CN112396178B - 一种提高cnn网络压缩效率的方法 - Google Patents
一种提高cnn网络压缩效率的方法 Download PDFInfo
- Publication number
- CN112396178B CN112396178B CN202011258076.6A CN202011258076A CN112396178B CN 112396178 B CN112396178 B CN 112396178B CN 202011258076 A CN202011258076 A CN 202011258076A CN 112396178 B CN112396178 B CN 112396178B
- Authority
- CN
- China
- Prior art keywords
- cnn network
- cnn
- network
- weight
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000006835 compression Effects 0.000 title claims abstract description 59
- 238000007906 compression Methods 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000013138 pruning Methods 0.000 claims abstract description 27
- 238000013139 quantization Methods 0.000 claims abstract description 20
- 210000002569 neuron Anatomy 0.000 claims abstract description 10
- 230000000694 effects Effects 0.000 claims abstract description 9
- 238000013527 convolutional neural network Methods 0.000 claims description 127
- 230000035945 sensitivity Effects 0.000 claims description 32
- 238000012549 training Methods 0.000 claims description 19
- 239000011159 matrix material Substances 0.000 claims description 13
- 230000004913 activation Effects 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000013528 artificial neural network Methods 0.000 claims description 6
- 238000011002 quantification Methods 0.000 claims description 2
- 238000009966 trimming Methods 0.000 claims description 2
- 238000012935 Averaging Methods 0.000 claims 1
- 238000004422 calculation algorithm Methods 0.000 abstract description 6
- 238000012545 processing Methods 0.000 abstract description 6
- 238000010206 sensitivity analysis Methods 0.000 abstract description 6
- 230000008859 change Effects 0.000 abstract description 4
- 238000001994 activation Methods 0.000 description 6
- 238000013135 deep learning Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 235000020288 ristretto Nutrition 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 235000003332 Ilex aquifolium Nutrition 0.000 description 1
- 235000002296 Ilex sandwicensis Nutrition 0.000 description 1
- 235000002294 Ilex volkensiana Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011258076.6A CN112396178B (zh) | 2020-11-12 | 2020-11-12 | 一种提高cnn网络压缩效率的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011258076.6A CN112396178B (zh) | 2020-11-12 | 2020-11-12 | 一种提高cnn网络压缩效率的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112396178A CN112396178A (zh) | 2021-02-23 |
CN112396178B true CN112396178B (zh) | 2024-08-02 |
Family
ID=74600194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011258076.6A Active CN112396178B (zh) | 2020-11-12 | 2020-11-12 | 一种提高cnn网络压缩效率的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112396178B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107679617A (zh) * | 2016-08-22 | 2018-02-09 | 北京深鉴科技有限公司 | 多次迭代的深度神经网络压缩方法 |
CN108009625A (zh) * | 2016-11-01 | 2018-05-08 | 北京深鉴科技有限公司 | 人工神经网络定点化后的微调方法和装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10621486B2 (en) * | 2016-08-12 | 2020-04-14 | Beijing Deephi Intelligent Technology Co., Ltd. | Method for optimizing an artificial neural network (ANN) |
CN109688990A (zh) * | 2016-09-06 | 2019-04-26 | 新感知公司 | 用于向用户提供附属感觉信息的方法和系统 |
CN110210618A (zh) * | 2019-05-22 | 2019-09-06 | 东南大学 | 动态修剪深度神经网络权重和权重共享的压缩方法 |
CN110276450B (zh) * | 2019-06-25 | 2021-07-06 | 交叉信息核心技术研究院(西安)有限公司 | 基于多粒度的深度神经网络结构化稀疏系统和方法 |
CN110443359A (zh) * | 2019-07-03 | 2019-11-12 | 中国石油大学(华东) | 基于自适应联合剪枝-量化的神经网络压缩算法 |
CN110568445A (zh) * | 2019-08-30 | 2019-12-13 | 浙江大学 | 一种轻量化卷积神经网络的激光雷达与视觉融合感知方法 |
CN110880038B (zh) * | 2019-11-29 | 2022-07-01 | 中国科学院自动化研究所 | 基于fpga的加速卷积计算的系统、卷积神经网络 |
-
2020
- 2020-11-12 CN CN202011258076.6A patent/CN112396178B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107679617A (zh) * | 2016-08-22 | 2018-02-09 | 北京深鉴科技有限公司 | 多次迭代的深度神经网络压缩方法 |
CN108009625A (zh) * | 2016-11-01 | 2018-05-08 | 北京深鉴科技有限公司 | 人工神经网络定点化后的微调方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN112396178A (zh) | 2021-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210089922A1 (en) | Joint pruning and quantization scheme for deep neural networks | |
CN111079781B (zh) | 基于低秩与稀疏分解的轻量化卷积神经网络图像识别方法 | |
US11403528B2 (en) | Self-tuning incremental model compression solution in deep neural network with guaranteed accuracy performance | |
CN110969251B (zh) | 基于无标签数据的神经网络模型量化方法及装置 | |
US12067495B2 (en) | Neural network activation compression with non-uniform mantissas | |
CN109002889B (zh) | 自适应迭代式卷积神经网络模型压缩方法 | |
CN110309904B (zh) | 一种神经网络压缩方法 | |
CN114402596B (zh) | 神经网络模型解码方法、装置、系统和介质 | |
CN113837940A (zh) | 基于密集残差网络的图像超分辨率重建方法及系统 | |
CN108197707A (zh) | 基于全局误差重建的卷积神经网络的压缩方法 | |
CN109523016B (zh) | 面向嵌入式系统的多值量化深度神经网络压缩方法及系统 | |
CN114970853A (zh) | 一种跨范围量化的卷积神经网络压缩方法 | |
CN111160524A (zh) | 一种两阶段的卷积神经网络模型压缩方法 | |
CN110188877A (zh) | 一种神经网络压缩方法与装置 | |
CN116188878A (zh) | 基于神经网络结构微调的图像分类方法、装置和存储介质 | |
CN114154626B (zh) | 一种用于图像分类任务的滤波器剪枝方法 | |
CN114943335A (zh) | 一种三值神经网络逐层优化方法 | |
Park et al. | Squantizer: Simultaneous learning for both sparse and low-precision neural networks | |
Lee et al. | Retraining-based iterative weight quantization for deep neural networks | |
CN112396178B (zh) | 一种提高cnn网络压缩效率的方法 | |
CN116956997A (zh) | 用于时序数据处理的lstm模型量化重训练方法、系统及设备 | |
CN115905546B (zh) | 基于阻变存储器的图卷积网络文献识别装置与方法 | |
CN112488291A (zh) | 一种神经网络8比特量化压缩方法 | |
CN116227563A (zh) | 一种基于数据量化的卷积神经网络压缩与加速方法 | |
CN113177627B (zh) | 优化系统、重新训练系统及其方法及处理器和可读介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220106 Address after: 2209-c1, No. 19, Erquan East Road, Huizhi enterprise center, Xishan District, Wuxi City, Jiangsu Province, 214000 Applicant after: Wuxi yuspace Intelligent Technology Co.,Ltd. Address before: Room 1101, block C, Kangyuan smart port, No. 50, Jiangdong Street, Jialing, Jianye District, Nanjing City, Jiangsu Province, 210000 Applicant before: Jiangsu Yu Space Technology Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220916 Address after: Room 1101, block C, Kangyuan smart port, No. 50, Jiangdong Street, Jialing, Jianye District, Nanjing City, Jiangsu Province, 210000 Applicant after: Jiangsu Yu Space Technology Co.,Ltd. Address before: 2209-c1, No. 19, Erquan East Road, Huizhi enterprise center, Xishan District, Wuxi City, Jiangsu Province, 214000 Applicant before: Wuxi yuspace Intelligent Technology Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230824 Address after: 2209-c1, No. 19, Erquan East Road, Huizhi enterprise center, Xishan District, Wuxi City, Jiangsu Province, 214000 Applicant after: Wuxi yuspace Intelligent Technology Co.,Ltd. Address before: Room 1101, block C, Kangyuan smart port, No. 50, Jiangdong Street, Jialing, Jianye District, Nanjing City, Jiangsu Province, 210000 Applicant before: Jiangsu Yu Space Technology Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |