CN112419213A - 一种sf6红外图像增强方法及系统 - Google Patents

一种sf6红外图像增强方法及系统 Download PDF

Info

Publication number
CN112419213A
CN112419213A CN202011148712.XA CN202011148712A CN112419213A CN 112419213 A CN112419213 A CN 112419213A CN 202011148712 A CN202011148712 A CN 202011148712A CN 112419213 A CN112419213 A CN 112419213A
Authority
CN
China
Prior art keywords
image
infrared
enhancement method
algorithm
infrared image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011148712.XA
Other languages
English (en)
Other versions
CN112419213B (zh
Inventor
胡梦竹
刘陈瑶
唐彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Guangxi Power Grid Co Ltd
Original Assignee
Electric Power Research Institute of Guangxi Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Guangxi Power Grid Co Ltd filed Critical Electric Power Research Institute of Guangxi Power Grid Co Ltd
Priority to CN202011148712.XA priority Critical patent/CN112419213B/zh
Publication of CN112419213A publication Critical patent/CN112419213A/zh
Application granted granted Critical
Publication of CN112419213B publication Critical patent/CN112419213B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20132Image cropping

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明提供了一种SF6红外图像增强方法,包括:基于双边滤波处理原始红外图像分别得到基础图像和细节图像;基于CLAHE算法增强处理所述基础图像,得到增强基础图像;基于拉普拉斯变换获取所述细节图像中的边缘图像;线性叠加所述增强基础图像和所述边缘图像得到最终图像。该SF6红外图像增强方法及系统对SF6红外图像的增强效果优于常见的几种红外图像增强算法,不仅有效地抑制了噪声和提高泄漏区域的对比度,并突出泄漏区域的边缘,为后续图像的处理奠定了必要的基础。

Description

一种SF6红外图像增强方法及系统
技术领域
本发明涉及到图像处理领域,具体涉及到一种SF6红外图像增强方法及系统。
背景技术
六氟化硫(SF6)具有优异的绝缘性能和灭弧能力,被广泛应用于高压电力设备的绝缘和灭弧介质中,但是若电力设备的六氟化硫气体泄漏,就会造成严重的不良后果,因此,六氟化硫气体泄漏的检测工作十分重要。
近几年,利用SF6气体红外特性发展的红外成像检漏法在设备带电情况下,相对在较远的距离条件下就能够发现泄漏的具体部位,具有精度高,检测结果直观的优点,极大提高了检测效率,同时也保证了检测人员的安全。
具体的,红外成像检漏法利用红外相机观察现场的实际情况,通过人工判别的方式判断SF6设备的泄漏点,这种方式不仅提高了SF6泄漏的检测效率且能够判断泄漏点,但是由于人眼对图像识别的差异性,人工判别的方式不可避免地存在漏检以及误检的问题,因此,有必要针对SF6红外图像进行适应的处理,以更好的突出SF6泄露区域的影像。
在现有技术下有一种基于红外视频图像的SF6泄漏区域检测算法,该算法采用传统的图像增强方法提高泄漏区域的对比度,虽提高了检漏的工作效率,但也增强了背景的对比度,增加了泄漏区域的识别难度;且红外图像存在对比度低、信噪比差和边缘模糊等缺点,成像质量并不理想。
因此,为了实现SF6气体泄漏区域的检测,便于后续工作的顺利进行,必须对SF6红外图像进行有效的局部增强处理。
发明内容
该SF6红外图像增强方法及系统有效地抑制了噪声和提高泄漏区域的对比度,并突出泄漏区域的边缘,为后续图像的处理奠定了必要的基础。
相应的,本发明提供了一种SF6红外图像增强方法,包括:
基于双边滤波处理原始红外图像分别得到基础图像和细节图像;
基于CLAHE算法增强处理所述基础图像,得到增强基础图像;
基于拉普拉斯变换获取所述细节图像中的边缘图像;
线性叠加所述增强基础图像和所述边缘图像得到最终图像。
可选的实施方式,还包括:
基于SF6红外成像检漏仪获取原始红外图像。
可选的实施方式,所述基于CLAHE算法增强处理所述基础图像,得到增强基础图像包括:
扩展原始的图像边界,将基础图像f(x,y)划分为m×n大小相等的子块,m,n为子块的行数和列数,共分为k×k个子块,k的取值可为8、16、32和64等;
设每个子块的面积为S,取系数b=255/S,预设的上限阈值L为
L=max(1,L*S/256),
L为对图像进行裁剪时每个灰度级所允许的最大值。
对划分后的每个子块依次计算其直方图;
使用预先设定的阈值L对每个子块直方图进行裁剪,同时统计整个直方图中超过上限阈值L的像素数,并将这些像素数重新分布到对应子块的直方图中;
采用HE算法依次对裁剪后的子块直方图进行处理,并求取每一子块的灰度映射函数;
采用双线性插值算法计算每一子块相应像素点的灰度值,得到经过CLAHE算法增强的增强基础图像。
可选的实施方式,所述基于拉普拉斯变换获取所述细节图像中的边缘图像包括:
所述拉普拉斯变换的拉普拉斯滤波模板为
Figure BDA0002740480100000031
可选的实施方式,所述线性叠加所述增强基础图像和所述边缘图像得到最终图像包括:
线性叠加公式为
Figure BDA0002740480100000032
imagefinal为最终图像;imageclahe表示增强基础图像;imageLapacian为边缘图像,式中,*为为乘号;系数
Figure BDA0002740480100000033
为加权参数。
可选的实施方式,所述
Figure BDA0002740480100000034
处于5和15之间。
可选的实施方式,所述
Figure BDA0002740480100000035
位于8和10之间。
相应的,本发明还提供了一种SF6红外图像增强系统,用于实现上述任一项所述的SF6红外图像增强方法。
该SF6红外图像增强方法及系统对SF6红外图像的增强效果优于常见的几种红外图像增强算法,不仅有效地抑制了噪声和提高泄漏区域的对比度,并突出泄漏区域的边缘,为后续图像的处理奠定了必要的基础。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1示出了本发明实施例的SF6红外图像增强方法流程示意图;
图2示出了红外成像检漏法的原理示意图;
图3示出了SF6红外图像a1在不同增强方法下的对照图片;
图4示出了SF6红外图像a1在不同增强方法下的的直方图;
图5示出了SF6红外图像a2在不同增强方法下的对照图片;
图6示出了SF6红外图像a2在不同增强方法下的的直方图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
图1示出了本发明实施例的SF6红外图像增强方法流程示意图。
本发明实施例提供了一种SF6红外图像增强方法,包括:
S101:基于SF6红外成像检漏仪获取原始红外图像;
图2示出了红外成像检漏法的原理示意图。SF6气体与空气对于特定波段的红外辐射具有不同的吸收能力,使得通常可见光下看不到的SF6气体泄漏在红外摄像机观察下变得清晰可见;因此,可以采用数字图像处理技术对红外视频(红外图像)中的SF6气体进行增强,为后续的检测工作打下良好的基础。
相应的,如需利用数字图像处理技术对SF6气体进行检测,首要步骤需要对检测目标(检测区域)获取到红外视频(红外图像),即本发明实施例所述的原始红外图像。
具体的,目标视频实质上由多帧独立图像组成,对目标视频的处理实质上为对其中的每一帧图像的处理,后续以原始红外图像为例进行说明。
S102:基于双边滤波处理所述原始红外图像分别得到基础图像和细节图像。
双边滤波(Bilateral filter)是一种结合图像的空间邻近度和像素值相似度的边缘保持平滑滤波器,其定义如下式所示:
Figure BDA0002740480100000051
式中,g(i,j)表示经过双边滤波后的基础图像,f(x,y)为原始红外图像;
其中加权系数w(i,j,x,y)的取值(定义域核函数和值域核函数的乘积)如下式所示
Figure BDA0002740480100000061
式中,(i,j)为当前像素点;(x,y)为邻域点;f(i,j)和f(x,y)为对应像素点的灰度值,空间相似度因子σd和灰度相似度因子σr决定了双边滤波的性能,其中定义域核函数和值域核函数分别为
定义域核函数:
Figure BDA0002740480100000062
值域核函数:
Figure BDA0002740480100000063
具体的,值域滤波核函数在图像灰度变化平缓的区域时逼近于1,此时定义域核函数起主要作用,相当于对图像进行平滑处理;而图像边缘的像素点差异较大,值域核函数起着主要作用,这可以保证图像的边缘信息不被模糊。
综合上述叙述可知:双边滤波的特点是可以保留图像中的边缘,它是基于空间分布的高斯滤波函数,所以进行处理时,距离边缘较远的像素对边缘上的像素值影响并不大。
由此可见,基于双边滤波处理所述原始红外图像首先得到的为基础图像,可有效保存泄露区域的边缘,然后通过原始红外图像减去基础图像可得到细节图像。
S103:基于CLAHE算法增强处理所述基础图像,得到增强基础图像;
限制对比度的自适应直方图均衡化(Adaptive Histogram Equalization BasedOn Limited Contrast,CLAHE)算法是在自适应直方图均衡化(Adaptive HistgramEqualization,AHE)算法的基础上改进而来,该算法与AHE算法的不同点主要在于其对比度限幅,算法通过限制AHE算法的对比增强程度来达到所需的效果。
具体的,变换函数的斜率决定了一个像素值的周边对比度放大程度,且这个斜率和领域的累积分布函数(Cumulative Distribution Function,CDF)的斜率成比例。
CLAHE算法先用预先设定的阈值来裁剪直方图,再计算CDF的方式来限制CDF的斜率,从而限制变换函数的斜率,以此达到限制放大幅度的目的,该算法的优势在于被裁剪掉的部分将均匀的分布到直方图的其他部分。
具体的,本发明实施例对现有的CLAHE算法进行改进,改进后的CLAHE算法的计算流程未:
(1)扩展原始的图像边界,将基础图像f(x,y)划分为m×n大小相等的子块,m,n为子块的行数和列数,共分为k×k个子块,k的取值可为8、16、32和64等。
(2)设每个子块的面积为S,取系数b=255/S,预设的上限阈值L如下式所示
L=max(1,L*S/256),
式中,L为对图像进行裁剪时每个灰度级所允许的最大值。
(3)对划分后的每个子块依次计算其直方图。
(4)使用预先设定的阈值L对每个子块直方图进行裁剪,同时统计整个直方图中超过上限阈值L的像素数,并将这些像素数重新分布到对应子块的直方图中。
(5)采用HE算法依次对裁剪后的子块直方图进行处理,并求取每一子块的灰度映射函数。
(6)采用双线性插值算法计算每一子块相应像素点的灰度值,则可得到经过CLAHE算法增强的增强基础图像。
本发明实施例采用CLAHE算法对双边滤波处理得到的基础图像进行增强,图像中泄漏区域的对比度得到了提高,且有效地抑制图像均匀区域的噪声。
S104:基于拉普拉斯变换获取所述细节图像中的边缘图像;
一个二元图像函数(细节图像)的f(x,y)拉普拉斯变换的定义为
Figure BDA0002740480100000081
式中,x,y为图像中像素点的坐标;
Figure BDA0002740480100000082
为基于二阶微分的Laplacian算子,该算子的特点是对图像边缘敏感且为旋转不变的二阶微分算子。Laplacian算子利用二阶微分正峰和负峰间的过零点来确定图像陡峭和变化平缓边缘的位置,在本发明实施例中,SF6红外图像泄漏区域的边缘也是陡峭和缓慢变化,采用该算子处理SF6红外图像可较好地突出泄漏区域的边缘。
对于离散的数字图像,在x方向上可用下式对二阶偏微分做近似,具体表示为
Figure BDA0002740480100000083
在y方向上可用下式对二阶偏微分做近似,具体表示为
Figure BDA0002740480100000091
将上述两式相加,可得到对应的拉普拉斯滤波模板为
Figure BDA0002740480100000092
该拉普拉斯滤波模板为四邻域的拉普拉斯算子,对于突出图像的边界、线段和孤立点具有很好的效果,这种模板对于图像的90°旋转是各向同性的,即对图像旋转后滤波和滤波后旋转的结果是相同,所以拉普拉斯算子对于图像的边缘具有很好的增强效果。
S105:线性叠加所述增强基础图像和所述边缘图像得到最终图像;
具体的,线性叠加公式为
Figure BDA0002740480100000093
式中,imagefinal为最终图像;imageclahe表示增强基础图像;imageLapacian为边缘图像,式中,*为为乘号;系数
Figure BDA0002740480100000094
为加权参数;经过大量的试验证明,当
Figure BDA0002740480100000095
处于5和15之间时,本发明实施例所提供的算法的增强效果是有效的;当
Figure BDA0002740480100000096
位于8和10之间时,可以获得最好的图像增强效果。
具体的,针对本发明实施所提供的SF6红外图像增强方法,后续以平台直方图均衡化(Platform Histogram Equalization,PE)算法、限制对比度的自适应直方图均衡化(Adaptive Histogram Equalization Based On Limited Contrast,CLAHE)算法作为对比对象,针对多幅不同场景下SF6泄漏的红外图像进行对照实验,从从主观和客观评价两个方面进行分析。
主观评价
实验1:
图3示出了SF6红外图像a1在不同增强方法下的对照图片,图4示出了SF6红外图像a1在不同增强方法下的的直方图,SF6的泄漏区域用黑圈标注。
从图4的e1图可以看出,原始的红外图像直方图的分布集中于灰度级低的一侧,其对比度低。
使用PE算法,CLAHE算法和本发明实施例的算法依次对其进行处理。从f1图中可以看出,直方图基本覆盖了所有的灰度级且分布均匀,这表明PE算法增强了图像的整体对比度,但图像背景的对比度被过度放大,增强泄漏区域的效果并不理想。g1直方图的峰值大多位于直方图的左半部分,这说明:采用CLAHE算法,图像整体的增强效果要明显优于PE算法,图像背景中的噪声被很好的抑制了,但也造成了泄漏区域的细节难以分辨。
采用本发明实施例所提供的算法增强原始图像,得到d1图和h1直方图。h1直方图的峰值集中于直方图的中右部,且与d1红外图像清晰的细节相互印证,两者表明:SF6红外图像泄漏区域的对比度得到了提高且每一SF6云团的边缘细节的增强效果是优于CLAHE算法的。
实验2
图5示出了SF6红外图像a2在不同增强方法下的对照图片,图6示出了SF6红外图像a2在不同增强方法下的的直方图,SF6的泄漏区域用黑圈标注。
对比e1和e2直方图可知,a2图的灰度值比a1图更为分散,且e2直方图中的两个主峰位于左中部,其对比度较低。f2直方图的分布与f1图相似,其灰度值丰富且动态范围大,b2图也表明PE算法使图像偏亮,整体的亮度过高。g2直方图的成分整体分布较广但峰值并不高,这说明CLAHE算法很好的增强了泄漏区域的对比度。
采用本发明实施例的算法增强原始图像,所得到的h2直方图整体分布于直方图的较右部分,结合d2红外图像的增强效果可知,本发明实施例的的算法不仅增强泄漏区域的对比度,图像中每一SF6云团的纹理细节更加清晰,而且图像的整体效果也更加柔和,细节的增强效果优于CLAHE算法的。
由此可见,总的来看,本发明实施例的算法不仅增强了SF6红外图像泄漏区域的对比度,也突出了泄漏区域的每一SF6云团的纹理细节与边缘,相较于现有手段具有更好的技术效果。
客观评价
本发明实施例采用标准差和图像信息熵作为客观评价标准,来验证图像的增强效果。标准差和图像信息熵两者在红外图像增强领域的应用十分广泛。
标准差表征图像灰度值与均值的差异,可反映图像对比度的大小。该值越大,则图像对比度越大。图像信息熵可反映图像的平均信息量。对于一幅灰度图像,其熵值最大为8,信息熵大,则所增强的图像效果越好,其计算方式为
Figure BDA0002740480100000121
式中,Pi表示图像中某个灰度出现的概率;可由灰度直方图获得。通过对不同算法增强的图像求其信息熵和标准差,所得结果如表1所示。
表1不同算法的增强效果的比较结果
Figure BDA0002740480100000122
PE算法所增强图像的熵值略微减小且比其他算法要小,标准差最大,这表明PE算法导致图像的信息有所损失,虽提高了图像的对比度但出现了过增强现象。本发明实施例的增强方法与CLAHE算法的标准差相同,很好的增强了图像的局部对比度,但两者的熵值较原始图像得到了提高,图像的信息量更加丰富。本发明实施例的增强方法的熵值虽略微小于CLAHE算法,这是以牺牲微小熵值而较好地保留泄漏区域的纹理细节与边缘。
本发明实施例提供了一种SF6红外图像增强方法,该增强方法先采用双边滤波处理原始红外图像,初步保留了泄漏区域的边缘,并采用CLAHE算法增强泄漏区域的对比度,再采用双线性变换和拉普拉斯变换处理细节图像,进一步突出泄漏区域的纹理细节,最后将两幅图像进行线性叠加,获取最终增强的SF6红外图像。通过多组对比实验,并从主观和客观评价两个方面进行分析与对比,从而验证算法的有效性和技术优势,为实现SF6气体泄漏区域的检测打下良好的基础,使后续工作能更加顺利进行。
相应的,本发明还提供了一种SF6红外图像增强系统,用于实现上述的任意一种SF6红外图像增强方法。
该SF6红外图像增强方法及系统对SF6红外图像的增强效果优于常见的几种红外图像增强算法,不仅有效地抑制了噪声和提高泄漏区域的对比度,并突出泄漏区域的边缘,为后续图像的处理奠定了必要的基础。
以上对本发明实施例所提供的一种SF6红外图像增强方法及系统进行了详细介绍,本发明实施例中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

1.一种SF6红外图像增强方法,其特征在于,包括:
基于双边滤波处理原始红外图像分别得到基础图像和细节图像;
基于CLAHE算法增强处理所述基础图像,得到增强基础图像;
基于拉普拉斯变换获取所述细节图像中的边缘图像;
线性叠加所述增强基础图像和所述边缘图像得到最终图像。
2.如权利要求1所述的SF6红外图像增强方法,其特征在于,还包括:
基于SF6红外成像检漏仪获取原始红外图像。
3.如权利要求1所述的SF6红外图像增强方法,其特征在于,所述基于CLAHE算法增强处理所述基础图像,得到增强基础图像包括:
扩展原始的图像边界,将基础图像f(x,y)划分为m×n大小相等的子块,m,n为子块的行数和列数,共分为k×k个子块,k的取值可为8、16、32和64等;
设每个子块的面积为S,取系数b=255/S,预设的上限阈值L为L=max(1,L*S/256),L为对图像进行裁剪时每个灰度级所允许的最大值。
对划分后的每个子块依次计算其直方图;
使用预先设定的阈值L对每个子块直方图进行裁剪,同时统计整个直方图中超过上限阈值L的像素数,并将这些像素数重新分布到对应子块的直方图中;
采用HE算法依次对裁剪后的子块直方图进行处理,并求取每一子块的灰度映射函数;
采用双线性插值算法计算每一子块相应像素点的灰度值,得到经过CLAHE算法增强的增强基础图像。
4.如权利要求1所述的SF6红外图像增强方法,其特征在于,所述基于拉普拉斯变换获取所述细节图像中的边缘图像包括:
所述拉普拉斯变换的拉普拉斯滤波模板为
Figure FDA0002740480090000021
5.如权利要求1所述的SF6红外图像增强方法,其特征在于,所述线性叠加所述增强基础图像和所述边缘图像得到最终图像包括:
线性叠加公式为
Figure FDA0002740480090000022
imagefinal为最终图像;imageclahe表示增强基础图像;imageLapacian为边缘图像,式中,*为为乘号,系数
Figure FDA0002740480090000023
为加权参数。
6.如权利要求5所述的SF6红外图像增强方法,其特征在于,所述
Figure FDA0002740480090000024
处于5和15之间。
7.如权利要求6所述的SF6红外图像增强方法,其特征在于,所述
Figure FDA0002740480090000031
位于8和10之间。
8.一种SF6红外图像增强系统,其特征在于,用于实现权利要求1至7任一项所述的SF6红外图像增强方法。
CN202011148712.XA 2020-10-23 2020-10-23 一种sf6红外图像增强方法及系统 Active CN112419213B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011148712.XA CN112419213B (zh) 2020-10-23 2020-10-23 一种sf6红外图像增强方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011148712.XA CN112419213B (zh) 2020-10-23 2020-10-23 一种sf6红外图像增强方法及系统

Publications (2)

Publication Number Publication Date
CN112419213A true CN112419213A (zh) 2021-02-26
CN112419213B CN112419213B (zh) 2023-09-15

Family

ID=74840959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011148712.XA Active CN112419213B (zh) 2020-10-23 2020-10-23 一种sf6红外图像增强方法及系统

Country Status (1)

Country Link
CN (1) CN112419213B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115311173A (zh) * 2022-10-09 2022-11-08 山东瑞驰至臻环境科技有限公司 用于气体污染识别的视觉增强方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060291742A1 (en) * 2005-06-27 2006-12-28 Nuctech Company Limited And Tsinghua University Method and apparatus for enhancing image acquired by radiographic system
CN101859432A (zh) * 2010-05-17 2010-10-13 重庆师范大学 档案图像增强的构造方法
CN102222323A (zh) * 2011-06-13 2011-10-19 北京理工大学 基于直方图统计拉伸和梯度滤波的红外图像细节增强方法
CN108780571A (zh) * 2015-12-31 2018-11-09 上海联影医疗科技有限公司 一种图像处理方法和系统
CN109584181A (zh) * 2018-12-03 2019-04-05 北京遥感设备研究所 一种改进的基于Retinex红外图像细节增强方法
CN109919861A (zh) * 2019-01-29 2019-06-21 浙江数链科技有限公司 红外图像增强方法、装置、计算机设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060291742A1 (en) * 2005-06-27 2006-12-28 Nuctech Company Limited And Tsinghua University Method and apparatus for enhancing image acquired by radiographic system
CN101859432A (zh) * 2010-05-17 2010-10-13 重庆师范大学 档案图像增强的构造方法
CN102222323A (zh) * 2011-06-13 2011-10-19 北京理工大学 基于直方图统计拉伸和梯度滤波的红外图像细节增强方法
CN108780571A (zh) * 2015-12-31 2018-11-09 上海联影医疗科技有限公司 一种图像处理方法和系统
CN109584181A (zh) * 2018-12-03 2019-04-05 北京遥感设备研究所 一种改进的基于Retinex红外图像细节增强方法
CN109919861A (zh) * 2019-01-29 2019-06-21 浙江数链科技有限公司 红外图像增强方法、装置、计算机设备和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115311173A (zh) * 2022-10-09 2022-11-08 山东瑞驰至臻环境科技有限公司 用于气体污染识别的视觉增强方法及系统
CN115311173B (zh) * 2022-10-09 2023-01-13 山东瑞驰至臻环境科技有限公司 用于气体污染识别的视觉增强方法及系统

Also Published As

Publication number Publication date
CN112419213B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
CN112444521B (zh) 一种sf6泄露监测方法及系统
Liu et al. Detail enhancement for high-dynamic-range infrared images based on guided image filter
Gao et al. Sand-dust image restoration based on reversing the blue channel prior
CN107481210B (zh) 基于细节的局部选择性映射的红外图像增强方法
JP6052902B2 (ja) ディジタル画像中のハイライト領域および飽和領域を処理するための方法
CN109377450B (zh) 一种边缘保护的去噪方法
CN115439494B (zh) 用于喷雾机质检的喷雾图像处理方法
KR20110014067A (ko) 스테레오 컨텐트의 변환 방법 및 시스템
CN110717922A (zh) 一种图像清晰度评价方法及装置
CN113034452A (zh) 一种焊件轮廓检测方法
CN112529853A (zh) 一种用于水下养殖网箱的网衣破损检测方法及装置
CN110175967B (zh) 图像去雾处理方法、系统、计算机设备和存储介质
CN112419213B (zh) 一种sf6红外图像增强方法及系统
CN111340692A (zh) 一种红外图像动态范围压缩以及对比度增强算法
Bao et al. An edge-preserving filtering framework for visibility restoration
Kansal et al. Fusion-based image de-fogging using dual tree complex wavelet transform
Lei et al. Low-light image enhancement using the cell vibration model
CN110633705A (zh) 一种低照度成像车牌识别方法及装置
Banerjee et al. Bacterial foraging-fuzzy synergism based image Dehazing
CN108961258B (zh) 一种前景图像获得方法及装置
Luo et al. An effective underwater image enhancement method based on CLAHE-HF
Guo et al. Fast Defogging and Restoration Assessment Approach to Road Scene Images*.
de Dravo et al. An adaptive combination of dark and bright channel priors for single image dehazing
Reddy et al. Guided image filtering for image enhancement
Elhefnawy et al. Effective visibility restoration and enhancement of air polluted images with high information fidelity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant