CN112402437B - 新穿心莲内酯在制备rab5a蛋白抑制剂中的应用 - Google Patents

新穿心莲内酯在制备rab5a蛋白抑制剂中的应用 Download PDF

Info

Publication number
CN112402437B
CN112402437B CN202011195487.5A CN202011195487A CN112402437B CN 112402437 B CN112402437 B CN 112402437B CN 202011195487 A CN202011195487 A CN 202011195487A CN 112402437 B CN112402437 B CN 112402437B
Authority
CN
China
Prior art keywords
rab5a
protein
neoandrographolide
andrographolide
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011195487.5A
Other languages
English (en)
Other versions
CN112402437A (zh
Inventor
何庆瑜
汪洋
钟利叶
张静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN202011195487.5A priority Critical patent/CN112402437B/zh
Publication of CN112402437A publication Critical patent/CN112402437A/zh
Priority to PCT/CN2021/121946 priority patent/WO2022089144A1/zh
Application granted granted Critical
Publication of CN112402437B publication Critical patent/CN112402437B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了新穿心莲内酯在制备RAB5A蛋白抑制剂中的应用。本发明中通过实验发现,RAB5A蛋白在肺腺癌中高表达,而新穿心莲内酯通过氢键、C‑H键、Pi‑Alkyl疏水作用直接与RAB5A蛋白结合,抑制RAB5A蛋白激活,进而抑制肿瘤生长和增殖,因此,新穿心莲内酯可用于RAB5A高表达所引起的肿瘤药物耐受方面的治疗,且本发明还发现随着新穿心莲内酯浓度升高,肿瘤细胞增值能力减弱,为后续RAB5A蛋白抑制剂方面的研究提供有效途径。

Description

新穿心莲内酯在制备RAB5A蛋白抑制剂中的应用
技术领域
本发明属于医药技术领域,特别涉及新穿心莲内酯在制备RAB5A蛋白抑制剂中的应用。
背景技术
肺癌是世界上最难治疗的疾病之一。癌症的恶化常常伴随着化疗药物,癌症一旦发生转移,将难以治疗。现在主流的治疗方法是手术加放化疗结合的方法,在靶向治疗领域,应用比较多的有血管生成因子(VEGF)抑制剂贝伐单抗和表皮生长因子受体阻滞剂帕尼单抗、西妥昔单抗和艾洛替尼。尽管如此,临床疗效仍不理想,化疗耐药和毒副作用的发生影响了癌症病人的预后。从天然中草药中筛选抗癌药物已被证实是一种切实可行的思路,紫杉醇、长春新碱等研究已取得显著成绩。自然产物类的抗癌制剂,一般具有毒副作用小、价格低廉的优点。
新穿心莲内酯(Neoandrographolide)是穿心莲提取物中主要的活性成分之一[1],其结构式如式I所示:
Figure BDA0002753901600000011
早先有相关报道新穿心莲内酯在体外和体内表现出不同程度的抗炎[1]、抗病毒、免疫刺激、清热解毒、消肿止痛以及抗癌等功效。在肿瘤相关的研究领域中,新穿心莲内酯对结直肠癌[2]、口腔鳞状细胞癌[3]、胆内胆管癌[4]、乳腺癌等都有一定的抑制效果。但到目前为止,尚未有新穿心莲内酯靶标蛋白的相关报道。
RAB5A蛋白与肿瘤、阿尔兹海默症、多囊性卵巢綜合症等有关系。RAB5A[5]蛋白是Rab GTP酶家族成员,是一种重要的小GTP酶,RAB5A蛋白在胞质内的循环主要有两种结构形式,分别是与GTP结合的活化形式,以及与GDP结合的失活形式。其中,GDP通过与Rab5-GTP蛋白相互作用,将其携带的GTP水解成为GDP,从而使RAB5A蛋白失活。相反,GTP则能够与Rab5-GDP蛋白相互作用,从而使RAB5A蛋白激活,生成Rab5-GTP促进肿瘤生长。近几年,人们发现很多参与调控RAB5蛋白GTP/GDP循环的因子。该蛋白的活性的激活,能够直接影响下游的Ras-MAPK通路的激活,从而促进肿瘤发生,因此相比药物开发难度较大的Ras-MAPK通路而言,靶向RAB5蛋白能够为肿瘤治疗提供一个新的契机。目前,RAB5A仍未报导有特异性的靶向小分子药物。因此,开发在体内外均能发挥效应的RAB5A蛋白的抑制剂,是很有必要的。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供新穿心莲内酯在制备RAB5A蛋白抑制剂中的应用。
本发明的目的通过下述技术方案实现:
新穿心莲内酯在制备RAB5A蛋白抑制剂中的应用。
所述的RAB5A蛋白的氨基酸序列如SEQ ID NO.1所示。
编码所述RAB5A蛋白的基因序列如SEQ ID NO.2所示。
所述的新穿心莲内酯可直接与RAB5A蛋白结合,抑制RAB5A蛋白激活。
所述的新穿心莲内酯的有效浓度为0~400μmol/L(不包括0);优选为12.5~400μmol/L。
新穿心莲内酯作为RAB5A蛋白抑制剂的应用(所述的应用为非疾病治疗目的,如体外环境下进行应用)。
所述的RAB5A蛋白抑制剂包括治疗有效量的新穿心莲内酯和药学上可接受的载体。
所述RAB5A蛋白抑制剂可制成各种形式的口服或注射制剂,包括胶囊剂、片剂、颗粒剂、散剂、丸剂、滴丸剂、缓控释制剂、口服液、合剂、糖浆剂、液体注射剂、注射用粉剂和注射用片剂等。
本发明相对于现有技术具有如下的优点及效果:
(1)RAB5A蛋白与一些疾病相关,如肿瘤、阿尔兹海默症、多囊性卵巢綜合症等。RAB5A蛋白在肺腺癌中高表达,本发明中发现新穿心莲内酯可直接与RAB5A蛋白结合,抑制RAB5A蛋白激活,进而抑制肿瘤生长和增殖,可用于RAB5A高表达所引起的肿瘤药物耐受方面的治疗。
(2)本发明中发现新穿心莲内酯可以通过氢键、C-H键、Pi-Alkyl疏水作用与RAB5A蛋白结合,因此,新穿心莲内酯可作为RAB5A蛋白抑制剂,可用于解决RAB5A蛋白激活所引起的促进肿瘤生长的问题。另外,本发明还发现随着新穿心莲内酯浓度升高,肿瘤细胞增值能力减弱,为后续RAB5A蛋白抑制剂或抗肿瘤药物方面的研究提供有效途径。
(3)本发明利用天然中药提取物新穿心莲内酯作为RAB5A蛋白的抑制剂,抑制肿瘤细胞生长,主要具备如下优点:①新穿心莲内酯直接作用于RAB5A蛋白抑制该蛋白活性,且相互作用位点已经研究清楚;②新穿心莲内酯存在于传统中草药中,提取制备方便,安全性高,价格低廉,开发利用的前景好。
附图说明
图1是新穿心莲内酯与RAB5A蛋白之间的相互作用图;其中,A为滴定荧光淬灭曲线;B为荧光淬灭程度累积曲线。
图2是新穿心莲内酯与RAB5A蛋白存在直接相互作用图(Pull-down实验结果图)。
图3是新穿心莲内酯对A549细胞的生长抑制作用实验结果图。
图4是新穿心莲内酯对肺腺癌细胞生长增殖的克隆形成实验结果图。
图5是分子对接模拟新穿心莲内酯与RAB5A蛋白的结合模式图;其中,A、B为分子对接示意图;C为新穿心莲内酯与RAB5A蛋白结合位点预测图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。下列实施例中未注明具体实验条件的试验方法,通常按照常规实验条件或按照制造厂所建议的实验条件。除非特别说明,本发明所用试剂和原材料均可通过市售获得。
本发明中涉及到RAB5A蛋白序列如SEQ ID NO.1所示,编码RAB5A蛋白的基因序列,如SEQ ID NO.2所示:
RAB5A蛋白序列(SEQ ID NO.1):
MASRGATRPNGPNTGNKICQFKLVLLGESAVGKSSLVLRFVKGQFHEFQESTIGAAFLTQTVCLDDTTVKFEIWDTAGQERYHSLAPMYYRGAQAAIVVYDITNEESFARAKNWVKELQRQASPNIVIALSGNKADLANKRAVDFQEAQSYADDNSLLFMETSAKTSMNVNEIFMAIAKKLPKNEPQNPGANSARGRGVDLTEPTQPTRNQCCSN。
RAB5A基因序列(SEQ ID NO.2):
ATGGCTAGTCGAGGCGCAACAAGACCCAACGGGCCAAATACTGGAAATAAAATATGCCAGTTCAAACTAGTACTTCTGGGAGAGTCCGCTGTTGGCAAATCAAGCCTAGTGCTTCGTTTTGTGAAAGGCCAATTTCATGAATTTCAAGAGAGTACCATTGGGGCTGCTTTTCTAACCCAAACTGTATGTCTTGATGACACTACAGTAAAGTTTGAAATATGGGATACAGCTGGTCAAGAACGATACCATAGCCTAGCACCAATGTACTACAGAGGAGCACAAGCAGCCATAGTTGTATATGATATCACAAATGAGGAGTCCTTTGCAAGAGCAAAAAATTGGGTTAAAGAACTTCAGAGGCAAGCAAGTCCTAACATTGTAATAGCTTTATCGGGAAACAAGGCCGACCTAGCAAATAAAAGAGCAGTAGATTTCCAGGAAGCACAGTCCTATGCAGATGACAATAGTTTATTATTCATGGAGACATCCGCTAAAACATCAATGAATGTAAATGAAATATTCATGGCAATAGCTAAAAAATTGCCAAAGAATGAACCACAAAATCCAGGAGCAAATTCTGCCAGAGGAAGAGGAGTAGACCTTACCGAACCCACACAACCAACCAGGAATCAGTGTTGTAGTAACTAA。
实施例1新穿心莲内酯与RAB5A蛋白结合抑制肿瘤细胞生长
1、首先确定新穿心莲内酯与RAB5A蛋白是否结合,我们采用荧光滴定实验,Pull-down实验来分析:
(1)荧光滴定实验
我们纯化出RAB5A蛋白,具体过程为:以A549细胞(购自购于美国标准生物品收藏中心细胞库)的RNA逆转录而成的cDNA为模板,进行PCR扩增(扩增引物见表1),获得RAB5A基因,然后将其构建至pGEX-4T-1表达载体(Addgene)中,并将构建好的载体(RAB5A-WT载体)转化于BL-21表达菌中,用IPTG(异丙基-β-D-硫代半乳糖苷)以终浓度为0.5mM的条件诱导表达4~6h后收集菌体。采用GE公司的GST亲和层析纯化柱对重组蛋白进行纯化,采用GE公司的Thrombin酶切除GST标签。通过相应的免疫印迹分析及考染分析,获得RAB5A蛋白。
获得重组的RAB5A蛋白后,采用荧光滴定实验[6]实验手段[参考文献:L.Zhang etal.,Crucial residue Trp158 of lipoprotein PiaA stabilizes the ferrichrome-PiaA complex in Streptococcus pneumoniae.Journal of inorganic biochemistry167,150(Feb,2017)]进行分析,结果如图1所示,表明新穿心莲内酯与RAB5A蛋白存在直接相互作用,即新穿心莲内酯可与RAB5A蛋白结合。
表1.RAB5A质粒的引物序列
Figure BDA0002753901600000051
(2)Pull-down实验
GST-Rab5A binding domain(R5BD)pull down实验可以用来检测新穿心莲内酯与RAB5A蛋白直接相互作用,具体为:
1)将A549细胞株用终浓度为0、50、100μM的新穿心莲内酯处理24h后,用Western及IP细胞裂解液(碧云天,Cat#P0013)按照1ml/皿的量加入到培养皿中,冰上裂解15min后,12000g离心30min,取上清进行蛋白浓度测定。
2)采用GE公司的GST亲和层析纯化柱纯化GST-R5BD珠子,具体步骤如下:将GST亲和层析树脂(GE;Glutathione Sepharose 4B;17-0756-01)混匀后,取1mL上柱,室温静置30min;用10倍柱体积dd H2O清洗柱子;用10倍柱体积的Binding buffer(1×PBS缓冲液,pH7.4)平衡柱子;将收集的上清样液缓缓装入层析柱中(重复挂柱一次);用10倍柱体积的Binding buffer(1×PBS缓冲液,pH 7.4)洗下杂蛋白得到GST-R5BD珠子。
3)取1mg不同处理组的蛋白裂解液与纯化好的GST-R5BD珠子进行共孵育4℃过夜,用PBS缓冲液进行洗涤3次后,取等体积的产物进行WB检测(Western Blot蛋白质印迹法),用anti-Rab5抗体(proteintech,Cat#11947-1-AP)检测。
采取Pull-down实验手段分析新穿心莲内酯与RAB5A蛋白的直接相互作用,结果如图2所示。
2、细胞增殖及细胞毒性实验
(1)分别将A549细胞铺入96孔板内,每孔3000个细胞;将穿心莲内酯溶于DMSO(二甲基亚砜)中,配制成浓度为10mM的储备液,再用DMEM细胞培养基(购自于LifeTechnologies,Gaithersburg,MD,USA)稀释储备液配制成不同浓度的工作液;待步骤A549细胞贴壁后,按每孔100μL体积加入不同浓度(12.5、25、50、100、200、400μM)的工作液到对应孔中,以加入等量DMSO作为空白对照,工作液处理48小时后,用WST-1细胞增殖及细胞毒性检测试剂盒(购自碧云天生物技术有限公司)检测细胞活性。以上3个实验步骤进行3次生物学重复。
结果如图3所示:结果表明随着新穿心莲内酯的浓度升高,细胞的生存能力降低,新穿心莲内酯浓度越大,细胞生存能力越弱,即新穿心莲内酯可以抑制肺腺癌细胞生长。
(2)另外,我们还采用了克隆形成实验评估不同浓度新穿心莲内酯对细胞的增值能力。向6孔板中加2ml DMEM培养基,取2000个A549细胞于6孔板中,加入不同浓度(25、50、100μM)的新穿心莲内酯工作液(配制方法同上),培养箱培养2周,期间换液两次。克隆形成检测加入一定量甲醇(覆盖细胞表面),固定10min,吸出甲醇,加入结晶紫染色5min,用自来水冲洗干净后,倒扣6孔板,晾干,扫描。
结果如图4所示,表明随着新穿心莲内酯浓度升高,细胞的增值能力减弱。
3、为了进一步研究新穿心莲内酯与RAB5A蛋白的结合模式,使用DiscoveryStudio软件对新穿心莲内酯和RAB5A的相互作用情况进行计算模拟,并得出潜在作用位点。结果如图5所示,预测新穿心莲内酯可以通过氢键、C-H键、Pi-Alkyl疏水作用与RAB5A蛋白结合,预测结合位点如图5所示。
以上结果确定了新穿心莲内酯可作为RAB5A蛋白的抑制剂。预示着新穿心莲内酯通过抑制RAB5A酶活是一个有效的肺癌治疗手段,在肺癌临床治疗方面具有广阔的应用价值。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
参考文献
[1]Xiao Xia Cong,Xiu Kui Gao,Xi Sheng Rao,Jie Wen,Xiao Ceng Liu,YinPu Shi,Min Yi He,Wei Liang Shen,Yue Shen,Hongwei Ouyang,Ping Hu,Boon ChuanLow,Zhuo Xian Meng,Yue Hai Ke,Ming Zhu Zheng,Lin Rong Lu,Yong Heng Liang,LiLing Zheng,Yi Ting Zhou.Rab5a activates IRS1 to coordinate IGF-AKT-mTORsignaling and myoblast differentiation during muscle regeneration[J].CellDeath&Differentiation:Official journal of the ADMC AssociazioneDifferenziamento e Morte Cellulare,2020,27(8).
[2]Sharma Venu,Qayum Arem,Kaul Sanjana,Singh Ajeet,Kapoor Kamal K,Mukherjee Debaraj,Singh Shashank K,Dhar Manoj K.Carbohydrate Modifications ofNeoandrographolide for Improved Reactive Oxygen Species-Mediated Apoptosisthrough Mitochondrial Pathway in Colon Cancer.[J].ACS omega,2019,4(24).
[3]Liang Zhang,Nan Li,Kun Cao,Xiao-Yan Yang,Guandi Zeng,Xuesong Sun,Qing-Yu He.Crucial residue Trp158 of lipoprotein PiaA stabilizes theferrichrome-PiaA complex in Streptococcus pneumoniae[J].Journal of InorganicBiochemistry,2017,167.
[4]Suzuki Ryuichiro,Matsushima Yasuaki,Okudaira Noriyuki,SakagamiHiroshi,Shirataki Yoshiaki.Cytotoxic Components Against Human Oral SquamousCell Carcinoma Isolated from Andrographis paniculata.[J].Anticancer research,2016,36(11).
[5]Suriyo Tawit,Pholphana Nanthanit,Rangkadilok Nuchanart,Thiantanawat Apinya,Watcharasit Piyajit,Satayavivad Jutamaad.Andrographispaniculata extracts and major constituent diterpenoids inhibit growth ofintrahepatic cholangiocarcinoma cells by inducing cell cycle arrest andapoptosis.[J].Planta medica,2014,80(7).
[6]Jonathan Chee Woei Lim,Tze Khee Chan,David SW Ng,Sreenivasa RSagineedu,Johnson Stanslas,WS Fred Wong.Andrographolide and its analogues:versatile bioactive molecules for combating inflammation and cancer[J].Clinical and Experimental Pharmacology and Physiology,2012,39(3).
序列表
<110> 暨南大学
<120> 新穿心莲内酯在制备RAB5A蛋白抑制剂中的应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 215
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> RAB5A蛋白序列
<400> 1
Met Ala Ser Arg Gly Ala Thr Arg Pro Asn Gly Pro Asn Thr Gly Asn
1 5 10 15
Lys Ile Cys Gln Phe Lys Leu Val Leu Leu Gly Glu Ser Ala Val Gly
20 25 30
Lys Ser Ser Leu Val Leu Arg Phe Val Lys Gly Gln Phe His Glu Phe
35 40 45
Gln Glu Ser Thr Ile Gly Ala Ala Phe Leu Thr Gln Thr Val Cys Leu
50 55 60
Asp Asp Thr Thr Val Lys Phe Glu Ile Trp Asp Thr Ala Gly Gln Glu
65 70 75 80
Arg Tyr His Ser Leu Ala Pro Met Tyr Tyr Arg Gly Ala Gln Ala Ala
85 90 95
Ile Val Val Tyr Asp Ile Thr Asn Glu Glu Ser Phe Ala Arg Ala Lys
100 105 110
Asn Trp Val Lys Glu Leu Gln Arg Gln Ala Ser Pro Asn Ile Val Ile
115 120 125
Ala Leu Ser Gly Asn Lys Ala Asp Leu Ala Asn Lys Arg Ala Val Asp
130 135 140
Phe Gln Glu Ala Gln Ser Tyr Ala Asp Asp Asn Ser Leu Leu Phe Met
145 150 155 160
Glu Thr Ser Ala Lys Thr Ser Met Asn Val Asn Glu Ile Phe Met Ala
165 170 175
Ile Ala Lys Lys Leu Pro Lys Asn Glu Pro Gln Asn Pro Gly Ala Asn
180 185 190
Ser Ala Arg Gly Arg Gly Val Asp Leu Thr Glu Pro Thr Gln Pro Thr
195 200 205
Arg Asn Gln Cys Cys Ser Asn
210 215
<210> 2
<211> 648
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> RAB5A基因序列
<400> 2
atggctagtc gaggcgcaac aagacccaac gggccaaata ctggaaataa aatatgccag 60
ttcaaactag tacttctggg agagtccgct gttggcaaat caagcctagt gcttcgtttt 120
gtgaaaggcc aatttcatga atttcaagag agtaccattg gggctgcttt tctaacccaa 180
actgtatgtc ttgatgacac tacagtaaag tttgaaatat gggatacagc tggtcaagaa 240
cgataccata gcctagcacc aatgtactac agaggagcac aagcagccat agttgtatat 300
gatatcacaa atgaggagtc ctttgcaaga gcaaaaaatt gggttaaaga acttcagagg 360
caagcaagtc ctaacattgt aatagcttta tcgggaaaca aggccgacct agcaaataaa 420
agagcagtag atttccagga agcacagtcc tatgcagatg acaatagttt attattcatg 480
gagacatccg ctaaaacatc aatgaatgta aatgaaatat tcatggcaat agctaaaaaa 540
ttgccaaaga atgaaccaca aaatccagga gcaaattctg ccagaggaag aggagtagac 600
cttaccgaac ccacacaacc aaccaggaat cagtgttgta gtaactaa 648
<210> 3
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 上游引物F
<400> 3
atggctagtc gaggcgca 18
<210> 4
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 下游引物R
<400> 4
aatcaatgat gttgtga 17

Claims (3)

1.新穿心莲内酯作为唯一活性成分在制备肺腺癌细胞抑制剂中的应用。
2.根据权利要求1所述的应用,其特征在于:所述的新穿心莲内酯直接与RAB5A蛋白结合,抑制RAB5A蛋白的激活,以达到抑制肺腺癌细胞的目的;
所述的RAB5A蛋白的氨基酸序列如SEQ ID NO.1 所示。
3.根据权利要求1所述的应用,其特征在于:编码所述RAB5A蛋白的基因序列如SEQ IDNO.2 所示。
CN202011195487.5A 2020-10-30 2020-10-30 新穿心莲内酯在制备rab5a蛋白抑制剂中的应用 Active CN112402437B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011195487.5A CN112402437B (zh) 2020-10-30 2020-10-30 新穿心莲内酯在制备rab5a蛋白抑制剂中的应用
PCT/CN2021/121946 WO2022089144A1 (zh) 2020-10-30 2021-09-29 新穿心莲内酯在制备rab5a蛋白抑制剂中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011195487.5A CN112402437B (zh) 2020-10-30 2020-10-30 新穿心莲内酯在制备rab5a蛋白抑制剂中的应用

Publications (2)

Publication Number Publication Date
CN112402437A CN112402437A (zh) 2021-02-26
CN112402437B true CN112402437B (zh) 2022-09-30

Family

ID=74828432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011195487.5A Active CN112402437B (zh) 2020-10-30 2020-10-30 新穿心莲内酯在制备rab5a蛋白抑制剂中的应用

Country Status (2)

Country Link
CN (1) CN112402437B (zh)
WO (1) WO2022089144A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112402437B (zh) * 2020-10-30 2022-09-30 暨南大学 新穿心莲内酯在制备rab5a蛋白抑制剂中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112402437B (zh) * 2020-10-30 2022-09-30 暨南大学 新穿心莲内酯在制备rab5a蛋白抑制剂中的应用

Also Published As

Publication number Publication date
CN112402437A (zh) 2021-02-26
WO2022089144A1 (zh) 2022-05-05

Similar Documents

Publication Publication Date Title
Zhang et al. The histone deacetylase SIRT6 inhibits ovarian cancer cell proliferation via down-regulation of Notch 3 expression.
Prassas et al. Novel therapeutic applications of cardiac glycosides
Wang et al. Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting β-catenin signaling
Sun et al. Xanthohumol attenuates isoprenaline-induced cardiac hypertrophy and fibrosis through regulating PTEN/AKT/mTOR pathway
CN106397594B (zh) 一种全人源的抗人死亡受体5的激动剂单链抗体及应用
Liu et al. Overexpression of apoptosis-inducing factor mitochondrion-associated 1 (AIFM1) induces apoptosis by promoting the transcription of caspase3 and DRAM in hepatoma cells
Siraj et al. Structural investigation of ginsenoside Rf with PPARγ major transcriptional factor of adipogenesis and its impact on adipocyte
Wei et al. Screening active compounds from Corydalis yanhusuo by combining high expression VEGF receptor HEK293 cell membrane chromatography with HPLC-ESI-IT-TOF-MSn method
Chen et al. Bufalin targets the SRC-3/MIF pathway in chemoresistant cells to regulate M2 macrophage polarization in colorectal cancer
Guan et al. Shengjiang xiexin decoction alters pharmacokinetics of irinotecan by regulating metabolic enzymes and transporters: a multi-target therapy for alleviating the gastrointestinal toxicity
CN112402437B (zh) 新穿心莲内酯在制备rab5a蛋白抑制剂中的应用
Lee et al. Small peptides derived from somatotropin domain-containing proteins inhibit blood and lymphatic endothelial cell proliferation, migration, adhesion and tube formation
Xie et al. A novel recombinant human Frizzled-7 protein exhibits anti-tumor activity against triple negative breast cancer via abating Wnt/β-catenin pathway
Huang et al. Targeting ubiquitin conjugating enzyme UbcH5b by a triterpenoid PC3-15 from Schisandra plants sensitizes triple-negative breast cancer cells to lapatinib
Shi et al. Identification of dihydrotanshinone I as an ERp57 inhibitor with anti-breast cancer properties via the UPR pathway
Lu et al. A novel P38α MAPK activator Bruceine A exhibits potent anti-pancreatic cancer activity
Zheng et al. Combination of comprehensive two-dimensional prostate cancer cell membrane chromatographic system and network pharmacology for characterizing membrane binding active components from Radix et Rhizoma Rhei and their targets
Hosseini et al. Inhibiting angiogenesis with human single-chain variable fragment antibody targeting VEGF
Chen et al. Interaction between granulin A and enolase 1 attenuates the migration and invasion of human hepatoma cells
Zhang et al. Suppression of tumor-induced angiogenesis by taspine isolated from Radix et Rhizoma Leonticis and its mechanism of action in vitro
Zhao et al. Betulinic acid prevents liver fibrosis by binding Lck and suppressing Lck in HSC activation and proliferation
Lu et al. Enhanced anti-tumor activity of trichosanthin after combination with a human-derived cell-penetrating peptide, and a possible mechanism of activity
Vergara-Barberán et al. Proteomic fingerprinting of mistletoe (Viscum album L.) via combinatorial peptide ligand libraries and mass spectrometry analysis
Choi et al. Fc-saxatilin inhibits VEGF-induced permeability by regulating claudin-5 expression in human brain microvascular endothelial cells
Chen et al. Expression and purification of a recombinant ELRL-MAP30 with dual-targeting anti-tumor bioactivity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant