CN112397594A - Photoelectric detector and manufacturing method thereof - Google Patents
Photoelectric detector and manufacturing method thereof Download PDFInfo
- Publication number
- CN112397594A CN112397594A CN202011218910.9A CN202011218910A CN112397594A CN 112397594 A CN112397594 A CN 112397594A CN 202011218910 A CN202011218910 A CN 202011218910A CN 112397594 A CN112397594 A CN 112397594A
- Authority
- CN
- China
- Prior art keywords
- layer
- photodetector
- area
- pole
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000003990 capacitor Substances 0.000 claims abstract description 50
- 238000009792 diffusion process Methods 0.000 claims abstract description 36
- 230000003287 optical effect Effects 0.000 claims abstract description 29
- 241001272720 Medialuna californiensis Species 0.000 claims abstract description 15
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 64
- 229920005591 polysilicon Polymers 0.000 claims description 64
- 229910052751 metal Inorganic materials 0.000 claims description 40
- 239000002184 metal Substances 0.000 claims description 40
- 239000007769 metal material Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 29
- 238000002513 implantation Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 18
- 239000007772 electrode material Substances 0.000 claims description 16
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 230000003321 amplification Effects 0.000 claims description 4
- 239000002019 doping agent Substances 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000007943 implant Substances 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 11
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 12
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 11
- 230000002238 attenuated effect Effects 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910015363 Au—Sn Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/50—Encapsulations or containers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/147—Shapes of bodies
Landscapes
- Light Receiving Elements (AREA)
Abstract
本发明涉及半导体集成电路技术领域,提供了一种光电探测器及其制作方法。光电探测器区包括与N极相连的半月环形n+扩散区、与P极相连的环形p+扩散区和受光区;其中,受光区位于所述环形p+扩散区的环腔内,所述半月环形n+扩散区设置在与所述环形p+扩散区外环相差指定距离位置;电阻区包括电阻和R极,其中,电阻的两端分别连接R极和光电探测器的N极;其中,R极用于连接给光电探测器供电的管脚VAPD;光电探测器的N极还用于连接第一电容后,由第一电容的另一端完成接地,以便对管脚VAPD输入供电信号进行滤波。本发明解决了10G接入终端设备的光接收灵敏度因5G WiFi串扰而显著劣化的问题。
The invention relates to the technical field of semiconductor integrated circuits, and provides a photodetector and a manufacturing method thereof. The photodetector area includes a half-moon annular n+ diffusion area connected to the N pole, an annular p+ diffusion area connected to the P pole, and a light-receiving area; wherein, the light-receiving area is located in the ring cavity of the annular p+ diffusion area, and the half-moon annular n+ The diffusion area is set at a specified distance from the outer ring of the annular p+ diffusion area; the resistance area includes a resistance and an R pole, wherein the two ends of the resistance are respectively connected to the R pole and the N pole of the photodetector; wherein, the R pole is used for Connect the pin VAPD for supplying power to the photodetector; the N pole of the photodetector is also used to connect the first capacitor, and the other end of the first capacitor is grounded, so as to filter the input power supply signal of the pin VAPD. The invention solves the problem that the optical receiving sensitivity of the 10G access terminal equipment is significantly deteriorated due to the crosstalk of the 5G WiFi.
Description
【技术领域】【Technical field】
本发明涉及半导体集成电路技术领域,特别是涉及一种光电探测器及其制作方法。The present invention relates to the technical field of semiconductor integrated circuits, in particular to a photodetector and a manufacturing method thereof.
【背景技术】【Background technique】
随着电子商务、4K/8K视频、物联网、云计算等宽带业务的普及应用以及无人智能驾驶、虚拟现实(Virtual Reality,VR)、人工智能(Artificial Intelligence,AI)、智慧城市等超宽带业务的逐渐兴起,将大力促进运营商、互联网等公司积极升级其现有网络设备,以满足新兴业务对超宽带、超大容量、低延时等方面的要求。With the popularization and application of broadband services such as e-commerce, 4K/8K video, Internet of Things, and cloud computing, as well as ultra-broadband applications such as unmanned intelligent driving, virtual reality (VR), artificial intelligence (AI), and smart cities The gradual rise of services will vigorously encourage operators, Internet companies and other companies to actively upgrade their existing network equipment to meet the requirements of emerging services for ultra-broadband, ultra-large capacity, and low latency.
例如,在接入网方面,近20多年来,已实现从电话线接入(Kbps速率)到铜线接入(Mbps速率)再到光纤接入(Gbps)的技术革新,将家庭用户的带宽速率从最初的Kbps提升到了Gbps。目前,国内已基本完成了千兆速率的GPON/EPON接入网部署,并已进入到10G-GON/10G-EPON的规模商用部署阶段。For example, in terms of access network, over the past 20 years, technological innovations from telephone line access (Kbps rate) to copper line access (Mbps rate) to optical fiber access (Gbps) have been realized, and the bandwidth of home users has been improved. The rate was increased from the original Kbps to Gbps. At present, China has basically completed the deployment of gigabit-rate GPON/EPON access networks, and has entered the stage of large-scale commercial deployment of 10G-GON/10G-EPON.
在开发和部署到10G-GON/10G-EPON家庭终端光调制解调器等设备方面,因业务需求,光调制解调器设备需同时支持光纤接入和无线WiFi接入,导致在终端设备开发方面面临着实现光电信号与无线信号共存的技术难题。其主要原因在于:为实现5G WiFi在室内的传输和覆盖范围,其信号强度需达到24dBm~30dBm。如此强度的电磁信号在终端光调制解调器模块内很容易串扰到光电信号端口,严重影响光电信号的接收灵敏度,导致接收灵敏度不能满足标准规格要求。In terms of development and deployment to 10G-GON/10G-EPON home terminal optical modem and other equipment, due to business requirements, optical modem equipment needs to support both optical fiber access and wireless WiFi access, resulting in the development of terminal equipment. The technical difficulties of coexisting with wireless signals. The main reason is that in order to achieve indoor transmission and coverage of 5G WiFi, its signal strength needs to reach 24dBm to 30dBm. The electromagnetic signal of such intensity is easy to crosstalk to the optoelectronic signal port in the terminal optical modem module, which seriously affects the receiving sensitivity of the optoelectronic signal, resulting in that the receiving sensitivity cannot meet the standard specification requirements.
鉴于此,克服现有技术所存在的缺陷是本技术领域亟待解决的问题。In view of this, overcoming the defects existing in the prior art is an urgent problem to be solved in the technical field.
【发明内容】[Content of the Invention]
本发明实施例要解决的技术问题是为满足业务的发展需求,接入终端设备需同时支持光纤接入和无线WiFi接入连接方式。当WiFi接入标准从2.4G WiFi升级到更高传输速率的5G WiFi后,为满足覆盖家庭室内的传输距离要求,5G WiFi信号强度也提升至24dBm~30dBm。而5G WiFi信号的工作频段正好在10G光电信号的工作频段范围内,这导致5G WiFi信号对10G光电信号造成了严重的电磁串扰,进而显著劣化了光电信号的接收灵敏度,导致终端设备的光信号接入灵敏度不能满足标准要求。The technical problem to be solved by the embodiments of the present invention is that in order to meet the development requirements of services, the access terminal equipment needs to support both optical fiber access and wireless WiFi access connection modes. When the WiFi access standard is upgraded from 2.4G WiFi to 5G WiFi with a higher transmission rate, in order to meet the transmission distance requirement covering the home, the 5G WiFi signal strength is also increased to 24dBm to 30dBm. The working frequency band of the 5G WiFi signal is just within the working frequency range of the 10G photoelectric signal, which causes the 5G WiFi signal to cause serious electromagnetic crosstalk to the 10G photoelectric signal, which significantly degrades the receiving sensitivity of the photoelectric signal, resulting in the optical signal of the terminal equipment. The access sensitivity cannot meet the standard requirements.
第一方面,本发明公开了一种光电探测器,包括光电探测器区和电阻区,具体的:In a first aspect, the present invention discloses a photodetector, including a photodetector area and a resistance area, specifically:
光电探测器区包括与N极相连的半月环形n+扩散区、与P极相连的环形p+扩散区和受光区;其中,受光区位于所述环形p+扩散区的环腔内,所述半月环形n+扩散区设置在与所述环形p+扩散区外环相差指定距离位置;The photodetector area includes a half-moon annular n+ diffusion area connected to the N pole, an annular p+ diffusion area connected to the P pole, and a light-receiving area; wherein, the light-receiving area is located in the ring cavity of the annular p+ diffusion area, and the half-moon annular n+ The diffusion area is set at a position different from the outer ring of the annular p+ diffusion area by a specified distance;
电阻区包括电阻和R极,其中,电阻的两端分别连接R极和光电探测器的N极;其中,R极用于连接给光电探测器供电的管脚VAPD;光电探测器的N极还用于连接第一电容后,由第一电容的另一端完成接地,以便对管脚VAPD输入供电信号进行滤波。The resistance area includes a resistor and an R pole, wherein the two ends of the resistor are respectively connected to the R pole and the N pole of the photodetector; wherein, the R pole is used to connect the pin VAPD that supplies power to the photodetector; the N pole of the photodetector is also After connecting the first capacitor, the other end of the first capacitor is grounded, so as to filter the input power supply signal of the pin VAPD.
优选的,所述电阻为多晶硅电阻;其中,所述多晶硅电阻生长在所述光电探测器中氧化层的指定区域,并且位于光电探测器的P极接触层之上;其中,所述多晶硅电阻与光电探测器的P极接触层之间由所述氧化层隔离开;或者,Preferably, the resistor is a polysilicon resistor; wherein, the polysilicon resistor is grown in a designated area of the oxide layer in the photodetector, and is located on the P electrode contact layer of the photodetector; wherein, the polysilicon resistor and The P-contact layers of the photodetector are separated by the oxide layer; or,
所述电阻为n阱电阻,所n阱电阻是在光电探测器中形成氧化层之前,通过n型掺杂形成在光电探测器的指定区域;The resistance is an n-well resistance, and the n-well resistance is formed in a designated area of the photodetector by n-type doping before the oxide layer is formed in the photodetector;
其中,多晶硅电阻或者n阱电阻的两侧分别经过n+注入掺杂,制作多晶硅电阻或者n阱电阻的两个n+接触区;所述n+接触区分别用于与R极和光电探测器的N极连接。Among them, the two sides of the polysilicon resistor or the n-well resistor are respectively doped by n+ implantation to make two n+ contact regions of the polysilicon resistor or the n-well resistor; the n+ contact regions are respectively used for connecting with the R pole and the N pole of the photodetector. connect.
优选的,所述多晶硅电阻的阻值设定在10欧~500欧之间,相应的多晶硅电阻的多晶硅层厚度为1-3um,掺杂多晶硅电阻率为100±10Ω.um,其长度和宽度则根据光电探测器形状特性,以及要形成的阻值大小进行设置。Preferably, the resistance value of the polysilicon resistor is set between 10 ohms and 500 ohms, the thickness of the polysilicon layer of the corresponding polysilicon resistor is 1-3um, the resistivity of the doped polysilicon is 100±10Ω.um, and its length and width are Then set it according to the shape characteristics of the photodetector and the resistance value to be formed.
优选的,所述n阱电阻的深度为0.5um-1.5um,n阱电阻率为50±10Ω.um,其长度和宽度则根据光电探测器形状特性,以及要形成的阻值大小进行设置。Preferably, the depth of the n-well resistor is 0.5um-1.5um, the resistivity of the n-well is 50±10Ω.um, and its length and width are set according to the shape characteristics of the photodetector and the size of the resistance to be formed.
第二方面,本发明公开了一种光电探测器,包括光电探测器区、电阻区和电容区,具体的:In a second aspect, the present invention discloses a photodetector, comprising a photodetector area, a resistance area and a capacitance area, specifically:
光电探测器区包括与N极相连的半月环形n+扩散区、与P极相连的环形p+扩散区和受光区;其中,受光区位于所述环形p+扩散区的环腔内,所述半月环形n+扩散区设置在与所述环形p+扩散区外环相差指定距离位置;The photodetector area includes a half-moon annular n+ diffusion area connected to the N pole, an annular p+ diffusion area connected to the P pole, and a light-receiving area; wherein, the light-receiving area is located in the ring cavity of the annular p+ diffusion area, and the half-moon annular n+ The diffusion area is set at a position different from the outer ring of the annular p+ diffusion area by a specified distance;
电阻区包括电阻和R极,其中,电阻的两端分别连接R极和光电探测器的N极;其中,R极用于连接给光电探测器供电的管脚VAPD;光电探测器的N极还用于连接电容区;The resistance area includes a resistor and an R pole, wherein the two ends of the resistor are respectively connected to the R pole and the N pole of the photodetector; wherein, the R pole is used to connect the pin VAPD that supplies power to the photodetector; the N pole of the photodetector is also For connecting the capacitive area;
所述电容区包括内置电容和GND极,其中,内置电容的一端与所述N极相连,所述内置电容的另一端与所述GND极相连,以便对管脚VAPD输入供电信号进行滤波。The capacitor region includes a built-in capacitor and a GND pole, wherein one end of the built-in capacitor is connected to the N pole, and the other end of the built-in capacitor is connected to the GND pole, so as to filter the input power supply signal of the pin VAPD.
优选的,内置电容采用金属-绝缘体-金属结构制作,包括第一层金属材料、中间绝缘层材料和第二层金属材料,其中,第一层金属材料位于所述中间绝缘层材料和第二层金属材料的底部,具体的:Preferably, the built-in capacitor is made of a metal-insulator-metal structure, including a first layer of metal material, an intermediate insulating layer material and a second layer of metal material, wherein the first layer of metal material is located on the intermediate insulating layer material and the second layer of metal material Bottom of metal material, specific:
在形成所述内置电容两极时,第一电极通过n+注入掺杂与所述第一层金属材料的外延部分接触,其中,所述第一层金属材料的外延部分上未生长有所述中间绝缘层材料和第二层金属材料;When forming the two electrodes of the built-in capacitor, the first electrode is in contact with the epitaxial portion of the first layer of metal material through n+ implantation doping, wherein the intermediate insulation is not grown on the epitaxial portion of the first layer of metal material layer material and second layer metal material;
第二电极为所述第二层金属材料上的指定区域,所述指定区域相对于所述第一电极分别位于所述第二电极的两侧。The second electrode is a designated area on the second layer of metal material, and the designated area is respectively located on both sides of the second electrode relative to the first electrode.
优选的,第一层金属材料和第二层金属材料均为Al、Cu、Au、W、Co和Ti中的一种金属材料或者多种金属混合材料;中间绝缘层材料:SiO2,厚度为5-10nm,相对介电常数为3.9±0.5;所述金属-绝缘体-金属结构的单位面积电容为2~4fF/um2。Preferably, the first layer of metal material and the second layer of metal material are one metal material or multiple metal mixed materials among Al, Cu, Au, W, Co and Ti; the material of the intermediate insulating layer: SiO 2 , with a thickness of 5-10nm, the relative dielectric constant is 3.9±0.5; the capacitance per unit area of the metal-insulator-metal structure is 2-4fF/um 2 .
第三方面,本发明还公开了一种光电探测器的制作方法,方法包括:In a third aspect, the present invention also discloses a method for manufacturing a photodetector, the method comprising:
在p+接触层上生长第一氧化层;growing a first oxide layer on the p+ contact layer;
在所述第一氧化层上生长一层多晶硅层,曝光刻蚀保留用于制作多晶硅电阻的区域;growing a polysilicon layer on the first oxide layer, exposing and etching the area reserved for making polysilicon resistors;
将刻蚀掉的区域生长氧化物,使得形成的第二氧化层覆盖掉所述多晶硅层;growing oxide on the etched area, so that the formed second oxide layer covers the polysilicon layer;
在多晶硅电阻区域的两端均进行n+注入掺杂,制作多晶硅电阻的两个电阻接触区;Perform n+ implantation doping at both ends of the polysilicon resistance region to make two resistance contact regions of the polysilicon resistance;
对需要引出电极的区域,进行刻蚀,直至表面p+接触区和n+接触区,形成可外延生长金属电极材料的接触孔;Etch the area where the electrode needs to be drawn out until the p+ contact area and the n+ contact area on the surface, forming a contact hole for epitaxial growth of the metal electrode material;
外延生长电极材料,形成光电探测器的电极P极、N极和R极;Epitaxially growing electrode materials to form P, N and R electrodes of the photodetector;
对光电探测器的受光区,刻蚀掉表面的氧化层,至表面的p+接触层,形成有效接收外部光信号的窗口。For the light-receiving area of the photodetector, the oxide layer on the surface is etched away to the p+ contact layer on the surface, forming a window for effectively receiving external light signals.
优选的,在形成所述p+接触层之前,方法包括:Preferably, before forming the p+ contact layer, the method includes:
加工InP衬底晶圆;在InP衬底上进行n+掺杂,形成一层n+InP接触层,用于制作光电探测器的N极;外延生长一层n-InGaAsP层;外延生长一层p-InGaAsP层;外延生长一层InP层;对所述InP层进行p+掺杂,形成一层p+InP接触层,用于制作光电探测器的P极;进行深度n+注入掺杂,形成一个与n+InP接触层连通的n+接触区,用于在所述n+接触区表面制作光电探测器的N极;其中,所述p+接触层具体为p+InP接触层;或者,Process the InP substrate wafer; perform n+ doping on the InP substrate to form a n+InP contact layer for making the N pole of the photodetector; epitaxially grow an n-InGaAsP layer; epitaxially grow a p layer -InGaAsP layer; an InP layer is epitaxially grown; p+ doping is performed on the InP layer to form a p+InP contact layer for making the P pole of the photodetector; deep n+ implantation doping is performed to form a The n+ contact area connected with the n+InP contact layer is used to make the N pole of the photodetector on the surface of the n+ contact area; wherein, the p+ contact layer is specifically a p+InP contact layer; or,
加工Si衬底晶圆;在Si衬底上进行n+掺杂,形成一层n+Si接触层,用于制作光电探测器的N极;外延生长一层本征Si层;外延生长一层n型Si,与所述本征Si层一起构成缓冲层;外延生长一层本征Si雪崩层,用于产生雪崩效应,对光生电子进行雪崩放大;外延生长一层p型Si电荷层;外延生长一层本征Ge吸收层,用于吸收光信号并产生光生电子和空穴;注入进行p+掺杂,在本征Ge吸收层表面形成一层p+接触区,用于制作光电探测器的P极;进行深度n+注入掺杂,形成一个与所述n+Si接触层连通的n+接触区,用于在表面制作光电探测器的N极;其中,所述p+接触层具体为p+Ge接触层。Process the Si substrate wafer; perform n+ doping on the Si substrate to form a n+Si contact layer for making the N pole of the photodetector; epitaxially grow an intrinsic Si layer; epitaxially grow an n layer type Si, forming a buffer layer together with the intrinsic Si layer; epitaxial growth of an intrinsic Si avalanche layer for generating avalanche effect and avalanche amplification of photogenerated electrons; epitaxial growth of a p-type Si charge layer; epitaxial growth A layer of intrinsic Ge absorption layer is used to absorb optical signals and generate photogenerated electrons and holes; p+ doping is performed by injection to form a p+ contact area on the surface of the intrinsic Ge absorption layer, which is used to make the P electrode of the photodetector ; Carry out deep n+ implantation doping to form an n+ contact region communicating with the n+Si contact layer, for making the N pole of the photodetector on the surface; wherein, the p+ contact layer is specifically a p+Ge contact layer .
第四方面,本发明还公开了一种光电探测器的制作方法,在制作氧化层之前,方法包括:In a fourth aspect, the present invention also discloses a method for fabricating a photodetector. Before fabricating the oxide layer, the method includes:
在指定区域注入n型掺杂形成一个n阱电阻区域;Implant n-type dopant in the designated area to form an n-well resistance region;
在n阱电阻区域的两端均进行n+注入掺杂,制作n阱电阻的两个n+接触区;Perform n+ implantation doping at both ends of the n-well resistance region to make two n+ contact regions of the n-well resistance;
对引出电极的区域,进行刻蚀,直至表面p+接触区和n+接触区,形成可外延生长金属电极材料的接触孔;The area of the lead-out electrode is etched until the p+ contact area and the n+ contact area on the surface are formed to form contact holes for epitaxial growth of metal electrode materials;
外延生长电极材料,形成光电探测器的电极P极、N极和R极;Epitaxially growing electrode materials to form P, N and R electrodes of the photodetector;
对光电探测器的受光区,刻蚀掉表面的氧化层,形成有效接收外部光信号的窗口。For the light-receiving area of the photodetector, the oxide layer on the surface is etched to form a window for effectively receiving external light signals.
与现有技术相比,本发明实施例的有益效果在于:Compared with the prior art, the beneficial effects of the embodiments of the present invention are:
本发明提出的光电探测器中融入电阻结构,或电阻和电容的组合结构,此电阻在光电探测器上给其供电的路径上与外部电容器件构成低通滤波器,或直接由光电探测器中的电阻和电容组合结构构成低通滤波器,达到有效滤除5G WiFi串扰信号的目的,解决了10G接入终端设备的光接收灵敏度因5G WiFi串扰而显著劣化的问题。The photodetector proposed by the present invention incorporates a resistor structure, or a combined structure of resistors and capacitors. This resistor forms a low-pass filter with an external capacitor on the path that supplies power to the photodetector, or is directly connected to the photodetector. The combined structure of the resistor and capacitor constitutes a low-pass filter, which can effectively filter out the 5G WiFi crosstalk signal, and solve the problem that the optical receiving sensitivity of the 10G access terminal equipment is significantly deteriorated due to the 5G WiFi crosstalk.
【附图说明】[Description of drawings]
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1为本发明提供的现有技术中的一种光电探测器封装结构的俯视图;1 is a top view of a photodetector packaging structure in the prior art provided by the present invention;
图2为本发明实施例提供的一种集成电阻的光电探测器结构俯视示意图;FIG. 2 is a schematic top view of the structure of a photodetector with integrated resistance provided by an embodiment of the present invention;
图3为本发明实施例提供的一种光电探测器封装结构的俯视图;3 is a top view of a photodetector packaging structure according to an embodiment of the present invention;
图4为本发明实施例提供的一种集成电阻和金属区的光电探测器结构俯视示意图;4 is a schematic top view of the structure of a photodetector with integrated resistors and metal regions according to an embodiment of the present invention;
图5为本发明实施例提供的一种集成电阻和电容的光电探测器结构俯视示意图;5 is a schematic top view of the structure of a photodetector with integrated resistance and capacitance provided by an embodiment of the present invention;
图6为本发明实施例提出的一种光电探测器制作方法流程示意图;6 is a schematic flowchart of a method for manufacturing a photodetector according to an embodiment of the present invention;
图7为本发明实施例提供的一种采用多晶硅电阻的InP基APD结构中对应图2所示结构,对应剖面线1和剖面线2剖视图组合的示意图;7 is a schematic diagram corresponding to the structure shown in FIG. 2 and a combination of cross-sectional views corresponding to
图8为本发明实施例提供的一种采用多晶硅电阻的SiGe APD结构中对应图2所示结构,对应剖面线1和剖面线2剖视图组合的示意图;8 is a schematic diagram of a combination of cross-sectional views corresponding to
图9为本发明实施例提出的另一种光电探测器制作方法流程示意图;FIG. 9 is a schematic flowchart of another method for manufacturing a photodetector according to an embodiment of the present invention;
图10为本发明实施例提供的一种采用n阱电阻的InP基APD结构中对应图2所示结构,对应剖面线1和剖面线2剖视图组合的示意图;10 is a schematic diagram corresponding to the structure shown in FIG. 2 and a combination of cross-sectional views corresponding to
图11为本发明实施例提供的一种采用n阱电阻的InP基APD结构中对应图2所示结构且带金属区的,对应剖面线1和剖面线2剖视图组合的示意图;11 is a schematic diagram of a combination of cross-sectional views corresponding to
图12为本发明实施例提供的一种采用n阱电阻的SiGe APD结构中对应图2所示结构,对应剖面线1和剖面线2剖视图组合的示意图;12 is a schematic diagram corresponding to the structure shown in FIG. 2 in a SiGe APD structure using an n-well resistor provided by an embodiment of the present invention and a combination of cross-sectional views corresponding to
图13为本发明实施例提供的一种采用n阱电阻的SiGe APD结构中对应图2所示结构且带金属区的,对应剖面线1和剖面线2剖视图组合的示意图;13 is a schematic diagram of a combination of cross-sectional views corresponding to
图14为采用本发明的光电探测器对WiFi信号滤除效果的仿真结果图。FIG. 14 is a simulation result diagram of the filtering effect of the WiFi signal by the photodetector of the present invention.
【具体实施方式】【Detailed ways】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。In the description of the present invention, the orientation or positional relationship indicated by the terms "inner", "outer", "longitudinal", "lateral", "upper", "lower", "top", "bottom", etc. are based on the drawings The orientation or positional relationship shown is only for the convenience of describing the present invention rather than requiring the present invention to be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention.
发明人通过研究发现目前的10G ONU光调制解调器会在PCB板上给光电探测器供电的支路上加入滤波电阻和电容,同时也会在光接收组件内部加入滤波电容。但目前的滤波方案不能有效滤除掉光接收光组件管脚VAPD上的WiFi串扰信号。The inventor found through research that the current 10G ONU optical modem will add filter resistors and capacitors on the branch circuit that supplies power to the photodetector on the PCB board, and also add filter capacitors inside the light receiving component. However, the current filtering scheme cannot effectively filter out the WiFi crosstalk signal on the pin VAPD of the light-receiving optical component.
PCB板上给光电探测器供电的支路上加入的滤波电阻和电容:不能滤除掉光接收光组件管脚VAPD上的WiFi信号,因为WiFi串扰信号是直接通过VAPD管脚进入的(VAPD管脚相当于一根天线)。Filter resistors and capacitors added to the branch on the PCB for powering the photodetector: the WiFi signal on the VAPD pin of the light-receiving optical component cannot be filtered out, because the WiFi crosstalk signal enters directly through the VAPD pin (the VAPD pin equivalent to an antenna).
VAPD管脚插针(其寄生电阻约为几十毫欧)与光接收组件的内部滤波电容(一般为470pF)构成的滤波器带宽在GHz量级,也不能滤除WiFi串扰信号。The filter bandwidth formed by the VAPD pin (the parasitic resistance of which is about tens of milliohms) and the internal filter capacitor (usually 470pF) of the light-receiving component is on the order of GHz, and it cannot filter out the WiFi crosstalk signal.
目前的10G ONU光调制解调器测试结果为:The current 10G ONU optical modem test results are:
没有5G WiFi信号时,10G ONU光调制解调器测试的光接收灵敏度约为-29~-31dBm@BER=1E-3,其中,dBm为入射光功率的单位,假设入射光功率为Pin毫瓦(mW),则其单位换成dBm后的入射光功率为10*log(Pin/1);BER=1E-3表示误码率等于1E-3。When there is no 5G WiFi signal, the optical receiving sensitivity of the 10G ONU optical modem test is about -29~-31dBm@BER=1E-3, where dBm is the unit of incident optical power, assuming that the incident optical power is Pin milliwatts (mW) , then the incident optical power after the unit is changed to dBm is 10*log(Pin/1); BER=1E-3 means that the bit error rate is equal to 1E-3.
开启5G WiFi信号后,10G ONU光调制解调器测试的光接收灵敏度劣化至低于-20dBm@BER=1E-3。After the 5G WiFi signal is turned on, the optical receiving sensitivity of the 10G ONU optical modem test degrades to less than -20dBm@BER=1E-3.
下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。The technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
实施例1:Embodiment 1:
本发明实施例1提供了一种光电探测器,如图2所示,包括光电探测器区和电阻区,具体的:
光电探测器区包括与N极相连的半月环形n+扩散区、与P极相连的环形p+扩散区和受光区;其中,受光区位于所述环形p+扩散区的环腔内,所述半月环形n+扩散区设置在与所述环形p+扩散区外环相差指定距离位置;The photodetector area includes a half-moon annular n+ diffusion area connected to the N pole, an annular p+ diffusion area connected to the P pole, and a light-receiving area; wherein, the light-receiving area is located in the ring cavity of the annular p+ diffusion area, and the half-moon annular n+ The diffusion area is set at a position different from the outer ring of the annular p+ diffusion area by a specified distance;
电阻区包括电阻和R极,其中,电阻的两端分别连接R极和光电探测器的N极;其中,R极用于连接给光电探测器供电的管脚VAPD;光电探测器的N极还用于连接第一电容后,由第一电容的另一端完成接地,以便对管脚VAPD输入供电信号进行滤波。The resistance area includes a resistor and an R pole, wherein the two ends of the resistor are respectively connected to the R pole and the N pole of the photodetector; wherein, the R pole is used to connect the pin VAPD that supplies power to the photodetector; the N pole of the photodetector is also After connecting the first capacitor, the other end of the first capacitor is grounded, so as to filter the input power supply signal of the pin VAPD.
本发明实施例提出的光电探测器中融入电阻结构,此电阻在光电探测器上给其供电的路径上与外部电容器件构成低通滤波器,达到有效滤除5G WiFi串扰信号的目的,解决了10G接入终端设备的光接收灵敏度因5G WiFi串扰而显著劣化的问题。如图3所示,为结合本发明实施例所提出的光电探测器芯片实现的TO-CAN封装的管脚结构连线示意图。The photodetector proposed in the embodiment of the present invention incorporates a resistor structure, and the resistor forms a low-pass filter with an external capacitor on the path that supplies power to the photodetector, so as to achieve the purpose of effectively filtering out 5G WiFi crosstalk signals and solve the problem of The problem that the optical reception sensitivity of 10G access terminal equipment is significantly degraded due to 5G WiFi crosstalk. As shown in FIG. 3 , it is a schematic diagram showing the connection of the pin structure of the TO-CAN package realized in combination with the photodetector chip proposed in the embodiment of the present invention.
在本发明实施例中,对于上述的电阻实现方式至少提供了两种实验论证可行的方式。In the embodiment of the present invention, at least two feasible ways for experimental demonstration are provided for the above-mentioned resistance implementation.
方式一:method one:
所述电阻为多晶硅电阻;其中,所述多晶硅电阻生长在所述光电探测器中氧化层的指定区域,并且位于光电探测器的P极接触层之上;其中,所述多晶硅电阻与光电探测器的P极接触层之间由所述氧化层隔离开。The resistor is a polysilicon resistor; wherein, the polysilicon resistor is grown in a designated area of the oxide layer in the photodetector, and is located on the P electrode contact layer of the photodetector; wherein, the polysilicon resistor is connected to the photodetector. The P electrode contact layers are separated by the oxide layer.
在本发明实施例所提出的背景技术场景里,所述多晶硅电阻的阻值设定在10欧~500欧之间,相应的多晶硅电阻的多晶硅层厚度为1-3um,掺杂多晶硅电阻率为100±10Ω.um,其长度和宽度则根据光电探测器形状特性,以及要形成的阻值大小进行设置。这里给出了多晶硅电阻值的具体计算方法,如下:In the background technology scenario proposed by the embodiment of the present invention, the resistance value of the polysilicon resistor is set between 10 ohms and 500 ohms, the thickness of the polysilicon layer of the corresponding polysilicon resistor is 1-3um, and the resistivity of the doped polysilicon is 1-3um. 100±10Ω.um, and its length and width are set according to the shape characteristics of the photodetector and the resistance value to be formed. The specific calculation method of polysilicon resistance value is given here, as follows:
假设多晶硅电阻层的厚度为d,多晶硅电阻层的电阻率为ρ(单位为Ω.um),多晶硅电阻的长度和宽度分别为L微米(um)和W微米(um),则多晶硅电阻层的方块电阻的阻值为:Assuming that the thickness of the polysilicon resistance layer is d, the resistivity of the polysilicon resistance layer is ρ (unit is Ω.um), and the length and width of the polysilicon resistance are L microns (um) and W microns (um), respectively, then the polysilicon resistance layer is The resistance value of the square resistor is:
R方块=ρ/d(Ω.um2);R square =ρ/d(Ω.um 2 );
注:方块电阻指长和宽均为1um的电阻。Note: Sheet resistance refers to a resistor whose length and width are both 1um.
多晶硅电阻的阻值为:The resistance value of the polysilicon resistor is:
R=R方块×L/W(Ω);R=R square ×L/W(Ω);
对于电阻率ρ,一般采用四探针方阻电阻率测试仪得到。也可以通过测量被测电阻的尺寸和阻值,再根据计算公式算得电阻率:(1)先测量出被测电阻的尺寸,包括长度L、横截面的面积S;(2)用高精度电桥等方法精确测量出被测电阻的阻值RS;(3)根据电阻率计算公式算得电阻率,如下:For the resistivity ρ, it is generally obtained by a four-probe square resistivity tester. It is also possible to measure the size and resistance value of the resistor under test, and then calculate the resistivity according to the calculation formula: (1) first measure the size of the resistor under test, including the length L and the area S of the cross section; (2) use a high-precision electrical (3) Calculate the resistivity according to the resistivity formula, as follows:
ρ=RS×S/L;ρ=R S ×S/L;
为简化测量过程,在设计时将被测电阻的长度L和宽度W制作成相等的,被测电阻的厚度为d,则被测电阻的电阻率计算公式为:In order to simplify the measurement process, the length L and width W of the resistance to be measured are made equal in design, and the thickness of the resistance to be measured is d, then the resistivity calculation formula of the resistance to be measured is:
ρ=RS×(W×d)/L=RS×d;ρ= RS ×(W×d)/L= RS ×d;
也即,对于长度L和宽度W相等的被测电阻,其电阻率可简化为由其测量阻值和厚度相乘即可得到。That is to say, for the measured resistance with the same length L and width W, its resistivity can be simplified to be obtained by multiplying its measured resistance value and thickness.
在本发明实施例中给予了一组参数实例:多晶硅层厚度:2um;掺杂多晶硅电阻率:100Ω.um(根据上述电阻率测量方法和实验结果得到:若采用P型掺杂,则掺杂浓度约为9.6E+18;若采用N型掺杂,则掺杂浓度约为5E+17);多晶硅方块电阻:50Ω;500欧多晶硅电阻尺寸示例:宽30um*长300um;10欧多晶硅电阻尺寸示例:宽200um*长40um。In the embodiment of the present invention, a set of parameter examples are given: polysilicon layer thickness: 2um; doped polysilicon resistivity: 100Ω.um (according to the above resistivity measurement method and experimental results: if P-type doping is used, the doping The concentration is about 9.6E+18; if N-type doping is used, the doping concentration is about 5E+17); polysilicon sheet resistance: 50Ω; 500 ohm polysilicon resistor size example: width 30um*length 300um; Example: width 200um*length 40um.
如图4所示,为本发明实施例所提出的一种改进方案,其中,所述多晶硅电阻上方覆盖了一层与电阻N极相连的金属层(图4所示的俯视图中被标识为金属区),此金属层材料与电阻和光电探测器的电极材料相同,为Al、Cu、Au、W(钨)、Co(钴)和Ti(钛)等金属材料;此金属层区域与电阻的P极、半月环形n+扩散区和器件的上边界的间距均为10~20um;此金属层与器件的衬底(通常默认连接到地)构成一个电容,此金属层与器件衬底间的介电材料为SiO2,其相对介电常数为3.9±0.5;假定SiO2的厚度为15-30nm,则所述金属-衬底结构的单位面积电容为0.67~1.33fF/um2;若此金属层的宽为60um、长为300um,则此金属层与衬底形成的寄生电容大小约为12~24pF。其中,金属层-衬底结构的电容计算公式为:As shown in FIG. 4 , it is an improved solution proposed by the embodiment of the present invention, wherein the polysilicon resistor is covered with a metal layer connected to the N pole of the resistor (marked as metal in the top view shown in FIG. 4 ) region), the metal layer material is the same as the electrode material of the resistor and the photodetector, which is Al, Cu, Au, W (tungsten), Co (cobalt) and Ti (titanium) and other metal materials; the metal layer region and the resistance The distances between the P pole, the half-moon annular n+ diffusion region and the upper boundary of the device are all 10-20um; the metal layer and the device substrate (usually connected to the ground by default) form a capacitor, and the dielectric between the metal layer and the device substrate forms a capacitor. The electrical material is SiO 2 , and its relative permittivity is 3.9±0.5; assuming that the thickness of SiO 2 is 15-30 nm, the capacitance per unit area of the metal-substrate structure is 0.67-1.33 fF/um 2 ; if this metal The width of the layer is 60um and the length is 300um, and the parasitic capacitance formed by the metal layer and the substrate is about 12-24pF. Among them, the capacitance calculation formula of the metal layer-substrate structure is:
C=ε0×εSiO2×S/d;C=ε 0 ×ε SiO2 ×S/d;
上式中,ε0为真空介电常数,其值为8.854×10-12(F/m);εSiO2为SiO2材料的相对介电常数;S为金属层-衬底结构电容的面积,这里等于金属层-衬底结构电容的宽乘以金属层-衬底结构电容的长,对于单位面积电容的面积则为1um2;d为介电材料(这里为SiO2)的厚度。In the above formula, ε 0 is the vacuum dielectric constant, and its value is 8.854×10 -12 (F/m); ε SiO2 is the relative dielectric constant of the SiO 2 material; S is the area of the metal layer-substrate structure capacitance, This is equal to the width of the metal layer-substrate structure capacitor multiplied by the length of the metal layer-substrate structure capacitor, and the area of the capacitor per unit area is 1um 2 ; d is the thickness of the dielectric material (here, SiO 2 ).
所述多晶硅电阻与其上方金属层和器件衬底构成的电容形成了一个低通滤波器,可在一定程度上预先滤除一部分外部串扰信号(对外部串扰信号的衰减程度大概为几十倍);然后,结合外加电容进一步有效滤除掉外部串扰信号。The polysilicon resistor and the capacitor formed by the metal layer above it and the device substrate form a low-pass filter, which can filter out part of the alien crosstalk signal in advance to a certain extent (the attenuation degree of the alien crosstalk signal is about dozens of times); Then, combined with an external capacitor, the alien crosstalk signal is further effectively filtered out.
方式二:Method two:
所述电阻为n阱电阻,所n阱电阻是在光电探测器中形成氧化层之前,通过n型掺杂形成在光电探测器的指定区域;The resistance is an n-well resistance, and the n-well resistance is formed in a designated area of the photodetector by n-type doping before the oxide layer is formed in the photodetector;
其中,多晶硅电阻或者n阱电阻的两侧分别经过n+注入掺杂,制作多晶硅电阻或者n阱电阻的两个n+接触区;所述n+接触区分别用于与R极和光电探测器的N极连接。Among them, the two sides of the polysilicon resistor or the n-well resistor are respectively doped by n+ implantation to make two n+ contact regions of the polysilicon resistor or the n-well resistor; the n+ contact regions are respectively used for connecting with the R pole and the N pole of the photodetector. connect.
在本发明实施例所提出的背景技术场景里,所述n阱电阻的深度为0.5um-1.5um,n阱电阻率为50±10Ω.um,其长度和宽度则根据光电探测器形状特性,以及要形成的阻值大小进行设置。In the background technology scenario proposed by the embodiment of the present invention, the depth of the n-well resistor is 0.5um-1.5um, the resistivity of the n-well is 50±10Ω.um, and its length and width are based on the shape characteristics of the photodetector, and the size of the resistance to be formed.
实施例2:Example 2:
本发明实施例提出了一种光电探测器,相比较实施例1中的光电探测器中集成了内置电阻而言,实施例1中的光电探测器还需要在N极连接外围电容来形成过滤电路,而在本发明实施例2中则是进一步将实施例1使用过程中需要增设的外围电容集成到了光电探测器之中,如图5所示,包括光电探测器区、电阻区和电容区,具体的:An embodiment of the present invention proposes a photodetector. Compared with the photodetector in
光电探测器区包括与N极相连的半月环形n+扩散区、与P极相连的环形p+扩散区和受光区;其中,受光区位于所述环形p+扩散区的环腔内,所述半月环形n+扩散区设置在与所述环形p+扩散区外环相差指定距离位置;The photodetector area includes a half-moon annular n+ diffusion area connected to the N pole, an annular p+ diffusion area connected to the P pole, and a light-receiving area; wherein, the light-receiving area is located in the ring cavity of the annular p+ diffusion area, and the half-moon annular n+ The diffusion area is set at a position different from the outer ring of the annular p+ diffusion area by a specified distance;
电阻区包括电阻和R极,其中,电阻的两端分别连接R极和光电探测器的N极;其中,R极用于连接给光电探测器供电的管脚VAPD;光电探测器的N极还用于连接电容区;The resistance area includes a resistor and an R pole, wherein the two ends of the resistor are respectively connected to the R pole and the N pole of the photodetector; wherein, the R pole is used to connect the pin VAPD that supplies power to the photodetector; the N pole of the photodetector is also For connecting the capacitive area;
所述电容区包括内置电容和GND极,其中,内置电容的一端与所述N极相连,所述内置电容的另一端与所述GND极相连,以便对管脚VAPD输入供电信号进行滤波。The capacitor region includes a built-in capacitor and a GND pole, wherein one end of the built-in capacitor is connected to the N pole, and the other end of the built-in capacitor is connected to the GND pole, so as to filter the input power supply signal of the pin VAPD.
本发明实施例提出的光电探测器中融入电阻和电容的组合结构,直接由光电探测器中的电阻和电容组合结构构成低通滤波器,达到有效滤除5G WiFi串扰信号的目的,解决了10G接入终端设备的光接收灵敏度因5G WiFi串扰而显著劣化的问题。The combined structure of the resistor and the capacitor in the photodetector proposed in the embodiment of the present invention directly forms the low-pass filter by the combined structure of the resistor and the capacitor in the photodetector, so as to achieve the purpose of effectively filtering out the 5G WiFi crosstalk signal, and solve the problem of 10G WiFi. The problem that the optical reception sensitivity of the access terminal equipment is significantly degraded due to 5G WiFi crosstalk.
在本发明实施例中,内置电容采用金属-绝缘体-金属结构制作,包括第一层金属材料、中间绝缘层材料和第二层金属材料,其中,第一层金属材料位于所述中间绝缘层材料和第二层金属材料的底部,具体的:In the embodiment of the present invention, the built-in capacitor is made of a metal-insulator-metal structure, including a first layer of metal material, an intermediate insulating layer material and a second layer of metal material, wherein the first layer of metal material is located in the intermediate insulating layer material and the bottom of the second layer of metal material, specifically:
在形成所述内置电容两极时,第一电极通过n+注入掺杂与所述第一层金属材料的外延部分接触,其中,所述第一层金属材料的外延部分上未生长有所述中间绝缘层材料和第二层金属材料;When forming the two electrodes of the built-in capacitor, the first electrode is in contact with the epitaxial portion of the first layer of metal material through n+ implantation doping, wherein the intermediate insulation is not grown on the epitaxial portion of the first layer of metal material layer material and second layer metal material;
第二电极为所述第二层金属材料上的指定区域,所述指定区域相对于所述第一电极分别位于所述第二电极的两侧。The second electrode is a designated area on the second layer of metal material, and the designated area is respectively located on both sides of the second electrode relative to the first electrode.
例如:第一层金属材料和第二层金属材料均为Al、Cu、Au、W(钨)、Co(钴)和Ti(钛)等金属材料;中间绝缘层材料为SiO2,厚度为5-10nm,相对介电常数为3.9±0.5;所述金属-绝缘体-金属结构的单位面积电容为2~4fF/um2。通过实验论证,光电探测器中的电阻值为500欧姆,滤波电容为50~100pF,比较适用于10G-GON/10G-EPON、下一代50G PON等光接入网中的ONU光调制解调器以及其它光电与WiFi信号共存的应用场景;采用此光电探测器结构的光接收组件可在WiFi信号通过辐射串扰进入到光电探测器的信号端之前有效滤除掉WiFi信号,避免WiFi信号混入到光电探测器的有用数据信号中,进而避免WiFi信号劣化光接收组件的灵敏度。For example: the metal material of the first layer and the metal material of the second layer are all metal materials such as Al, Cu, Au, W (tungsten), Co (cobalt) and Ti (titanium); the material of the intermediate insulating layer is SiO 2 with a thickness of 5 -10nm, the relative dielectric constant is 3.9±0.5; the capacitance per unit area of the metal-insulator-metal structure is 2-4fF/um 2 . Through experimental demonstration, the resistance value in the photodetector is 500 ohms, and the filter capacitor is 50-100pF, which is more suitable for ONU optical modems in optical access networks such as 10G-GON/10G-EPON and next-generation 50G PON and other optoelectronics. Application scenarios that coexist with WiFi signals; the light receiving component using this photodetector structure can effectively filter out WiFi signals before WiFi signals enter the signal end of the photodetector through radiation crosstalk, so as to prevent WiFi signals from being mixed into the photodetector. In the useful data signal, the sensitivity of the light receiving component is prevented from being degraded by the WiFi signal.
需要说明的是,本发明实施例的意义在于将电阻和电容都内置到芯片自身中,因此,相对而言在实施例1中针对内置电阻部分相关描述的技术细节同样适用于本发明实施例。It should be noted that the significance of the embodiment of the present invention lies in that both the resistor and the capacitor are built into the chip itself. Therefore, relatively speaking, the technical details described in
实施例3:Example 3:
本发明实施例提供了一种光电探测器的制作方法,如图6所示,方法包括:An embodiment of the present invention provides a method for fabricating a photodetector, as shown in FIG. 6 , the method includes:
在步骤201中,在p+接触层上生长第一氧化层。In
在步骤202中,在所述第一氧化层上生长一层多晶硅层,曝光刻蚀保留用于制作多晶硅电阻的区域。In
在步骤203中,将刻蚀掉的区域生长氧化物,使得形成的第二氧化层覆盖掉所述多晶硅层。In
在步骤204中,在多晶硅电阻区域的两端均进行n+注入掺杂,制作多晶硅电阻的两个电阻接触区。In
在步骤205中,对需要引出电极的区域,进行刻蚀,直至表面p+接触区和n+接触区,形成可外延生长金属电极材料的接触孔。In
在步骤206中,外延生长电极材料,形成光电探测器的电极P极、N极和R极以及电阻区上方的金属层。In
在步骤207中,对光电探测器的受光区,刻蚀掉表面的氧化层,至表面的p+接触层,形成有效接收外部光信号的窗口。In
本发明实施例在不同的光电探测器芯片制作场景下,相应的p+接触层也会表现为不同的材料层。列举两种情况如下:In the embodiment of the present invention, in different photodetector chip fabrication scenarios, the corresponding p+ contact layer will also appear as different material layers. Two cases are listed as follows:
情况一:Case 1:
一种集成多晶硅电阻的InP(铟磷)APD结构示意图,如图7所示,并参考图2所示的俯视图,包括InP衬底、n+InP接触层、n-InGaAsP(铟镓砷磷)、p-InGaAsP、p+InP接触层、氧化层、多晶硅层和金属层。其中,InP衬底、n+InP接触层、n-InGaAsP(铟镓砷磷)、p-InGaAsP、p+InP接触层组成SiGe APD结构,其作用是将输入光信号转换成光生电流信号;多晶硅层构成多晶硅电阻,其作用是与电容构成低通滤波器,有效滤除外部串扰信号。A schematic diagram of the structure of an InP (Indium Phosphorus) APD integrated with polysilicon resistors, as shown in Figure 7, and with reference to the top view shown in Figure 2, including an InP substrate, an n+InP contact layer, and n-InGaAsP (Indium Gallium Arsenide Phosphorus) , p-InGaAsP, p+InP contact layer, oxide layer, polysilicon layer and metal layer. Among them, the InP substrate, n+InP contact layer, n-InGaAsP (indium gallium arsenide phosphorus), p-InGaAsP, p+InP contact layer form a SiGe APD structure, which is used to convert the input optical signal into a photo-generated current signal; polysilicon The layer constitutes a polysilicon resistor, and its function is to form a low-pass filter with the capacitor to effectively filter out the external crosstalk signal.
则在形成所述p+接触层之前,方法包括:Then, before forming the p+ contact layer, the method includes:
加工InP衬底晶圆;在InP衬底上进行n+掺杂,形成一层n+InP接触层,用于制作光电探测器的N极;外延生长一层n-InGaAsP层;外延生长一层p-InGaAsP层;外延生长一层InP层;对所述InP层进行p+掺杂,形成一层p+InP接触层,用于制作光电探测器的P极;进行深度n+注入掺杂,形成一个与n+InP接触层连通的n+接触区,用于在所述n+接触区表面制作光电探测器的N极;此时,所述p+接触层具体为p+InP接触层。Process the InP substrate wafer; perform n+ doping on the InP substrate to form a n+InP contact layer for making the N pole of the photodetector; epitaxially grow an n-InGaAsP layer; epitaxially grow a p layer -InGaAsP layer; an InP layer is epitaxially grown; p+ doping is performed on the InP layer to form a p+InP contact layer for making the P pole of the photodetector; deep n+ implantation doping is performed to form a The n+ contact area connected with the n+InP contact layer is used to make the N pole of the photodetector on the surface of the n+ contact area; at this time, the p+ contact layer is specifically the p+InP contact layer.
由此,制作出了InP APD结构,其中,n-InGaAsP和p-InGaAsP形成一个PN结;在外部电场的作用下,PN结区域中产生的光生电子会进入n-InGaAsP层、n+InP接触层,并通过第7步制作的n+接触区进入到表面,流入到N极;PN结区域中产生的光生空穴则会进入到p+接触区,流入到P极。As a result, an InP APD structure is fabricated, in which n-InGaAsP and p-InGaAsP form a PN junction; under the action of an external electric field, the photogenerated electrons generated in the PN junction region will enter the n-InGaAsP layer, n+InP contacts layer, and enters the surface through the n+ contact area fabricated in step 7 and flows into the N pole; the photogenerated holes generated in the PN junction area will enter the p+ contact area and flow into the P pole.
如图11所示,为借鉴实施例1中相应增加金属区结构后,对应呈现的结构剖视图,通过对比图11和图10之间的差异性,可以进一步明确在上述情况一加工过程之后,可以进一步通过刻蚀生长得到所述金属区结构。As shown in FIG. 11 , in order to learn from the corresponding structural cross-sectional view after the metal area structure is added in Example 1, by comparing the difference between FIG. 11 and FIG. The metal region structure is obtained by further etching and growing.
情况二:Case two:
一种集成多晶硅电阻的SiGe(锗硅)APD(雪崩光电探测器)结构示意图,如图8所示,并参考图2所示的俯视图,包括Si衬底、n+接触层、本征Si层、n型Si层、本征Si雪崩层、p型Si电荷层、本征Ge吸收层、p+Ge接触层、氧化层、多晶硅层和金属层。其中,Si衬底、n+接触层、本征Si层、n型Si层、本征Si雪崩层、p型Si电荷层、本征Ge吸收层和p+Ge接触层组成SiGeAPD结构,其作用是将输入光信号转换成光生电流信号;多晶硅层构成多晶硅电阻,其作用是与电容构成低通滤波器,有效滤除外部串扰信号。A schematic structural diagram of a SiGe (silicon germanium) APD (avalanche photodetector) integrated with polysilicon resistors, as shown in FIG. 8, and referring to the top view shown in FIG. 2, including a Si substrate, an n+ contact layer, an intrinsic Si layer, n-type Si layer, intrinsic Si avalanche layer, p-type Si charge layer, intrinsic Ge absorber layer, p+Ge contact layer, oxide layer, polysilicon layer and metal layer. Among them, Si substrate, n+ contact layer, intrinsic Si layer, n-type Si layer, intrinsic Si avalanche layer, p-type Si charge layer, intrinsic Ge absorption layer and p+Ge contact layer constitute the SiGeAPD structure, and its function is to The input optical signal is converted into a photo-generated current signal; the polysilicon layer constitutes a polysilicon resistor, and its function is to form a low-pass filter with the capacitor to effectively filter out the external crosstalk signal.
则在形成所述p+接触层之前,方法包括:Then, before forming the p+ contact layer, the method includes:
加工Si衬底晶圆;在Si衬底上进行n+掺杂,形成一层n+Si接触层,用于制作光电探测器的N极;外延生长一层本征Si层;外延生长一层n型Si,与所述本征Si层一起构成缓冲层;外延生长一层本征Si雪崩层,用于产生雪崩效应,对光生电子进行雪崩放大;外延生长一层p型Si电荷层;外延生长一层本征Ge吸收层,用于吸收光信号并产生光生电子和空穴;注入进行p+掺杂,在本征Ge吸收层表面形成一层p+接触区,用于制作光电探测器的P极;进行深度n+注入掺杂,形成一个与所述n+Si接触层连通的n+接触区,用于在表面制作光电探测器的N极;此时,所述p+接触层具体为p+Ge接触层。Process the Si substrate wafer; perform n+ doping on the Si substrate to form a n+Si contact layer for making the N pole of the photodetector; epitaxially grow an intrinsic Si layer; epitaxially grow an n layer type Si, forming a buffer layer together with the intrinsic Si layer; epitaxial growth of an intrinsic Si avalanche layer for generating avalanche effect and avalanche amplification of photogenerated electrons; epitaxial growth of a p-type Si charge layer; epitaxial growth A layer of intrinsic Ge absorption layer is used to absorb optical signals and generate photogenerated electrons and holes; p+ doping is performed by injection to form a p+ contact area on the surface of the intrinsic Ge absorption layer, which is used to make the P electrode of the photodetector ; Carry out deep n+ implantation doping to form an n+ contact region connected to the n+Si contact layer, which is used to make the N pole of the photodetector on the surface; at this time, the p+ contact layer is specifically a p+Ge contact Floor.
由此,制作出了SiGe APD结构,其中,p型Si电荷层与本征Si雪崩层、n型Si形成一个PN结;在外部电场的作用下,本征Ge吸收层产生的光生电子会进入p型Si电荷层、本征Si雪崩层、n型Si、本征Si层和n+Si接触层,并通过第9步制作的n+接触区进入到表面,流入到N极;本征Ge吸收层产生的光生空穴则会进入到p+接触区,流入到P极。As a result, a SiGe APD structure is fabricated, in which the p-type Si charge layer forms a PN junction with the intrinsic Si avalanche layer and n-type Si; under the action of an external electric field, the photogenerated electrons generated by the intrinsic Ge absorption layer will enter the The p-type Si charge layer, the intrinsic Si avalanche layer, the n-type Si, the intrinsic Si layer and the n+Si contact layer enter the surface through the n+ contact region fabricated in step 9 and flow into the N pole; intrinsic Ge absorbs The photogenerated holes generated by the layer will enter the p+ contact region and flow into the p pole.
如图13所示,为借鉴实施例1中相应增加金属区结构后,对应呈现的结构剖视图,通过对比图11和图12之间的差异性,可以进一步明确在上述情况一加工过程之后,可以进一步通过刻蚀生长得到所述金属区结构。As shown in FIG. 13 , in order to learn from the corresponding structural cross-sectional view after the metal area structure is added in Example 1, by comparing the differences between FIG. 11 and FIG. The metal region structure is obtained by further etching and growing.
实施例4:Example 4:
本发明实施例提供了一种光电探测器的制作方法,在制作氧化层之前,如图9所示,参考图10所示的结构剖视图,方法包括:An embodiment of the present invention provides a method for fabricating a photodetector. Before fabricating an oxide layer, as shown in FIG. 9 , referring to the cross-sectional view of the structure shown in FIG. 10 , the method includes:
在步骤301中,在指定区域注入n型掺杂形成一个n阱电阻区域。In
在步骤302中,在n阱电阻区域的两端均进行n+注入掺杂,制作n阱电阻的两个n+接触区。In
在步骤303中,对引出电极的区域,进行刻蚀,直至表面p+接触区和n+接触区,形成可外延生长金属电极材料的接触孔。In
在步骤304中,外延生长电极材料,形成光电探测器的电极P极、N极和R极。In
在步骤305中,对光电探测器的受光区,刻蚀掉表面的氧化层,形成有效接收外部光信号的窗口。In
如图12所示,是本发明提出的一种集成n阱电阻的SiGe(锗硅)APD(雪崩光电探测器)结构示意图,包括Si衬底、n+接触层、本征Si层、n型Si层、本征Si雪崩层、p型Si电荷层、本征Ge吸收层、p+Ge接触层、n阱、氧化层和金属层。其中,Si衬底、n+接触层、本征Si层、n型Si层、本征Si雪崩层、p型Si电荷层、本征Ge吸收层和p+Ge接触层组成SiGe APD结构,其作用是将输入光信号转换成光生电流信号;n阱区域构成n阱电阻,其作用是与电容构成低通滤波器,有效滤除外部串扰信号。As shown in FIG. 12, it is a schematic structural diagram of a SiGe (silicon germanium) APD (avalanche photodetector) with an integrated n-well resistor proposed by the present invention, including a Si substrate, an n+ contact layer, an intrinsic Si layer, and an n-type Si layer. layer, intrinsic Si avalanche layer, p-type Si charge layer, intrinsic Ge absorber layer, p+Ge contact layer, n-well, oxide layer and metal layer. Among them, Si substrate, n+ contact layer, intrinsic Si layer, n-type Si layer, intrinsic Si avalanche layer, p-type Si charge layer, intrinsic Ge absorption layer and p+Ge contact layer constitute the SiGe APD structure. It converts the input optical signal into a photo-generated current signal; the n-well area constitutes an n-well resistor, and its function is to form a low-pass filter with the capacitor to effectively filter out the external crosstalk signal.
下面将对图12所示的光电探测器加工步骤进行详细介绍。The photodetector processing steps shown in FIG. 12 will be described in detail below.
第1步:加工Si衬底晶圆;Step 1: Process Si substrate wafer;
第2步:在Si衬底上进行n+掺杂,形成一层n+Si接触层,用于制作光电探测器的N极;Step 2: do n+ doping on the Si substrate to form a n+Si contact layer, which is used to make the N pole of the photodetector;
第3步:外延生长一层本征Si层;Step 3: Epitaxial growth of an intrinsic Si layer;
第4步:外延生长一层n型Si,与第3步的本征Si层一起构成缓冲层;Step 4: A layer of n-type Si is epitaxially grown to form a buffer layer together with the intrinsic Si layer in Step 3;
第5步:外延生长一层本征Si雪崩层,用于产生雪崩效应,对光生电子进行雪崩放大,达到提升光响应度的目的;Step 5: epitaxially grow a layer of intrinsic Si avalanche layer to generate avalanche effect, avalanche amplification of photogenerated electrons, to achieve the purpose of improving photoresponsivity;
第6步:外延生长一层p型Si电荷层;Step 6: Epitaxial growth of a p-type Si charge layer;
第7步:外延生长一层本征Ge吸收层,用于吸收光信号并产生光生电子和空穴;Step 7: Epitaxial growth of an intrinsic Ge absorber layer for absorbing optical signals and generating photogenerated electrons and holes;
第8步:注入进行p+掺杂,在本征Ge吸收层表面形成一层p+接触区,用于制作光电探测器的P极;Step 8: Implantation for p+ doping, forming a p+ contact area on the surface of the intrinsic Ge absorption layer, which is used to make the P pole of the photodetector;
第9步:进行深度n+注入掺杂,形成一个与第2步的n+Si接触层连通的n+接触区,作用是便于在表面制作光电探测器的N极;Step 9: Carry out deep n+ implantation doping to form an n+ contact area connected to the n+Si contact layer of step 2, which is used to facilitate the fabrication of the N pole of the photodetector on the surface;
第1步至第9步制作出了SiGe APD结构,其中,p型Si电荷层与本征Si雪崩层、n型Si形成一个PN结;在外部电场的作用下,本征Ge吸收层产生的光生电子会进入p型Si电荷层、本征Si雪崩层、n型Si、本征Si层和n+Si接触层,并通过第9步制作的n+接触区进入到表面,流入到N极;本征Ge吸收层产生的光生空穴则会进入到p+接触区,流入到P极;
第10步:注入n型掺杂形成一个n阱电阻区域;Step 10: Implant n-type dopant to form an n-well resistance region;
第11步:在n阱电阻区域的两端均进行n+注入掺杂,制作n阱电阻的两个n+接触区;Step 11: Perform n+ implantation doping at both ends of the n-well resistor region to make two n+ contact regions of the n-well resistor;
第12步:对需要引出电极的区域,进行刻蚀,直至表面p+接触区和n+接触区,形成可外延生长金属电极材料的接触孔;Step 12: Etch the area where the electrode needs to be drawn out until the surface p+ contact area and n+ contact area are formed to form contact holes for epitaxial growth of metal electrode materials;
第13步:外延生长电极材料Au-Sn或其它金属电极材料,形成光电探测器的电极P极、N极和R极。Step 13: Epitaxially growing electrode material Au-Sn or other metal electrode materials to form electrodes P, N and R of the photodetector.
第14步:对光电探测器的受光区,刻蚀掉表面的氧化层,至表面的p+Ge接触层,形成有效接收外部光信号的窗口。Step 14: For the light-receiving area of the photodetector, the oxide layer on the surface is etched away to the p+Ge contact layer on the surface to form a window for effectively receiving external light signals.
如图14所示,是采用本发明的光电探测器对WiFi信号滤除效果的仿真结果图,其中,光电探测器中的电阻值为100欧姆,滤波电容为470pF。仿真结果表明:对2.4G WiFi串扰信号可衰减约57dB(也即,2.4G WiFi串扰信号被衰减为约1/708),对5G WiFi串扰信号可衰减约63.3dB(也即,2.4G WiFi串扰信号被衰减为约1/1462)。As shown in FIG. 14 , it is a simulation result diagram of the filtering effect of the WiFi signal by the photodetector of the present invention, wherein the resistance value in the photodetector is 100 ohms, and the filter capacitance is 470pF. The simulation results show that the 2.4G WiFi crosstalk signal can be attenuated by about 57dB (that is, the 2.4G WiFi crosstalk signal is attenuated to about 1/708), and the 5G WiFi crosstalk signal can be attenuated by about 63.3dB (that is, the 2.4G WiFi crosstalk signal is attenuated to about 1/708). The signal is attenuated to about 1/1462).
值得说明的是,上述装置和系统内的模块、单元之间的信息交互、执行过程等内容,由于与本发明的处理方法实施例基于同一构思,具体内容可参见本发明方法实施例中的叙述,此处不再赘述。It is worth noting that the information exchange and execution process between the modules and units in the above-mentioned device and the system are based on the same concept as the processing method embodiments of the present invention. For details, please refer to the descriptions in the method embodiments of the present invention. , will not be repeated here.
本领域普通技术人员可以理解实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random AccessMemory)、磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps in the various methods of the embodiments can be completed by instructing relevant hardware through a program, and the program can be stored in a computer-readable storage medium, and the storage medium can include: Read memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011218910.9A CN112397594B (en) | 2020-11-04 | 2020-11-04 | Photoelectric detector and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011218910.9A CN112397594B (en) | 2020-11-04 | 2020-11-04 | Photoelectric detector and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112397594A true CN112397594A (en) | 2021-02-23 |
CN112397594B CN112397594B (en) | 2022-03-25 |
Family
ID=74597896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011218910.9A Active CN112397594B (en) | 2020-11-04 | 2020-11-04 | Photoelectric detector and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112397594B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114388632A (en) * | 2022-01-12 | 2022-04-22 | 中国电子科技集团公司第四十四研究所 | Multi-pixel free-running single photon detector based on floating ring and preparation method |
CN115173956A (en) * | 2022-07-26 | 2022-10-11 | 烽火通信科技股份有限公司 | Photoelectric detection receiver |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050133695A1 (en) * | 2003-12-17 | 2005-06-23 | Yoshiki Kuhara | Photodetector and optical receiver |
US20060081779A1 (en) * | 2004-10-18 | 2006-04-20 | Kok-Soon Yeo | Variable noise control for an optical transducer |
CN1790946A (en) * | 2004-12-17 | 2006-06-21 | 中兴通讯股份有限公司 | Optical receiving module with overload protection function |
CN107170847A (en) * | 2017-05-16 | 2017-09-15 | 中国科学院半导体研究所 | Make avalanche photodide of multiplication region and preparation method thereof based on AlInAsSb body materials |
CN111404494A (en) * | 2020-06-04 | 2020-07-10 | 微龛(广州)半导体有限公司 | Transimpedance amplifier chip and optical receiving module |
-
2020
- 2020-11-04 CN CN202011218910.9A patent/CN112397594B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050133695A1 (en) * | 2003-12-17 | 2005-06-23 | Yoshiki Kuhara | Photodetector and optical receiver |
US20060081779A1 (en) * | 2004-10-18 | 2006-04-20 | Kok-Soon Yeo | Variable noise control for an optical transducer |
CN1790946A (en) * | 2004-12-17 | 2006-06-21 | 中兴通讯股份有限公司 | Optical receiving module with overload protection function |
CN107170847A (en) * | 2017-05-16 | 2017-09-15 | 中国科学院半导体研究所 | Make avalanche photodide of multiplication region and preparation method thereof based on AlInAsSb body materials |
CN111404494A (en) * | 2020-06-04 | 2020-07-10 | 微龛(广州)半导体有限公司 | Transimpedance amplifier chip and optical receiving module |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114388632A (en) * | 2022-01-12 | 2022-04-22 | 中国电子科技集团公司第四十四研究所 | Multi-pixel free-running single photon detector based on floating ring and preparation method |
CN114388632B (en) * | 2022-01-12 | 2023-11-14 | 中国电子科技集团公司第四十四研究所 | Multi-pixel free-running single photon detector based on floating ring and preparation method |
CN115173956A (en) * | 2022-07-26 | 2022-10-11 | 烽火通信科技股份有限公司 | Photoelectric detection receiver |
Also Published As
Publication number | Publication date |
---|---|
CN112397594B (en) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | High-power flip-chip bonded photodiode with 110 GHz bandwidth | |
JP6346911B2 (en) | Integrated photodiode for semiconductor substrates | |
CN206774544U (en) | Integrated photo detector with enhancing static discharge damage protection | |
Li et al. | High-power evanescently coupled waveguide MUTC photodiode with> 105-GHz bandwidth | |
CN112397594B (en) | Photoelectric detector and manufacturing method thereof | |
CN111404494B (en) | Transimpedance amplifier chip and optical receiving module | |
CN103872168B (en) | For the photodetector in silicon based opto-electronics integrated circuit (IC) chip and preparation method | |
US6707075B1 (en) | Method for fabricating avalanche trench photodetectors | |
CN112490302B (en) | Multi-electrode high-speed photoelectric detector and preparation method thereof | |
JPH09213988A (en) | Pin type light receiving element, photoelectric conversion circuit and photoelectric conversion module | |
Swe et al. | An accurate photodiode model for DC and high frequency SPICE circuit simulation | |
CN103779361B (en) | Photodetector of spatial modulation structure and preparation method thereof | |
CN110875403B (en) | Universal broadband photodetector design and manufacturing method | |
Fahs et al. | Design and modeling of blue-enhanced and bandwidth-extended PN photodiode in standard CMOS technology | |
CN101718897B (en) | Optical receiving assembly for hundred trillion-grade 850nm optical communication and preparation method thereof | |
CN203690302U (en) | Photoelectric detector with spatial modulation structure | |
CN109545882B (en) | Capacitive photoelectric detector and manufacturing process | |
CN101465358B (en) | A Differential Silicon Photodetector Fabricated by CMOS Technology | |
JP2003023174A (en) | Avalanche photodiode | |
Muramoto et al. | Uni-travelling-carrier photodiode module with bandwidth of 80 GHz | |
Rue et al. | High performance 10 Gb/s PIN and APD optical receivers | |
CN117079975B (en) | High-speed TIA (wireless local area network) 5G WIFI electromagnetic interference resisting method | |
CN119384053B (en) | Photoelectric chip and preparation method thereof, balanced photoelectric detector, and optical communication equipment | |
KR100654014B1 (en) | Photodiode with electrode structure for large diameter light receiver | |
Shi et al. | Ultra-fast (325 GHz) near-ballistic uni-traveling-carrier photodiodes with high sub-THz output power under a 50Ω load |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |