Titanium powder and carbon powder are prepared according to the weight percentage of autogenous ceramic particles of 5-30 wt.%, the balance is copper, and the mixture is put into a planetary ball mill, wherein the ball-to-material ratio of the ball mill is 5: 1, uniformly mixing at a rotating speed of 50 revolutions per minute for 24 hours to obtain a material for the electrode tip supporting connector;
3) mould cold-pressing prefabricated spot welding electrode cap
Placing the electrode tip in the step 1) into a mold cavity, placing the material of the electrode tip supporting connector in the step 2) into a mold, coating the material on the surface of the electrode tip, not coating the end plane and the tail end plane of the electrode tip, applying 100MPa pressure to the mold at room temperature, and prefabricating and forming a spot welding electrode cap after 1 minute;
4) hot-pressed sintering spot welding electrode cap forming
Taking the prefabricated spot welding electrode cap in the step 3) out of the mould, putting the prefabricated spot welding electrode cap into a heating reaction furnace with a hydraulic device, vacuumizing the furnace chamber of the reaction furnace, and vacuumizing the furnace chamber<1*10-2Filling argon with 0.8 atm, making argon purity be greater than or equal to 99.999%, continuously vacuumizing, then making vacuum degree<1*10-2Filling argon with the pressure of less than or equal to 0.4 atm, heating to 950 ℃ under the protection of argon atmosphere, preserving heat for 5 minutes, waiting for the completion of the reaction, applying the pressure of 40MPa, stopping heating and cooling to room temperature, and finally performing a water-cooling solution treatment process after heat preservation at 980 ℃ for 40 minutes and a furnace-cooling aging treatment process after heat preservation at 460 ℃ for 4 hours to obtain the authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap.
Further, the autogenous particles are selected from TiC particles and B4C particles、TiB2At least one of the particles.
Further, when the authigenic ceramic particles are TiC, the mass fraction of Ti and C powder is 4:1 wt.%.
Further, the authigenic ceramic particles are B4C is, Ti and B4The mass fraction of C powder was 18:7 wt.%.
Further, the authigenic ceramic particles are TiB2The mass fraction of Ti and B powder was 24:11 wt.%.
The copper powder is at least one of atomized copper powder, electrolytic copper powder, copper oxide powder and red copper powder.
The method for preparing the authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap adopts authigenic ceramic particles in a system, improves the problem of poor wettability between a copper matrix and the ceramic particles, and increases the bonding strength between the copper matrix and the ceramic particles; the mechanical property of the gradient spot welding electrode in the using process can be ensured by mixing copper powder, titanium powder and carbon powder and then preparing the gradient spot welding electrode cap by adopting a method combining combustion synthesis and vacuum hot pressing; the design of the gradient electrode material can ensure that the spot welding electrode cap has higher conductivity and mechanical property; in addition, the problem of high-temperature softening of the spot welding electrode cap in the service process can be solved. The method has the advantages of scientific and reasonable method, strong applicability, good effect and the like, and the spot welding electrode cap manufactured by the method has the advantages of long service life, excellent mechanical property and the like.
Drawings
FIG. 1 is a flow chart of a method for preparing an authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap according to the invention;
FIG. 2 is a schematic structural view of a authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap.
Detailed Description
The invention is further described with reference to the following figures and specific examples.
Referring to fig. 1 and 2, a method for preparing an autogenous ceramic particle reinforced copper-based gradient spot welding electrode cap is characterized by comprising the following steps:
1) electrode tip made by turning
Using a chromium-zirconium-copper alloy round bar, turning by using a lathe according to the requirements of the drawing and technical conditions of the electrode tip product to manufacture an electrode tip finished product, and then cleaning the surface of the electrode tip finished product for later use;
2) material for preparing electrode tip supporting connector by ball milling
Titanium powder and carbon powder are prepared according to the weight percentage of autogenous ceramic particles of 5-30 wt.%, the balance is copper, and the mixture is put into a planetary ball mill, wherein the ball-to-material ratio of the ball mill is 5: 1, uniformly mixing at a rotating speed of 50 revolutions per minute for 24 hours to obtain a material for the electrode tip supporting connector;
3) mould cold-pressing prefabricated spot welding electrode cap
Placing the electrode tip in the step 1) into a mold cavity, placing the material of the electrode tip supporting connector in the step 2) into a mold, coating the material on the surface of the electrode tip, not coating the end plane and the tail end plane of the electrode tip, applying 100MPa pressure to the mold at room temperature, and prefabricating and forming a spot welding electrode cap after 10 minutes;
4) hot-pressed sintering spot welding electrode cap forming
Taking the prefabricated spot welding electrode cap in the step 3) out of the metal mold, putting the prefabricated spot welding electrode cap into a graphite mold, putting the graphite mold into a heating reaction furnace with a hydraulic device, vacuumizing the furnace chamber of the reaction furnace, and vacuumizing the furnace chamber<1*10-2Filling argon with 0.8 atm, making argon purity be greater than or equal to 99.999%, continuously vacuumizing, then making vacuum degree<1*10-2Filling argon with the pressure of less than or equal to 0.4 atm, heating to 950 ℃ under the protection of argon atmosphere, preserving heat for 5 minutes, waiting for the completion of the reaction, applying the pressure of 40MPa, stopping heating and cooling to room temperature, and finally performing a water-cooling solution treatment process after heat preservation at 980 ℃ for 40 minutes and a furnace-cooling aging treatment process after heat preservation at 460 ℃ for 4 hours to obtain the authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap.
Further, the autogenous particles are selected from TiC particles and B4C particles, TiB2At least one of the particles.
Further, when the authigenic ceramic particles are TiC, the mass fraction of Ti and C powder is 4:1 wt.%.
Further, the authigenic ceramic particles are B4C is, Ti and B4The mass fraction of C powder was 18:7 wt.%.
Further, the authigenic ceramic particles are TiB2The mass fraction of Ti and B powder was 24:11 wt.%.
The copper powder is at least one of atomized copper powder, electrolytic copper powder, copper oxide powder and red copper powder.
The specific embodiment is as follows: a preparation method of an authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap is a preparation method of a particle reinforced copper-based gradient spot welding electrode cap containing 20 wt.% of TiC, and comprises the following steps:
1) electrode tip made by turning
Using a chromium-zirconium-copper alloy round bar, turning by using a lathe according to the requirements of the drawing and technical conditions of an electrode tip product to manufacture an electrode tip finished product, and then performing surface cleaning treatment on the electrode tip finished product for standby use, wherein the surface cleaning treatment is the prior art;
2) material for preparing electrode tip supporting connector by ball milling
Under the room temperature environment, calculating and weighing 80g of copper powder, 16g of titanium powder and CNTs4g, and putting the three powders into a planetary ball mill, wherein the ball-material ratio of the ball mill is 5: 1, uniformly mixing at a rotating speed of 50 revolutions per minute for 24 hours to obtain a material for the electrode tip supporting connector;
3) mould cold-pressing prefabricated spot welding electrode cap
Placing the electrode tip in the step 1) into a mold cavity, placing the material of the electrode tip supporting connector in the step 2) into a mold, coating the material on the surface of the electrode tip, not coating the end plane and the tail end plane of the electrode tip, applying 100MPa pressure to the mold at room temperature, and prefabricating and forming a spot welding electrode cap after 10 minutes;
4) hot-pressed sintering spot welding electrode cap forming
Taking the prefabricated spot welding electrode cap in the step 3) out of the metal mold, putting the prefabricated spot welding electrode cap into a graphite mold, putting the graphite mold into a heating reaction furnace with a hydraulic device, and vacuumizing the furnace chamber of the reaction furnaceEmpty, in vacuum degree<1*10-2Filling argon with 0.8 atm, making argon purity be greater than or equal to 99.999%, continuously vacuumizing, then making vacuum degree<1*10-2Filling argon with the pressure of less than or equal to 0.4 atm, heating to 950 ℃ under the protection of argon atmosphere, preserving heat for 5 minutes, waiting for the completion of the reaction, applying the pressure of 40MPa, stopping heating and cooling to room temperature, and finally performing a water-cooling solution treatment process after heat preservation at 980 ℃ for 40 minutes and a furnace-cooling aging treatment process after heat preservation at 460 ℃ for 4 hours to obtain the authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap.
The description of the present invention is not intended to be exhaustive or to limit the scope of the claims, and those skilled in the art will be able to conceive of other substantially equivalent alternatives, without inventive step, based on the teachings of the embodiments of the present invention, within the scope of the present invention.

Claims (6)

1. A method for preparing a authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap is characterized by comprising the following steps of: 1) electrode tip made by turning
Using a chromium-zirconium-copper alloy round bar, turning by using a lathe according to the requirements of the drawing and technical conditions of the electrode tip product to manufacture an electrode tip finished product, and then cleaning the surface of the electrode tip finished product for later use;
2) material for preparing electrode tip supporting connector by ball milling
Titanium powder and carbon powder are prepared according to the weight percentage of autogenous ceramic particles of 5-30 wt.%, the balance is copper, and the mixture is put into a planetary ball mill, wherein the ball-to-material ratio of the ball mill is 5: 1, uniformly mixing at a rotating speed of 50 revolutions per minute for 24 hours to obtain a material for the electrode tip supporting connector;
3) mould cold-pressing prefabricated spot welding electrode cap
Placing the electrode tip in the step 1) into a mold cavity, placing the material of the electrode tip supporting connector in the step 2) into a mold, coating the material on the surface of the electrode tip, not coating the end plane and the tail end plane of the electrode tip, applying 100MPa pressure to the mold at room temperature, and prefabricating and forming a spot welding electrode cap after 1 minute;
4) hot-pressed sintering spot welding electrode cap forming
Taking the prefabricated spot welding electrode cap in the step 3) out of the mould, putting the prefabricated spot welding electrode cap into a heating reaction furnace with a hydraulic device, vacuumizing the furnace chamber of the reaction furnace, and vacuumizing the furnace chamber<1*10-2Filling argon with 0.8 atm, making argon purity be greater than or equal to 99.999%, continuously vacuumizing, then making vacuum degree<1*10-2Filling argon with the pressure of less than or equal to 0.4 atm, heating to 950 ℃ under the protection of argon atmosphere, preserving heat for 5 minutes, waiting for the completion of the reaction, applying the pressure of 40MPa, stopping heating and cooling to room temperature, and finally performing a water-cooling solution treatment process after heat preservation at 980 ℃ for 40 minutes and a furnace-cooling aging treatment process after heat preservation at 460 ℃ for 4 hours to obtain the authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap.
2. The method for preparing the autogenous ceramic particle reinforced copper-based gradient spot welding electrode cap according to claim 1, wherein the autogenous particles are selected from TiC particles and B4C particles, TiB2At least one of the particles.
3. The method for preparing the authigenic ceramic particle-reinforced copper-based gradient spot welding electrode cap as claimed in claim 1 or 2, wherein when the authigenic ceramic particle is TiC, the mass fraction of Ti and C powder is 4:1 wt.%.
4. The method for preparing the autogenous ceramic particle reinforced copper-based gradient spot welding electrode cap according to claim 1 or 2, wherein the autogenous ceramic particle is B4C is, Ti and B4The mass fraction of C powder was 18:7 wt.%.
5. The method for preparing the autogenous ceramic particle reinforced copper-based gradient spot welding electrode cap according to claim 1 or 2, wherein the autogenous ceramic particle is TiB2The mass fraction of Ti and B powder was 24:11 wt.%.
6. The method for preparing the authigenic ceramic particle-reinforced copper-based gradient spot welding electrode cap as claimed in claim 1, wherein the copper powder is at least one of atomized copper powder, electrolytic copper powder, oxidized copper powder and red copper powder.
CN202011212865.6A 2020-11-03 2020-11-03 Preparation method of authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap Active CN112427644B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011212865.6A CN112427644B (en) 2020-11-03 2020-11-03 Preparation method of authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011212865.6A CN112427644B (en) 2020-11-03 2020-11-03 Preparation method of authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap

Publications (2)

Publication Number Publication Date
CN112427644A true CN112427644A (en) 2021-03-02
CN112427644B CN112427644B (en) 2022-08-05

Family

ID=74695209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011212865.6A Active CN112427644B (en) 2020-11-03 2020-11-03 Preparation method of authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap

Country Status (1)

Country Link
CN (1) CN112427644B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443615A (en) * 1991-02-08 1995-08-22 Honda Giken Kogyo Kabushiki Kaisha Molded ceramic articles
CN1947895A (en) * 2006-11-09 2007-04-18 上海交通大学 Method for preparing copper based composite material reinforced by surface modified granules for spot welding electrode
CN106756177A (en) * 2017-02-23 2017-05-31 吉林大学 A kind of preparation method of titanium carbide ceramic granule reinforced copper base composite material
CN108672704A (en) * 2018-05-23 2018-10-19 中山麓科睿材科技有限公司 A kind of die forming preparation method of aluminum oxide dispersion copper alloy spot welding electrode cap
US20190184487A1 (en) * 2017-10-20 2019-06-20 Bryan Prucher Welding electrode cap
US20190362910A1 (en) * 2017-02-02 2019-11-28 Meidensha Corporation Method for manufacturing electrode material and electrode material
CN110666323A (en) * 2019-10-31 2020-01-10 上海云飞工贸发展有限公司 Combined electrode suitable for resistance welding
CN111118324A (en) * 2020-01-13 2020-05-08 西安工程大学 Preparation method of TiC reinforced copper-based composite material added with coupling agent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443615A (en) * 1991-02-08 1995-08-22 Honda Giken Kogyo Kabushiki Kaisha Molded ceramic articles
CN1947895A (en) * 2006-11-09 2007-04-18 上海交通大学 Method for preparing copper based composite material reinforced by surface modified granules for spot welding electrode
US20190362910A1 (en) * 2017-02-02 2019-11-28 Meidensha Corporation Method for manufacturing electrode material and electrode material
CN106756177A (en) * 2017-02-23 2017-05-31 吉林大学 A kind of preparation method of titanium carbide ceramic granule reinforced copper base composite material
US20190184487A1 (en) * 2017-10-20 2019-06-20 Bryan Prucher Welding electrode cap
CN108672704A (en) * 2018-05-23 2018-10-19 中山麓科睿材科技有限公司 A kind of die forming preparation method of aluminum oxide dispersion copper alloy spot welding electrode cap
CN110666323A (en) * 2019-10-31 2020-01-10 上海云飞工贸发展有限公司 Combined electrode suitable for resistance welding
CN111118324A (en) * 2020-01-13 2020-05-08 西安工程大学 Preparation method of TiC reinforced copper-based composite material added with coupling agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵乃勤等: "粉末冶金真空热压法制备 WC/Cu 复合电阻焊电极", 《兵器材料科学与工程》 *

Also Published As

Publication number Publication date
CN112427644B (en) 2022-08-05

Similar Documents

Publication Publication Date Title
CN101121974B (en) High-strength high-conduction strengthened dispersion copper alloy and preparation method thereof
CN110157932B (en) Preparation method of graphene modified copper-based electrical contact material based on in-situ synthesis
CN110257679B (en) Preparation method of molybdenum-based alloy coating
CN105734459B (en) The preparation method of carbon nanotube enhanced aluminium-based composite material
CN106424713A (en) Copper-carbon composite material and preparing method thereof
CN105018768B (en) High-performance copper chromium contactor material and preparing method thereof
CN105132726B (en) A kind of copper-chromium contact material suitable for contactor and preparation method thereof
CN111057905B (en) Method for preparing niobium-titanium alloy through powder metallurgy
CN109468480B (en) Method for preparing metal-based composite material by vacuum sheath rolling assisted by pulse electric field
CN113881875B (en) Three-dimensional framework structure metal reinforced aluminum matrix composite material and preparation method thereof
CN105428097A (en) Silver-based electrical contact composite material and preparation method therefor
CN112813397B (en) Preparation method of molybdenum-sodium alloy plate-shaped target
CN114192750B (en) Diamond/copper composite thermal conductive material and preparation method thereof
CN101913879A (en) Silicon nitride material and preparation method thereof, as well as silicon nitride heating device and production method thereof
CN112267039A (en) Preparation process of high volume fraction silicon carbide particle reinforced aluminum matrix composite
CN114574728B (en) Cu-Y 3 Zr 4 O 12 Method for preparing composite material
CN111957975A (en) Preparation technology of graphene reinforced copper-based composite material
CN101624662B (en) Method for preparing W-Cu alloy in microwave infiltration way
CN105463238A (en) Cu-Cr electrical contact material and preparation method thereof
CN112427644B (en) Preparation method of authigenic ceramic particle reinforced copper-based gradient spot welding electrode cap
CN112410597B (en) Preparation method of nano WC dispersion strengthened copper
CN105039776A (en) Dispersion strengthening copper-based composite material for spot-welding electrode and preparation method of dispersion strengthening copper-based composite material
CN105112712A (en) Dispersion strengthening copper base composite material for high-strength and high-conductivity spot-welding electrode and preparation method thereof
CN111961901B (en) Preparation method of in-situ authigenic WC reinforced WCu dual-gradient-structure composite material
CN114045411A (en) Method for preparing aluminum oxide dispersed copper by adopting external oxidation mode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant