CN112418340A - 一种带振荡阻尼的复合加权融合方法和系统 - Google Patents

一种带振荡阻尼的复合加权融合方法和系统 Download PDF

Info

Publication number
CN112418340A
CN112418340A CN202011367817.4A CN202011367817A CN112418340A CN 112418340 A CN112418340 A CN 112418340A CN 202011367817 A CN202011367817 A CN 202011367817A CN 112418340 A CN112418340 A CN 112418340A
Authority
CN
China
Prior art keywords
formula
basic
distribution function
evidences
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011367817.4A
Other languages
English (en)
Other versions
CN112418340B (zh
Inventor
冯博
王德伍
孙照强
陈燕
叶春茂
穆贺强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Radio Measurement
Original Assignee
Beijing Institute of Radio Measurement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Radio Measurement filed Critical Beijing Institute of Radio Measurement
Priority to CN202011367817.4A priority Critical patent/CN112418340B/zh
Publication of CN112418340A publication Critical patent/CN112418340A/zh
Application granted granted Critical
Publication of CN112418340B publication Critical patent/CN112418340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/257Belief theory, e.g. Dempster-Shafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)

Abstract

本发明涉及一种带振荡阻尼的复合加权融合方法和系统,对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数;根据每组证据的第一基本信度分配函数得到每两组证据之间的冲突折扣系数;根据多个冲突折扣系数对每两组证据的第一基本信度分配函数进行复合加权融合,得到经复合加权融合后的基本信度分配函数时序;通过振荡阻尼约束对基本信度分配函数时序的随机起伏进行约束,得到修正后的基本信度分配函数时序,使修正后的基本信度分配函数时序不会违背常理,避免在未充分利用证据先验知识时以及证据间存在冲突时产生的决策偏差与起伏,且性能高效稳定,理论推导完备,具有良好的学术及工程应用前景。

Description

一种带振荡阻尼的复合加权融合方法和系统
技术领域
本发明涉及多源信息融合技术领域,尤其涉及一种带振荡阻尼的复合加权融合方法和系统。
背景技术
证据理论是一种处理不确定性问题的完整理论,能够将不同传感器数据或者分类器输出结果进行融合,从而获取各种假设下的综合决策;经典的证据理论具有良好的信息聚焦性,但其存在三个缺点:1、不区分证据间的置信度差异,导致综合决策往往不够准确;2、当证据间存在冲突时,通常会有违背常理的融合结果输出;3、未考虑起伏约束,导致融合概率时序输出不平稳;综上所述,经典的证据理论在未充分利用证据先验知识时以及证据间存在冲突时容易产生决策偏差与起伏。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供了一种带振荡阻尼的复合加权融合方法和系统。
本发明的一种带振荡阻尼的复合加权融合方法的技术方案如下:
S1、对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数;
S2、根据每组证据的第一基本信度分配函数得到每两组证据之间的冲突折扣系数;
S3、根据多个所述冲突折扣系数对每两组证据的第一基本信度分配函数进行复合加权融合,得到经复合加权融合后的基本信度分配函数时序;
S4、根据振荡阻尼约束对所述基本信度分配函数时序进行约束,得到修正后的基本信度分配函数时序。
本发明的一种带振荡阻尼的复合加权融合方法的有益效果如下:
经典证据理论在未充分利用证据先验知识时以及证据间存在冲突时会导致融合决策结果与客观现实不相匹配,引起决策偏差;此外,经典证据理论是典型的无序融合算法,对于时序数据,无序融合无法约束融合后的概率起伏,导致输出概率时序出现不平稳的振荡。通过振荡阻尼约束对基本信度分配函数时序的随机起伏进行约束抑制过大的概率振荡,通过复合加权引入证据先验知识,抑制证据间的冲突,得到修正后的基本信度分配函数时序,使修改后的基本信度分配函数时序不会违背常理,避免在未充分利用证据先验知识时以及证据间存在冲突时产生的决策偏差与起伏。本发明的一种带振荡阻尼的复合加权融合方法高效稳定,理论推导完备,具有良好的学术及工程应用前景。
在上述方案的基础上,本发明的一种带振荡阻尼的复合加权融合方法还可以做如下改进。
进一步,所述S1包括:
通过第一公式得到对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数,所述第一公式为:
Figure BDA0002805006090000021
其中,
Figure BDA0002805006090000023
表示第n组证据的第一基本信度分配函数,β=[β12,...,βN],表示N组证据的置信配置向量,βn∈[0,1],
Figure BDA0002805006090000022
Ω表示论域集合且Ω={tar_1,tar_2,...,tar_M},tar_1,tar_2,...,tar_M分别表示一个目标类型,N组证据中第n组证据的基本信度分配函数为mn:2Ω→[0,1],满足
Figure BDA0002805006090000031
其中2Ω为Ω的幂集,A为幂集中的任一命题,φ为空集,N和M均为正整数。
进一步,所述S2包括:
S20、根据第二公式得到每组证据的第一基本信度分配函数所对应的关联Pignistic概率函数
Figure BDA0002805006090000032
所述第二公式为:
Figure BDA0002805006090000033
Figure BDA0002805006090000034
表示第n组证据的关联Pignistic概率函数;
S21、获取任意两组证据对应的关联Pignistic概率函数,并根据第三公式得到冲突距离
Figure BDA0002805006090000035
所述第三公式为:
Figure BDA0002805006090000036
其中,
Figure BDA0002805006090000037
Figure BDA0002805006090000038
分别表示任意两组证据对应的关联Pignistic概率函数,
Figure BDA0002805006090000039
S22、根据第四公式得到第x组证据与第y组证据的概率冲突系数CRx,y,所述第四公式为:
Figure BDA00028050060900000310
其中,
Figure BDA00028050060900000311
S23、根据第五公式得到第x组证据与第y组证据之间的冲突折扣系数Ratex,y,第五公式为:
Figure BDA00028050060900000312
其中,Th1为预设冲突系数下限,Th2为预设冲突系数上限,Pmin为预设冲突折扣系数下限,Pmax为预设冲突折扣系数上限;
S24、重复执行S20至S24,得到每两组证据之间的冲突折扣系数。
进一步,所述S3包括:
通过第六公式对第j组证据与第j+1组证据进行复合加权融合,所述第六公式为:
Figure BDA0002805006090000041
其中,
Figure BDA0002805006090000042
:=为变量赋值算子;j∈{1,2,...,N-1};
将所述第六公式中j的取值按1到N-1的递增顺序遍历,同时按顺序更新Ratej,j+1,得到经复合加权融合后的基本信度分配函数时序:
Figure BDA0002805006090000043
Figure BDA0002805006090000044
其中,
Figure BDA0002805006090000045
为第j+1组证据复合加权后的基本信度分配函数。
进一步,所述S4包括:
S40、通过第七公式对所述基本信度分配函数时序进行归一化处理,所述第七公式为:
Figure BDA0002805006090000046
S41、通过第八公式获取
Figure BDA0002805006090000047
的最大偏差概率的索引位置I,所述第八公式为:
Figure BDA0002805006090000048
Q表示兴趣目标类型且Q∈Ω;
S42、通过第九公式获取所述兴趣目标类型Q的振荡阻尼约束概率,所述第九公式为:
Figure BDA0002805006090000049
其中,
Figure BDA00028050060900000410
q表示预设概率振荡上界;▽为所述兴趣目标类型Q的概率振荡幅度约束;sign(·)为符号算子;
S43、通过第九公式对所述基本信度分配函数时序进行更新,得到修正后的基本信度分配函数时序:
Figure BDA00028050060900000411
本发明的一种带振荡阻尼的复合加权融合系统的技术方案如下:
包括加权模块、冲突折扣系数计算模块、复合加权融合模块、约束模块;
所述加权模块用于对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数;
所述冲突折扣系数计算模块用于根据每组证据的第一基本信度分配函数得到每两组证据之间的冲突折扣系数;
所述复合加权融合模块用于根据多个所述冲突折扣系数对每两组证据的第一基本信度分配函数进行复合加权融合,得到经复合加权融合后的基本信度分配函数时序;
所述约束模块用于根据振荡阻尼约束对所述基本信度分配函数时序进行约束,得到修正后的基本信度分配函数时序。
本发明的一种带振荡阻尼的复合加权融合系统的有益效果如下:
通过振荡阻尼约束对基本信度分配函数时序的随机起伏进行约束,得到修正后的基本信度分配函数时序,使修正后的基本信度分配函数时序不会违背常理,避免在未充分利用证据先验知识时以及证据间存在冲突时产生的决策偏差与起伏,且本发明的一种带振荡阻尼的复合加权融合系统高效稳定,理论推导完备,具有良好的学术及工程应用前景。
在上述方案的基础上,本发明的一种带振荡阻尼的复合加权融合系统还可以做如下改进。
进一步,所述加权模块具体用于:
通过第一公式得到对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数,所述第一公式为:
Figure BDA0002805006090000051
其中,
Figure BDA0002805006090000052
表示第n组证据的第一基本信度分配函数,β=[β12,...,βN],表示N组证据的置信配置向量,βn∈[0,1],
Figure BDA0002805006090000061
Ω表示论域集合且Ω={tar_1,tar_2,...,tar_M},tar_1,tar_2,...,tar_M分别表示一个目标类型,N组证据中第n组证据的基本信度分配函数为mn:2Ω→[0,1],满足
Figure BDA0002805006090000062
其中2Ω为Ω的幂集,A为幂集中的任一命题,φ为空集,N和M均为正整数。
进一步,所述冲突折扣系数计算模块具体用于:
根据第二公式得到每组证据的第一基本信度分配函数所对应的关联Pignistic概率函数
Figure BDA0002805006090000063
所述第二公式为:
Figure BDA0002805006090000064
Figure BDA0002805006090000065
表示第n组证据的关联Pignistic概率函数;获取任意两组证据对应的关联Pignistic概率函数,并根据第三公式得到冲突距离
Figure BDA0002805006090000066
所述第三公式为:
Figure BDA0002805006090000067
其中,
Figure BDA0002805006090000068
Figure BDA0002805006090000069
分别表示任意两组证据对应的关联Pignistic概率函数,
Figure BDA00028050060900000610
根据第四公式得到第x组证据与第y组证据的概率冲突系数CRx,y,所述第四公式为:
Figure BDA00028050060900000611
其中,
Figure BDA00028050060900000612
根据第五公式得到第x组证据与第y组证据之间的冲突折扣系数Ratex,y,第五公式为:
Figure BDA00028050060900000613
其中,Th1为预设冲突系数下限,Th2为预设冲突系数上限,Pmin为预设冲突折扣系数下限,Pmax为预设冲突折扣系数上限,直到得到两组证据之间的冲突折扣系数。
进一步,所述复合加权融合模块具体用于:
通过第六公式对第j组证据与第j+1组证据进行复合加权融合,所述第六公式为:
Figure BDA0002805006090000071
其中,
Figure BDA0002805006090000072
:=为变量赋值算子;j∈{1,2,...,N-1};
将所述第六公式中j的取值按1到N-1的递增顺序遍历,同时按顺序更新Ratej,j+1,得到经复合加权融合后的基本信度分配函数时序:
Figure BDA0002805006090000073
Figure BDA0002805006090000074
其中,
Figure BDA0002805006090000075
为第j+1组证据复合加权后的基本信度分配函数。
进一步,所述约束模块具体用于:
通过第七公式对所述基本信度分配函数时序进行归一化处理,所述第七公式为:
Figure BDA0002805006090000076
通过第八公式获取
Figure BDA0002805006090000077
的最大偏差概率的索引位置I,所述第八公式为:
Figure BDA0002805006090000078
Q表示兴趣目标类型且Q∈Ω;
通过第九公式获取所述兴趣目标类型Q的振荡阻尼约束概率,所述第九公式为:
Figure BDA0002805006090000079
其中,
Figure BDA00028050060900000710
q表示预设概率振荡上界;▽为所述兴趣目标类型Q的概率振荡幅度约束;sign(·)为符号算子;
通过第九公式对所述基本信度分配函数时序进行更新,得到修正后的基本信度分配函数时序:
Figure BDA00028050060900000711
附图说明
图1为本发明实施例的一种带振荡阻尼的复合加权融合方法的流程示意图;
图2为本发明实施例的一种带振荡阻尼的复合加权融合系统的结构示意图;
具体实施方式
如图1所示,本发明实施例的一种带振荡阻尼的复合加权融合方法,包括如下步骤:
S1、对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数;
S2、根据每组证据的第一基本信度分配函数得到每两组证据之间的冲突折扣系数;
S3、根据多个所述冲突折扣系数对每两组证据的第一基本信度分配函数进行复合加权融合,得到经复合加权融合后的基本信度分配函数时序;
S4、根据振荡阻尼约束对所述基本信度分配函数时序进行约束,得到修正后的基本信度分配函数时序。
通过振荡阻尼约束对基本信度分配函数时序的随机起伏进行约束,得到修正后的基本信度分配函数时序,使修正后的基本信度分配函数时序不会违背常理,避免未充分利用证据先验知识时以及证据间存在冲突时产生的决策偏差与起伏,且本发明的一种带振荡阻尼的复合加权融合方法高效稳定,理论推导完备,具有良好的学术及工程应用前景。
根据系统任务需求,提取修正后基本信度分配函数时序中兴趣目标类型的函数取值,形成归一化概率时序,送系统终端显控界面输出显示;操作员可根据显控终端输出的不同目标间概率时序的相对关系,人为选择相对概率较高的若干目标进行重点关注或采取相应措施;此外,主控计算机也可实时依据瞬时时刻不同目标间概率时序的相对关系,自动进行目标威胁等级排序,依排序结果自动采取相应措施。
其中,所述S1包括:
通过第一公式得到对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数,所述第一公式为:
Figure BDA0002805006090000091
其中,
Figure BDA0002805006090000092
表示第n组证据的第一基本信度分配函数,β=[β12,...,βN],表示N组证据的置信配置向量,βn∈[0,1],
Figure BDA0002805006090000093
Ω表示论域集合且Ω={tar_1,tar_2,...,tar_M},tar_1,tar_2,...,tar_M分别表示一个目标类型,N组证据中第n组证据的基本信度分配函数为mn:2Ω→[0,1],满足
Figure BDA0002805006090000094
其中2Ω为Ω的幂集,A为幂集中的任一命题,φ为空集,N和M均为正整数。
需要注意的是:
1)M个目标类型的类间互不相容,论域集合Ω是完备有穷的;
2)第n组证据的基本信度分配函数为,mn:2Ω→[0,1]表示将幂集2Ω中的任一命题映射到闭集[0,1]内的一个实数上,幂集2Ω构建论域集合Ω中的所有命题,一般来说,论域集合Ω中有M个元素即tar_1,tar_2,...,tar_M时,则幂集2Ω中有2M个元素即命题;
3)定义φ为空集,满足mn(φ)=0;
4)N组证据的置信配置向量:β=[β12,...,βN]可由专家直接指定,也可结合不同证据的有效识别信噪比边界范围、带宽差异、精度差异等因素综合指定;
5)根据
Figure BDA0002805006090000101
可知,A表示2Ω中的任一个命题;
6)·为基数算子,用于统计命题中的元素个数,例如,A表示统计命题A中的元素个数。
其中,所述S2包括:
S20、根据第二公式得到每组证据的第一基本信度分配函数所对应的关联Pignistic概率函数
Figure BDA0002805006090000102
所述第二公式为:
Figure BDA0002805006090000103
Figure BDA0002805006090000104
表示第n组证据的关联Pignistic概率函数;
S21、获取任意两组证据对应的关联Pignistic概率函数,并根据第三公式得到冲突距离
Figure BDA0002805006090000105
所述第三公式为:
Figure BDA0002805006090000106
其中,
Figure BDA0002805006090000107
Figure BDA0002805006090000108
分别表示任意两组证据对应的关联Pignistic概率函数,
Figure BDA0002805006090000109
S22、根据第四公式得到第x组证据与第y组证据的概率冲突系数CRx,y,所述第四公式为:
Figure BDA00028050060900001010
其中,
Figure BDA00028050060900001011
S23、根据第五公式得到第x组证据与第y组证据之间的冲突折扣系数Ratex,y,第五公式为:
Figure BDA00028050060900001012
其中,Th1为预设冲突系数下限,Th2为预设冲突系数上限,Pmin为预设冲突折扣系数下限,Pmax为预设冲突折扣系数上限;
S24、重复执行S20至S24,得到任意两组证据之间的冲突折扣系数。
其中,冲突距离
Figure BDA00028050060900001013
表示
Figure BDA00028050060900001014
Figure BDA00028050060900001015
之间的冲突距离;
其中,所述S3包括:
通过第六公式对第j组证据与第j+1组证据进行复合加权融合,所述第六公式为:
Figure BDA0002805006090000111
其中,
Figure BDA0002805006090000112
=为变量赋值算子;j∈{1,2,...,N-1};
将所述第六公式中j的取值按1到N-1的递增顺序遍历,同时按顺序更新Ratej,j+1,得到经复合加权融合后的基本信度分配函数时序:
Figure BDA0002805006090000113
Figure BDA0002805006090000114
其中,
Figure BDA0002805006090000115
为第j+1组证据复合加权后的基本信度分配函数。具体地:
S30、将j初始化为1;
S31、根据第五公式计算出Ratej,j+1
S32、根据第六公式计算出
Figure BDA0002805006090000116
S33、根据第六公式将
Figure BDA0002805006090000117
赋值给第j+1组证据的第一基本信度分配函数
Figure BDA0002805006090000118
S34、令j:=j+1,重复迭代S31~S34,直至得到基本信度分配函数时序:
Figure BDA0002805006090000119
其中,根据
Figure BDA00028050060900001110
可知,B、C分别表示2Ω中的任一个命题,且
Figure BDA00028050060900001111
可清楚表示A、B、C之间的关系。
Figure BDA00028050060900001112
表示第n组证据复合加权后的基本信度分配函数n,win为设定的阻尼窗长,前序融合的基本信度分配函数时序为
Figure BDA00028050060900001113
设定集内命题即A∈Ω和全集命题即A=Ω的基本信度分配函数存在,其余命题的基本信度分配函数为零,那么:
所述S4包括:
S40、通过第七公式对所述基本信度分配函数时序进行归一化处理,所述第七公式为:
Figure BDA0002805006090000121
S41、通过第八公式获取
Figure BDA0002805006090000122
的最大偏差概率的索引位置I,所述第八公式为:
Figure BDA0002805006090000123
Q表示兴趣目标类型且Q∈Ω;
S42、通过第九公式获取所述兴趣目标类型Q的振荡阻尼约束概率,所述第九公式为:
Figure BDA0002805006090000124
其中,
Figure BDA0002805006090000125
q表示预设概率振荡上界;▽为所述兴趣目标类型Q的概率振荡幅度约束;sign(·)为符号算子;
S43、通过第九公式对所述基本信度分配函数时序进行更新,得到修正后的基本信度分配函数时序:
Figure BDA0002805006090000126
通过振荡阻尼约束对基本信度分配函数时序的随机起伏进行约束,得到修正后的基本信度分配函数时序,使修正后的基本信度分配函数时序不会违背常理,避免在未充分利用证据先验知识时以及证据间存在冲突时产生的决策偏差与起伏,且本发明的一种带振荡阻尼的复合加权融合方法高效稳定,理论推导完备,具有良好的学术及工程应用前景。
在上述各实施例中,虽然对步骤进行进行了编号S1、S2等,但只是本申请给出的具体实施例,本领域的技术人员可根据实际情况对调整S1、S2等的执行顺序,此也在本发明的保护范围内,可以理解,在一些实施例中,可以包含如上述各实施方式中的部分或全部。
如图2所示,本发明实施例的一种带振荡阻尼的复合加权融合系统200,包括加权模块210、冲突折扣系数模块计算220、复合加权融合模块230、约束模块240;
所述加权模块210用于对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数;
所述冲突折扣系数计算模块220用于根据每组证据的第一基本信度分配函数得到每两组证据之间的冲突折扣系数;
所述复合加权融合模块230用于根据多个所述冲突折扣系数对每两组证据的第一基本信度分配函数进行复合加权融合,得到经复合加权融合后的基本信度分配函数时序;
所述约束模块240用于根据振荡阻尼约束对所述基本信度分配函数时序进行约束,得到修正后的基本信度分配函数时序。
通过振荡阻尼约束对基本信度分配函数时序的随机起伏进行约束,得到修正后的基本信度分配函数时序,使修正后的基本信度分配函数时序不会违背常理,避免在未充分利用证据先验知识时以及证据间存在冲突时产生的决策偏差与起伏,且本发明的一种带振荡阻尼的复合加权融合系统200高效稳定,理论推导完备,具有良好的学术及工程应用前景。
其中,所述加权模块210具体用于:
通过第一公式得到对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数,所述第一公式为:
Figure BDA0002805006090000131
其中,
Figure BDA0002805006090000132
表示第n组证据的第一基本信度分配函数,β=[β12,...,βN],表示N组证据的置信配置向量,βn∈[0,1],
Figure BDA0002805006090000133
Ω表示论域集合且Ω={tar_1,tar_2,...,tar_M},tar_1,tar_2,...,tar_M分别表示一个目标类型,N组证据中第n组证据的基本信度分配函数为mn:2Ω→[0,1],满足
Figure BDA0002805006090000141
其中2Ω为Ω的幂集,A为幂集中的任一命题,φ为空集,N和M均为正整数。
其中,所述计算冲突折扣系数模块220具体用于:根据第二公式得到每组证据的第一基本信度分配函数所对应的关联Pignistic概率函数
Figure BDA0002805006090000142
所述第二公式为:
Figure BDA0002805006090000143
Figure BDA0002805006090000144
表示第n组证据的关联Pignistic概率函数;
获取任意两组证据对应的关联Pignistic概率函数,并根据第三公式得到冲突距离
Figure BDA0002805006090000145
所述第三公式为:
Figure BDA0002805006090000146
其中,
Figure BDA0002805006090000147
Figure BDA0002805006090000148
分别表示任意两组证据对应的关联Pignistic概率函数,
Figure BDA0002805006090000149
根据第四公式得到第x组证据与第y组证据的概率冲突系数CRx,y,所述第四公式为:
Figure BDA00028050060900001410
其中,
Figure BDA00028050060900001411
根据第五公式得到第x组证据与第y组证据之间的冲突折扣系数Ratex,y,第五公式为:
Figure BDA00028050060900001412
其中,Th1为预设冲突系数下限,Th2为预设冲突系数上限,Pmin为预设冲突折扣系数下限,Pmax为预设冲突折扣系数上限,直至得到任意两组证据之间的冲突折扣系数。
其中,所述复合加权融合模块230具体用于:
通过第六公式对第j组证据与第j+1组证据进行复合加权融合,所述第六公式为:
Figure BDA0002805006090000151
其中,
Figure BDA0002805006090000152
:=为变量赋值算子;j∈{1,2,...,N-1};
将所述第六公式中j的取值按1到N-1的递增顺序遍历,同时按顺序更新Ratej,j+1,得到经复合加权融合后的基本信度分配函数时序:
Figure BDA0002805006090000153
Figure BDA0002805006090000154
其中,
Figure BDA0002805006090000155
为第j+1组证据复合加权后的基本信度分配函数。
其中,所述约束模块240具体用于:
通过第七公式对所述基本信度分配函数时序进行归一化处理,所述第七公式为:
Figure BDA0002805006090000156
通过第八公式获取
Figure BDA0002805006090000157
的最大偏差概率的索引位置I,所述第八公式为:
Figure BDA0002805006090000158
Q表示兴趣目标类型且Q∈Ω;
通过第九公式获取所述兴趣目标类型Q的振荡阻尼约束概率,所述第九公式为:
Figure BDA0002805006090000159
其中,
Figure BDA00028050060900001510
q表示预设概率振荡上界;▽为所述兴趣目标类型Q的概率振荡幅度约束;sign(·)为符号算子;
通过第九公式对所述基本信度分配函数时序进行更新,得到修正后的基本信度分配函数时序:
Figure BDA00028050060900001511
上述关于本发明的一种带振荡阻尼的复合加权融合系统200中的各参数和各个单元模块实现相应功能的步骤,可参考上文中关于一种带振荡阻尼的复合加权融合方法的实施例中的各参数和步骤,在此不做赘述。
本发明实施例的一种电子设备,包括存储器、处理器及存储在所述存储器上并在所述处理器上运行的程序,所述处理器执行所述程序时实现上述任一实施的一种带振荡阻尼的复合加权融合方法的步骤。
通过振荡阻尼约束对基本信度分配函数时序的随机起伏进行约束,得到修正后的基本信度分配函数时序,使修正后的基本信度分配函数时序不会违背常理,避免在未充分利用证据先验知识时以及证据间存在冲突时产生的决策偏差与起伏,且性能高效稳定,理论推导完备,具有良好的学术及工程应用前景。
其中,电子设备可以选用电脑、手机等,相对应地,其程序为电脑软件或手机APP等,且上述关于本发明的一种电子设备中的各参数和步骤,可参考上文中一种带振荡阻尼的复合加权融合方法的实施例中的各参数和步骤,在此不做赘述。
在本发明中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种带振荡阻尼的复合加权融合方法,其特征在于,包括:
S1、对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数;
S2、根据每组证据的第一基本信度分配函数得到每两组证据之间的冲突折扣系数;
S3、根据多个所述冲突折扣系数对每两组证据的第一基本信度分配函数进行复合加权融合,得到经复合加权融合后的基本信度分配函数时序;
S4、根据振荡阻尼约束对所述基本信度分配函数时序进行约束,得到修正后的基本信度分配函数时序。
2.根据权利要求1所述的一种带振荡阻尼的复合加权融合方法,其特征在于,所述S1包括:
通过第一公式得到对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数,所述第一公式为:
Figure FDA0002805006080000011
其中,
Figure FDA0002805006080000012
表示第n组证据的第一基本信度分配函数,β=[β12,...,βN],表示N组证据的置信配置向量,βn∈[0,1],
Figure FDA0002805006080000013
Ω表示论域集合且Ω={tar_1,tar_2,...,tar_M},tar_1,tar_2,...,tar_M分别表示一个目标类型,N组证据中第n组证据的基本信度分配函数为mn:2Ω→[0,1],满足
Figure FDA0002805006080000014
其中2Ω为Ω的幂集,A为幂集中的任一命题,φ为空集,N和M均为正整数。
3.根据权利要求2所述的一种带振荡阻尼的复合加权融合方法,其特征在于,所述S2包括:
S20、根据第二公式得到每组证据的第一基本信度分配函数所对应的关联Pignistic概率函数
Figure FDA0002805006080000021
Ω→[0,1],所述第二公式为:
Figure FDA0002805006080000022
Figure FDA0002805006080000023
表示第n组证据的关联Pignistic概率函数;
S21、获取任意两组证据对应的关联Pignistic概率函数,并根据第三公式得到冲突距离
Figure FDA0002805006080000024
所述第三公式为:
Figure FDA0002805006080000025
其中,
Figure FDA0002805006080000026
Figure FDA0002805006080000027
分别表示任意两组证据对应的关联Pignistic概率函数,
Figure FDA0002805006080000028
S22、根据第四公式得到第x组证据与第y组证据的概率冲突系数CRx,y,所述第四公式为:
Figure FDA0002805006080000029
其中,
Figure FDA00028050060800000210
S23、根据第五公式得到第x组证据与第y组证据之间的冲突折扣系数Ratex,y,第五公式为:
Figure FDA00028050060800000211
其中,Th1为预设冲突系数下限,Th2为预设冲突系数上限,Pmin为预设冲突折扣系数下限,Pmax为预设冲突折扣系数上限;
S24、重复执行S20至S24,得到每两组证据之间的冲突折扣系数。
4.根据权利要求3所述的一种带振荡阻尼的复合加权融合方法,所述S3包括:
通过第六公式对第j组证据与第j+1组证据进行复合加权融合,所述第六公式为:
Figure FDA0002805006080000031
其中,
Figure FDA0002805006080000032
:=为变量赋值算子;j∈{1,2,...,N-1};
将所述第六公式中j的取值按1到N-1的递增顺序遍历,同时按顺序更新Ratej,j+1,得到经复合加权融合后的基本信度分配函数时序:
Figure FDA0002805006080000033
Figure FDA0002805006080000034
其中,
Figure FDA0002805006080000035
Figure FDA0002805006080000036
为第j+1组证据复合加权后的基本信度分配函数。
5.根据权利要求4所述的一种带振荡阻尼的复合加权融合方法,其特征在于,所述S4包括:
S40、通过第七公式对所述基本信度分配函数时序进行归一化处理,所述第七公式为:
Figure FDA0002805006080000037
w∈Ω;
S41、通过第八公式获取
Figure FDA0002805006080000038
的最大偏差概率的索引位置I,所述第八公式为:
Figure FDA0002805006080000039
Q表示兴趣目标类型且Q∈Ω,win为约束统计窗长;
S42、通过第九公式获取所述兴趣目标类型Q的振荡阻尼约束概率,所述第九公式为:
Figure FDA00028050060800000310
其中,
Figure FDA00028050060800000311
q表示预设概率振荡上界;
Figure FDA00028050060800000312
为所述兴趣目标类型Q的概率振荡幅度约束;sign(·)为符号算子;
S43、通过第九公式对所述基本信度分配函数时序进行更新,得到修正后的基本信度分配函数时序:
Figure FDA0002805006080000041
6.一种带振荡阻尼的复合加权融合系统,其特征在于,包括加权模块、冲突折扣系数计算模块、复合加权融合模块、约束模块;
所述加权模块用于对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数;
所述冲突折扣系数计算模块用于根据每组证据的第一基本信度分配函数得到每两组证据之间的冲突折扣系数;
所述复合加权融合模块用于根据多个所述冲突折扣系数对每两组证据的第一基本信度分配函数进行复合加权融合,得到经复合加权融合后的基本信度分配函数时序;
所述约束模块用于根据振荡阻尼约束对所述基本信度分配函数时序进行约束,得到修正后的基本信度分配函数时序。
7.根据权利要求6所述的一种带振荡阻尼的复合加权融合系统,其特征在于,所述加权模块具体用于:
通过第一公式得到对每组证据的基本信度分配函数进行加权,得到每组证据的第一基本信度分配函数,所述第一公式为:
Figure FDA0002805006080000042
其中,
Figure FDA0002805006080000043
表示第n组证据的第一基本信度分配函数,β=[β12,...,βN],表示N组证据的置信配置向量,βn∈[0,1],
Figure FDA0002805006080000044
Ω表示论域集合且Ω={tar_1,tar_2,...,tar_M},tar_1,tar_2,...,tar_M分别表示一个目标类型,N组证据中第n组证据的基本信度分配函数为mn:2Ω→[0,1],满足
Figure FDA0002805006080000051
其中2Ω为Ω的幂集,A为幂集中的任一命题,φ为空集,N和M均为正整数。
8.根据权利要求7所述的一种带振荡阻尼的复合加权融合系统,其特征在于,所述计算冲突折扣系数模块具体用于:
根据第二公式得到每组证据的第一基本信度分配函数所对应的关联Pignistic概率函数
Figure FDA0002805006080000052
Ω→[0,1],所述第二公式为:
Figure FDA0002805006080000053
Figure FDA0002805006080000054
表示第n组证据的关联Pignistic概率函数;
获取任意两组证据对应的关联Pignistic概率函数,并根据第三公式得到冲突距离
Figure FDA0002805006080000055
所述第三公式为:
Figure FDA0002805006080000056
其中,
Figure FDA0002805006080000057
Figure FDA00028050060800000512
分别表示任意两组证据对应的关联Pignistic概率函数,
Figure FDA0002805006080000058
根据第四公式得到第x组证据与第y组证据的概率冲突系数CRx,y,所述第四公式为:
Figure FDA0002805006080000059
其中,
Figure FDA00028050060800000510
根据第五公式得到第x组证据与第y组证据之间的冲突折扣系数Ratex,y,第五公式为:
Figure FDA00028050060800000511
其中,Th1为预设冲突系数下限,Th2为预设冲突系数上限,Pmin为预设冲突折扣系数下限,Pmax为预设冲突折扣系数上限;直至得到每两组证据之间的冲突折扣系数。
9.根据权利要求8所述的一种带振荡阻尼的复合加权融合系统,所述复合加权融合模块具体用于:
通过第六公式对第j组证据与第j+1组证据进行复合加权融合,所述第六公式为:
Figure FDA0002805006080000061
其中,
Figure FDA0002805006080000062
:=为变量赋值算子;j∈{1,2,...,N-1};
将所述第六公式中j的取值按1到N-1的递增顺序遍历,同时按顺序更新Ratej,j+1,得到经复合加权融合后的基本信度分配函数时序:
Figure FDA0002805006080000063
Figure FDA0002805006080000064
其中,
Figure FDA0002805006080000065
Figure FDA0002805006080000066
为第j+1组证据复合加权后的基本信度分配函数。
10.根据权利要求9所述的一种带振荡阻尼的复合加权融合系统,其特征在于,所述约束模块具体用于:
通过第七公式对所述基本信度分配函数时序进行归一化处理,所述第七公式为:
Figure FDA0002805006080000067
w∈Ω;
通过第八公式获取
Figure FDA0002805006080000068
的最大偏差概率的索引位置I,所述第八公式为:
Figure FDA0002805006080000069
Q表示兴趣目标类型且Q∈Ω,win为约束统计窗长;
通过第九公式获取所述兴趣目标类型Q的振荡阻尼约束概率,所述第九公式为:
Figure FDA00028050060800000610
其中,
Figure FDA00028050060800000611
q表示预设概率振荡上界;
Figure FDA00028050060800000612
为所述兴趣目标类型Q的概率振荡幅度约束;sign(·)为符号算子;
通过第九公式对所述基本信度分配函数时序进行更新,得到修正后的基本信度分配函数时序:
Figure FDA0002805006080000071
CN202011367817.4A 2020-11-27 2020-11-27 一种带振荡阻尼的复合加权融合方法和系统 Active CN112418340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011367817.4A CN112418340B (zh) 2020-11-27 2020-11-27 一种带振荡阻尼的复合加权融合方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011367817.4A CN112418340B (zh) 2020-11-27 2020-11-27 一种带振荡阻尼的复合加权融合方法和系统

Publications (2)

Publication Number Publication Date
CN112418340A true CN112418340A (zh) 2021-02-26
CN112418340B CN112418340B (zh) 2024-06-04

Family

ID=74828805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011367817.4A Active CN112418340B (zh) 2020-11-27 2020-11-27 一种带振荡阻尼的复合加权融合方法和系统

Country Status (1)

Country Link
CN (1) CN112418340B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007395A1 (de) * 2008-03-25 2009-10-01 Volkswagen Ag Verfahren zur kartenbasierten Umfelddarstellung eines Fahrzeugs
CN101996157A (zh) * 2010-10-23 2011-03-30 山东科技大学 证据高冲突环境下多源信息融合方法
CN107967487A (zh) * 2017-11-27 2018-04-27 重庆邮电大学 一种基于证据距离和不确定度的冲突数据融合方法
CN109547431A (zh) * 2018-11-19 2019-03-29 国网河南省电力公司信息通信公司 一种基于cs和改进bp神经网络的网络安全态势评估方法
CN110008985A (zh) * 2019-02-03 2019-07-12 河南科技大学 基于改进d-s证据理论规则的舰载机群目标识别方法
CN110380429A (zh) * 2019-05-17 2019-10-25 武汉大学 一种兼顾阻尼特性的水电机组一次调频多目标优化方法
CN111625775A (zh) * 2020-05-28 2020-09-04 河南大学 基于Hellinger距离和信度熵的加权冲突证据融合方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007395A1 (de) * 2008-03-25 2009-10-01 Volkswagen Ag Verfahren zur kartenbasierten Umfelddarstellung eines Fahrzeugs
CN101996157A (zh) * 2010-10-23 2011-03-30 山东科技大学 证据高冲突环境下多源信息融合方法
CN107967487A (zh) * 2017-11-27 2018-04-27 重庆邮电大学 一种基于证据距离和不确定度的冲突数据融合方法
CN109547431A (zh) * 2018-11-19 2019-03-29 国网河南省电力公司信息通信公司 一种基于cs和改进bp神经网络的网络安全态势评估方法
CN110008985A (zh) * 2019-02-03 2019-07-12 河南科技大学 基于改进d-s证据理论规则的舰载机群目标识别方法
CN110380429A (zh) * 2019-05-17 2019-10-25 武汉大学 一种兼顾阻尼特性的水电机组一次调频多目标优化方法
CN111625775A (zh) * 2020-05-28 2020-09-04 河南大学 基于Hellinger距离和信度熵的加权冲突证据融合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. NATALE等: "Excitation Spectrum of a Trapped Dipolar Supersolid and Its Experimental Evidence", PHYSICS, vol. 123, no. 05, 1 August 2019 (2019-08-01), pages 1 - 6 *
王洪超: "动力定位系统的定位精度与功率优化研究", 中国优秀硕士学位论文全文数据库工程科技Ⅱ辑, 15 June 2015 (2015-06-15), pages 036 - 40 *

Also Published As

Publication number Publication date
CN112418340B (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
CN110033028B (zh) 基于算术平均贴近度的冲突证据融合方法
US8549647B1 (en) Classifying portable executable files as malware or whiteware
JP2016004525A (ja) データ分析システム及びデータ分析方法
Luque et al. Canonical horizontal visibility graphs are uniquely determined by their degree sequence
CN115330579B (zh) 模型水印的构建方法、装置、设备及存储介质
CN116301048A (zh) 无人机路径规划方法、系统、电子设备以及存储介质
CN112862006A (zh) 图像深度信息获取模型的训练方法、装置及电子设备
US20240233358A9 (en) Image classification method, model training method, device, storage medium, and computer program
CN115795535A (zh) 一种提供自适应梯度的差分私有联邦学习方法及装置
CN114781654A (zh) 联邦迁移学习方法、装置、计算机设备及介质
Mulvaney-Kemp et al. Smoothing property of load variation promotes finding global solutions of time-varying optimal power flow
SAFI et al. A note on the Zimmermann method for solving fuzzy linear programming problems
Kinney et al. Causal feature learning for utility-maximizing agents
CN109389571B (zh) 一种遥感影像变化检测方法、装置及终端
US11388223B2 (en) Management device, management method, and management program
CN109388784A (zh) 最小熵核密度估计器生成方法、装置和计算机可读存储介质
CN112418340A (zh) 一种带振荡阻尼的复合加权融合方法和系统
CN116168053B (zh) 息肉分割模型的训练方法、息肉分割方法及相关装置
Basrak Limit theorems for the inductive mean on metric trees
Miller et al. Towards the development of numerical procedure for control of connected Markov chains
CN106228247A (zh) 一种基于本体的态势推理决策方法
EP3748549A1 (en) Learning device and learning method
CN109828894B (zh) 设备状态数据的采集方法、装置、存储介质和电子设备
Ilin et al. Information fusion with belief functions: A comparison of proportional conflict redistribution PCR5 and PCR6 rules for networked sensors
Patrikar et al. Leveraging synthetic data for AI bias mitigation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant