CN112384230A - Gene editing for autoimmune disorders - Google Patents

Gene editing for autoimmune disorders Download PDF

Info

Publication number
CN112384230A
CN112384230A CN201980045883.9A CN201980045883A CN112384230A CN 112384230 A CN112384230 A CN 112384230A CN 201980045883 A CN201980045883 A CN 201980045883A CN 112384230 A CN112384230 A CN 112384230A
Authority
CN
China
Prior art keywords
variant
genetic
subject
cells
autoimmune disorder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980045883.9A
Other languages
Chinese (zh)
Inventor
M·拉比诺维茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samba Co ltd
Original Assignee
Samba Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samba Co ltd filed Critical Samba Co ltd
Publication of CN112384230A publication Critical patent/CN112384230A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells

Abstract

Methods of treating a subject having an autoimmune disorder are provided, the methods including, for example, reducing the amount of one or more genetic variants associated with susceptibility to the autoimmune disorder in one or more cells of the subject; and/or increasing the amount of one or more genetic variants that prevent the autoimmune disorder in one or more cells of the subject. Also provided are methods of reducing the number of cells in the subject having one or more genetic variants associated with susceptibility to the autoimmune disorder; and/or increasing the number of cells in the subject having one or more genetic variants that prevent the autoimmune disorder. Also provided are compositions and isolated cells for use according to the methods.

Description

Gene editing for autoimmune disorders
Cross Reference to Related Applications
This application claims the benefit of U.S. provisional application No. 62/762,708 filed on 5, 14, 2018, which is incorporated herein by reference in its entirety.
Sequence listing
This application contains a sequence listing filed in ASCII format via EFS-Web and hereby incorporated by reference in its entirety. The ASCII copy created on day 5, month 14, 2019 was named M107385_1010WO _ Sequence _ Listing _ st25.txt and was 136,596 bytes in size.
Background
Autoimmune and immune-mediated disorders are characterized by abnormal immune responses of the body to substances and tissues normally present in the body, resulting in the killing of healthy body tissues. Thus, when the body's immune system mistakenly attacks healthy body tissue, an autoimmune disorder occurs. There are more than 80 types of autoimmune disorders, including multiple sclerosis ("MS"), rheumatoid arthritis ("RA"), type 1 diabetes ("T1D"), ulcerative colitis ("UC"), crohn's disease ("CD"), eosinophilic esophagitis, celiac disease, psoriasis, and lupus. The exact cause of autoimmune disorders is not fully understood, but many are thought to be associated with both genetic and environmental factors. Existing paradigms of drug development for the treatment of autoimmune disorders target specific signaling pathways. However, the complexity of such barriers makes modeling these pathways difficult, and the resulting treatments are not as effective as expected. Therefore, there is a need in the art for new paradigms associated with the treatment of autoimmune disorders.
Disclosure of Invention
Methods of treating a subject having an autoimmune disorder are provided, the method comprising reducing the amount of one or more genetic variants associated with susceptibility to the autoimmune disorder in one or more cells of the subject; and/or increasing the amount of one or more genetic variants that prevent the autoimmune disorder in one or more cells of the subject. In some aspects, the method comprises reducing the amount of the susceptibility genetic variant in one or more immune cells and/or one or more hematopoietic stem cells in the subject and increasing the amount of the protective genetic variant in one or more immune cells and/or one or more hematopoietic stem cells in the subject.
Also provided are methods of treating a subject having an autoimmune disorder, the method comprising reducing the number of cells in the subject that have one or more genetic variants associated with susceptibility to the autoimmune disorder; and/or increasing the number of cells in the subject having one or more genetic variants that prevent the autoimmune disorder.
In some aspects, the cell is an immune cell and/or a hematopoietic stem cell. In some aspects, the immune cell comprises one or more of a leukocyte, phagocyte, macrophage, neutrophil, dendritic cell, innate lymphoid cell, eosinophil, basophil, natural killer cell, B cell, and T cell.
Some aspects include administering to the subject immune cells and/or hematopoietic stem cells containing the protective genetic variant; and/or immune cells and/or hematopoietic stem cells containing the protective genetic variant and not containing the susceptibility genetic variant. In some aspects, the proportion of protective protein variant to susceptible protein variant in the subject (or in a cell or population of cells in the subject) is increased. That is, the amount of the protective protein variant is increased relative to the amount of the susceptible protein variant.
Some aspects include obtaining immune cells and/or hematopoietic stem cells from a first subject, altering the obtained immune cells and/or hematopoietic stem cells to decrease the amount of the susceptibility genetic variant and/or increase the amount of the protective genetic variant, and administering the altered immune cells and/or hematopoietic stem cells to a subject in need of treatment. In some aspects, the immune cells and/or hematopoietic stem cells are obtained from the blood or bone marrow of the subject. In some aspects, the first subject is a subject in need of treatment. In some aspects, the altered immune cells and/or hematopoietic stem cells are administered intravenously or via bone marrow transplantation.
Some aspects include depleting at least a portion of the hematopoietic stem cells in the subject prior to administering the immune cells and/or hematopoietic stem cells. In some aspects, the ablating comprises administering chemotherapy or radiation to the subject; administering an anti-c-Kit monoclonal antibody to the subject; and/or administering a CD47 blocker to the subject.
Some aspects include administering a genetic modifier to the subject, wherein the genetic modifier (a) reduces the amount of the susceptibility genetic variant in one or more cells in the subject, and/or (b) increases the amount of the protective genetic variant in one or more cells in the subject. In some aspects, the genetic modifier comprises a nuclease. In some aspects, the nuclease is (1) a class 2 regularly interspaced clustered short palindromic repeats (CRISPR) -associated nuclease, (2) a Zinc Finger Nuclease (ZFN), (3) a transcription activator-like effector nuclease (TALEN), or (4) a meganuclease. For example, in some aspects, the nuclease comprises Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, CaslO, Cpf1, Csyl, Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl6, CsaX, cs 3, Csxl5, Csfl 2, Csf3, or Csf 4. In some aspects, the nuclease comprises Cas9 or Cpf 1.
Also provided is a method of treating a subject having an autoimmune disorder, the method comprising editing DNA in immune cells and/or hematopoietic stem cells in the subject to: (a) reducing the amount of one or more genetic variants associated with: (i) resistance to a particular drug used to treat the autoimmune disorder or (ii) a bacterial distribution in the gut of the subject that is associated with increased susceptibility to the autoimmune disorder; and/or (b) increasing the amount of one or more genetic variants associated with: (i) increased sensitivity to a particular drug used to treat the autoimmune disorder or (ii) bacterial distribution in the gut of a subject that prevents the autoimmune disorder.
In some aspects, the genetic variant is an IL23 variant, CARD variant, NOD/2 variant, PTPN variant, NADPH oxidase complex gene variant, TTC7 variant, XIAP variant, IL-10RA variant, IL-10RB variant, RPL variant, CPAMD variant, PRG variant, hetr variant, ATG16L variant, TNFsf variant, MHCII variant, ELF variant, HLA-DB 01:03 variant, HLA-BTNL variant, ARPC variant, IL12 variant, STAT variant, IRGM variant, IRF variant, TYK variant, STAT variant, IFNGR variant, RIPK variant, LRRK variant, C13orf variant, ECM variant, NKX-3 variant, TNF variant, JAK variant, TPMT variant, NUDT variant, PRDM variant, IRGM variant, mag variant, clq variant, 24. In some aspects, the autoimmune disorder comprises inflammatory bowel disease, wherein the protective genetic variant encodes one or more of a R381Q mutation, a G149R mutation, and a V362I mutation in IL23R protein. In some aspects, the protective genetic variant comprises a G to a mutation at rs 11209026.
In some aspects, the susceptibility genetic variant and the protective genetic variant are determined based on one or more of: (a) a phenotype of one or more family members, sequencing of a set of genes in one or more family members, sequencing of a full exome in one or more family members, and/or sequencing of a full genome of one or more family members; (b) computer modeling of cellular signaling and/or immune system responses; (c) machine modeling of phenotype-affecting mutations, such as using linear and/or non-linear regression models, neural networks; (d) data describing gene expression and/or gene signaling; and (e) animal models (e.g., swine).
Also provided are isolated immune cells or hematopoietic stem cells, wherein the cellular DNA has been modified by gene editing to (a) reduce the amount of one or more genetic variants associated with susceptibility to an autoimmune disorder; and/or (b) increasing the amount of one or more genetic variants that prevent the autoimmune disorder.
Also provided are populations of immune cells or hematopoietic stem cells, wherein at least about 10% of the cells in the population have been modified by gene editing to (a) reduce the amount of one or more genetic variants associated with susceptibility to an autoimmune disorder; and (b) increasing the amount of one or more genetic variants that prevent the autoimmune disorder.
Also provided are compositions comprising (i) a nucleic acid encoding a CRISPR/Cas nuclease, (ii) a guide RNA or a nucleic acid encoding the guide RNA that hybridizes to a target sequence within the genomic DNA of the cell that encodes a genetic variant associated with susceptibility to an autoimmune disorder, and (iii) a DNA repair template that encodes a genetic variant not associated with susceptibility to an autoimmune disorder.
In some aspects, the compositions comprise (i) a nucleic acid encoding a CRISPR/Cas nuclease, (ii) a guide RNA or a nucleic acid encoding the guide RNA that hybridizes to a target sequence within the genomic DNA of the cell that encodes a genetic variant that does not prevent an autoimmune disorder, and (iii) a DNA repair template that encodes the genetic variant that prevents an autoimmune disorder at the location of the target sequence.
In some aspects, the compositions comprise (a) (i) a nucleic acid encoding a CRISPR/Cas nuclease, (ii) a guide RNA or a nucleic acid encoding the guide RNA that hybridizes to a target sequence within the genomic DNA of the cell that encodes a genetic variant associated with susceptibility to an autoimmune disorder, and (iii) a DNA repair template that encodes a genetic variant that is not associated with susceptibility to an autoimmune disorder; and (b) (i) a nucleic acid encoding a CRISPR/Cas nuclease, (ii) a guide RNA or a nucleic acid encoding the guide RNA that hybridizes to a target sequence within the genomic DNA of the cell that encodes a genetic variant that does not prevent an autoimmune disorder, and (iii) a DNA repair template that encodes the genetic variant that prevents an autoimmune disorder at the location of the target sequence.
In some aspects, the composition comprises two or more guide RNAs, wherein the guide RNAs collectively hybridize to more than one target sequence.
In some aspects, the composition comprises an agent for targeting one or more of: IL23 variants, CARD variants, NOD/2 variants, PTPN variants, NADPH oxidase complex gene variants, TTC7 variants, XIAP variants, IL-10RA variants, IL-10RB variants, RPL variants, CPAMD variants, PRG variants, HEATR variants, ATG16L variants, TNFSf variants, MHCII variants, ELF variants, HLA-DB 01:03 variants, HLA-BTNL variants, ARPC variants, IL12 variants, STAT variants, IRGM variants, IRF variants, TYK variants, STAT variants, IFNGR variants, RIPK variants, LRRK variants, C13orf variants, ECM variants, NKX-3 variants, TNF variants, JAK variants, TPDT variants, LOCDT variants, LOC441108 variants, PRDM variants, IRGM variants, MACA variants, CLCA variants, 2q24.1 variants, or a combination thereof.
Detailed Description
Any manufacturer's specifications, descriptions, product descriptions, and product tables for any products mentioned in all documents cited or referenced herein ("herein cited documents") and in all documents cited or referenced in herein cited documents, as well as in any document herein or incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the present invention. More specifically, all cited documents are incorporated by reference to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference.
Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Definitions of common terms and techniques in molecular biology may be found in one or more of the following documents: molecular Cloning A Laboratory Manual, 2 nd edition (1989) (Sambrook, Fritsch, and Maniatis); molecular Cloning A Laboratory Manual, 4 th edition (2012) (Green and Sambrook); current Protocols in Molecular Biology (1987) (edited by F.M. Ausubel et al); methods in Enzymology (1955) (edited by Colowick); PCR 2A Practical Approach (1995) (edited by M.J.MacPherson, B.D.Hames, and G.R.Taylor) Antibodies, A Laboratory Manual (1988) (Harlow and Lane, eds.); antibodies, a Laboratory Manual, 2 nd edition (2013) (edited by e.a. greenfield); animal Cell Culture (1987) (r.i. freshney, eds.); benjamin Lewis, Genes IX (2008), The Encyclopedia of Molecular Biology (1994) (edited by Kendew et al), Molecular Biology and Biotechnology: a Comprehensive Desk Reference (1995) (edited by Meyers); singleton et al, Dictionary of Microbiology and Molecular Biology, 2 nd edition (1994) (Sainsbury, eds.), Advanced Organic Chemistry Reactions, mechanics and Structure, 4 th edition (1992) (March, eds.); and, Transgenic Mouse Methods and Protocols, 2 nd edition (2011) (edited by Hofker and Deursen).
As used herein, the singular forms "a", "an" and "the" include both singular and plural referents unless the context clearly dictates otherwise.
The term "optional" or "optionally" means that the subsequently described event, circumstance, or alternative may or may not occur, and that the description includes instances where the event or circumstance occurs and instances where it does not.
The recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within that range and the recited endpoint.
The terms "about" or "approximately" as used herein when referring to a measurable value such as a parameter, amount, time distance, and the like, are intended to encompass variations in the specified value and from the specified value, such as +/-10% or less, + 1-5% or less, +/-1% or less, and +/-0.1% or less of the specified value and from the specified value, provided such variations are suitable for carrying out the disclosed invention. It is to be understood that the value to which the modifier "about" or "approximately" refers is also specifically and preferably disclosed per se.
The term "hematopoietic stem cell" or "HSC" or "hematopoietic bone marrow stem cell" as used herein refers to a hematopoietic cell which is a pluripotent or multipotent stem cell or lymphoid or myeloid (bone marrow-derived) cell capable of differentiating into a Hematopoietic Progenitor Cell (HPC) of lymphoid, erythroid or myeloid lineage or proliferating as a stem cell population without starting further differentiation. HSCs can be obtained, for example, from bone marrow, peripheral blood, umbilical cord blood, amniotic fluid or placental blood, or embryonic stem cells. HSCs are capable of self-renewal and differentiation into mature blood cells, such as erythrocytes (erythrocytes), platelets, granulocytes (e.g., neutrophils, basophils, and eosinophils), macrophages, B lymphocytes, T lymphocytes, and natural killer cells, or to open a pathway to become mature blood cells through the process of hematopoiesis. The term "hematopoietic stem cells" encompasses "primitive hematopoietic stem cells," i.e., long term hematopoietic stem cells (LT-HSCs), short term hematopoietic stem cells (ST-HSCs), and pluripotent progenitor cells (MPPs).
The term "immune cell" as used herein generally encompasses any cell derived from a hematopoietic stem cell that plays a role in an immune response. Immune cells include, without limitation, lymphocytes (e.g., T cells and B cells), Antigen Presenting Cells (APCs), dendritic cells, monocytes, macrophages, Natural Killer (NK) cells, mast cells, basophils, eosinophils or neutrophils, and any progenitor cell of such cells. In certain preferred aspects, the immune cell may be a T cell. As used herein, the term "T cell" (i.e., T lymphocyte) is intended to include all cells within the T cell lineage, including thymocytes, immature T cells, mature T cells, and the like. The term "T cell" may include CD4+And/or CD8+T cell, T helper (T)h) Cells (e.g. T)h1、Th2 and Th17 cells) and T regulation (T)reg) A cell.
The term "modified" as used herein broadly refers to an immune cell or HSC that has been subjected to or manipulated by an artificial process (e.g., an artificial molecular or cellular biological process) resulting in a modification of at least one characteristic of the cell. Such artificial processes may be performed, for example, in vitro or in vivo.
The term "altered expression" means that the modification of the immune cell or HSC alters or modulates the expression of one or more of the genes or one or more polypeptides. The term "altered expression" encompasses any direction and any degree of the alteration. Thus, "altered expression" may reflect one or more qualitative and/or quantitative changes in expression, and specifically encompasses an increase (e.g., activation or stimulation) or a decrease (e.g., inhibition) in expression.
The term "increased" or "increase" or "upregulated" as used herein generally means an increase in a statistically significant amount. For the avoidance of doubt, "increased" encompasses a statistically significant increase of at least 10% as compared to a reference level, including an increase of at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100% or more, including at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 10-fold or more as compared to a reference level.
The term "reduced" or "decrease" or "reduction" or "reduced" or "downregulated" as used herein generally means a statistically significant amount of reduction relative to a reference. For the avoidance of doubt, "reduced" encompasses a statistically significant reduction of at least 10% compared to a reference level, for example a reduction of at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or more up to and including a 100% reduction (i.e. a level that is not present compared to a reference sample), or any reduction between 10% and 100%. The term "abolish" or "abolished" may particularly denote a reduction by 100%, i.e. an absence level, compared to a reference sample.
The terms "amount", "quantity", and "level" are synonymous and are generally well understood in the art. The term may particularly refer to an absolute quantification of a marker in a test subject (e.g. in or on a cell, cell population, tissue, organ or organism, e.g. in a biological sample of a subject), or to a relative quantification of a marker in a test subject, i.e. relative to another value, such as relative to a reference value or relative to a range of values indicative of a baseline for the marker. For example, the baseline or reference value may be obtained based on a determination of the number, level or amount of genetic variants in a subject (or in a cell or population of cells from the subject) with or without an autoimmune disorder, or in a subject (or in a cell or population of cells from the subject) at risk of developing or not at risk of developing an autoimmune disorder. Such values or ranges may be obtained as conventionally known. In some cases, the amount, quantity, or level is a measured concentration. Quantification may be performed using known techniques such as PCR, UV absorption, calorimetry, fluorescence-based measurements, diphenylamine reaction methods, and the like. See, e.g., Li, Analytical Biochemistry,451:18-24 (2014); Figueroa-Gonzalez, Oncol. Lett.,13(6):3982-88 (2017); psifidi, PLOSE ONE,10(1) e0115960 (page 18) (2015); current Protocols in Protein Science (1996) (Coligan et al, eds.); and Current Protocols in Molecular Biology (2003) (Ausubel et al, eds.).
Any one or more of several sequential molecular mechanisms involved in the expression of a given gene or polypeptide may be targeted by the immune cell or HSC modification. Without limitation, these may include targeting: a gene sequence (e.g., a polypeptide coding, non-coding and/or regulatory portion that targets a gene sequence), transcription of a gene into RNA, polyadenylation, and where applicable splicing of the RNA into and/or other post-transcriptional modification to mRNA, localization of the mRNA to the cytoplasm, where applicable other post-transcriptional modification of the mRNA, translation of the mRNA into a polypeptide chain, where applicable post-translational modification of the polypeptide, and/or folding of the polypeptide chain into the mature conformation of the polypeptide. For compartmentalized polypeptides (e.g., secreted polypeptides and transmembrane polypeptides), this may also include targeting the transport of the polypeptide, i.e., the cellular mechanism by which the polypeptide is transported to the appropriate subcellular compartment or organelle, membrane (e.g., plasma membrane), or extracellularly.
Thus, "altered expression" may particularly denote an alteration of the production of the gene product by a modified immune cell or HSC. As used herein, the term "one or more gene products" includes RNA (e.g., mRNA) transcribed from a gene, or a polypeptide encoded by a gene or translated from an RNA.
As used herein, the term "gene" refers to a nucleic acid comprising an open reading frame encoding a polypeptide, including exon and (optionally) intron sequences. "Gene" refers to the coding sequence of a gene product as well as to the non-coding regions of the gene product (including the 5 'UTR and 3' UTR regions, introns, and promoters of the gene product). The coding region of a gene may be a nucleotide sequence that encodes an amino acid sequence or a functional RNA (e.g., tRNA, rRNA, catalytic RNA, siRNA, miRNA, and antisense RNA). The gene may also be an mRNA or cDNA corresponding to the coding region (e.g., exons and miRNA), optionally comprising 5 'or 3' untranslated sequences attached thereto. Nucleic acids may encompass single-stranded molecules or double-stranded molecules comprising one or more complementary strands or "complements" comprising the particular sequence of the molecule. As used herein, a single-stranded nucleic acid may be denoted by the prefix "ss", and a double-stranded nucleic acid may be denoted by the prefix "ds". The term "gene" may refer to a segment of DNA involved in the production of polypeptide chains and which comprises regions preceding and following the coding region as well as intervening sequences (introns and untranslated sequences, e.g., 5 'and 3' untranslated sequences and regulatory sequences) between the individual coding segments (exons). A gene may also be an in vitro generated amplified nucleic acid molecule comprising all or part of the coding region and/or 5 'or 3' untranslated sequence linked thereto. The term "genetic variant" is used to refer to a form of a gene, such as a wild-type form, a mutant form, or a single nucleotide polymorphic form. Some gene variants may be associated with increased susceptibility to autoimmune disorders. Some gene variants may prevent autoimmune disorders.
The term "nuclease" as used herein broadly refers to an agent, such as a protein or small molecule, that is capable of cleaving phosphodiester bonds that join nucleotide residues in a nucleic acid molecule. In some aspects, the nuclease may be a protein, such as an enzyme that can bind to a nucleic acid molecule and cleave phosphodiester bonds that link nucleotide residues within the nucleic acid molecule. The nuclease may be an endonuclease that cleaves a phosphodiester bond within a polynucleotide strand, or an exonuclease that cleaves a phosphodiester bond at the end of the polynucleotide strand. Preferably, the nuclease is an endonuclease. Preferably, the nuclease is a site-specific nuclease that binds to and/or cleaves a specific phosphodiester bond within a specific nucleotide sequence, which may be referred to as a "recognition sequence", "nuclease target site" or "target site". In some aspects, the nuclease can recognize a single-stranded target site, in other aspects, the nuclease can recognize a double-stranded target site, e.g., a double-stranded DNA target site. Some endonucleases cleave double-stranded nucleic acid target sites symmetrically, i.e., cleave both strands at the same position such that the ends comprise base-paired nucleotides, also referred to as blunt ends. Other endonucleases cleave double-stranded nucleic acid target sites asymmetrically, i.e., each strand is cleaved at a different position such that the ends comprise unpaired nucleotides. Unpaired nucleotides at the ends of double-stranded DNA molecules are also referred to as "overhangs", e.g., "5 'overhangs" or "3' overhangs", depending on whether one or more unpaired nucleotides form the 5 'or 5' end of the respective DNA strand.
Target population
Methods and compositions for treating or preventing an autoimmune disorder in a subject are provided. In some aspects, the subject has been diagnosed with an autoimmune disorder. In some aspects, the subject is at risk for developing an autoimmune disorder. Some aspects relate to methods and compositions for treating any disease in which risk or symptoms are reduced by editing the relevant tissues involved in the pathogenic process to increase protective mutations and/or remove susceptibility mutations. Such diseases include, but are not limited to, eosinophilic esophagitis (see Rothenberg, Gastroenterology,148(6):1143-57 (2015)); celiac disease (see Gutierrez-Achury, Nature Genetics,47(6):577-78 (2015)); psoriasis (see Tsoi, Nature Communications,8: article 15382(8pages) (2017)); type I diabetes (see Bonifacio, Acta Diabetol.51(3):403-11 (2014)); rheumatoid arthritis (see Eyrel, nat. Genet.,44(12):1336-1340 (2012)); and inflammatory bowel disease (see Huang, Nature,547:173-178 (2017)). The listed references describe a non-limiting set of genes associated with susceptibility or protection of the above phenotypes.
In some aspects, the autoimmune disorder is inflammatory bowel disease. The inflammatory bowel diseases are broadly classified as including ulcerative colitis and crohn's disease. Ulcerative colitis is a diffuse, non-specific inflammation of unknown etiology that affects the colon and mainly attacks the mucous membranes, and often causes erosions and ulcers. Typically, it manifests as bloody diarrhea and various degrees of general symptoms. Generally, symptoms are classified according to their spread (pan colitis, left-side colitis, proctitis or right-side or segmental colitis), stage of disease (e.g. active or remission), severity (mild, moderate, severe) or clinical course (relapsing remission, chronic persistence, acute outbreak or first onset). On the other hand, crohn's disease is a disease in which granulomatous lesions accompanied with ulcers and fibrosis discontinuously occur in the entire digestive tract from the oral cavity to the anus. Although varied depending on the location and extent of the lesion, symptoms include fever, nutritional disorders, and anemia, and systemic complications such as arthritis, iritis, or liver disorders may also occur. Generally, the disease is classified according to, for example, the location of the lesion (small intestine type, small intestine-large intestine type, rectum type, or gastroduodenal type) or the period of the disease (e.g., active or inactive period). Furthermore, the etiology of ulcerative colitis and crohn's disease is unknown, there is no fundamental therapy, and complete cure is difficult to achieve. Thus, recurrence and remission occur repeatedly, thereby greatly impairing the quality of life of the subject.
In some aspects, the subject is genetically predisposed to an autoimmune disorder, such as inflammatory bowel disease. For example, in some aspects, the subject has one or more alleles associated with increased risk of having or suffering from an autoimmune disorder (i.e., a susceptible genetic variant). Such increased susceptibility to the autoimmune disorder can result in a subject having an increased amount of one or more protein variants associated with the autoimmune disorder (i.e., susceptibility protein variants) as compared to a subject that does not have the autoimmune disorder or has an increased risk of developing the autoimmune disorder.
Susceptibility genes are not limited to genes that directly affect the development of the autoimmune disorder. For example, in some aspects, the susceptibility gene is associated with a subject's response to a particular therapy. In some aspects, the susceptibility gene is associated with a microbiome (e.g., gut microbiome) of the subject that is believed, without being bound by theory, to affect the development and progression of autoimmune disorders.
Susceptibility genes can be identified by any means, including those known in the art. For example, in some aspects, the susceptibility gene is known in the art to be directly or indirectly associated with an autoimmune disorder. In some aspects, the susceptibility gene is identified based on a family tree comprising relatives exhibiting or affected by a particular phenotype. In some aspects, the susceptibility gene is identified via whole exome or whole genome sequencing of one or more family members. In some aspects, the susceptibility gene is identified via a computer simulation of cell signaling and/or a computer simulation of immune system response. In some aspects, the susceptibility gene is identified by machine modeling, such as using neural networks or other linear and non-linear regression models and/or using gene signaling networks, where particular mutations are observed to disrupt gene signaling. In some aspects, the susceptibility gene is identified using an animal model (e.g., pig or mouse). In some aspects, the various methods of identifying susceptibility genes (e.g., identifying known susceptibility genes, identifying specific phenotypes for family trees, and one or more of whole exome or whole genome analysis) are combined to identify individuals in need of treatment. That is, in some aspects, genes shared by family members having an autoimmune disorder (e.g., a particular autoimmune disorder such as ulcerative colitis or crohn's disease) are identified as susceptibility genes.
Non-limiting susceptibility genes may include one or more variants of: NADPH oxidase complex genes (e.g. NCF2, annexin A1), TTC7A, XIAP, NOD1/2, IL-10RA, IL-10RB, DE-Jersey genes (RPL7, CPAMD8, PRG2, PRG3, HEATR3), ATG16L1 (e.g. T300A is associated with changes in microbiome), Asian susceptibility genes (TNFSf15, MHCII), ELF1, HLA-DB 1:03, HLA-BTNL2, ARPC2, IL12B, STAT1, IRGM, IRF8, TYK2, IFNGR2, RIPK2, LRRK2, IL23 2, C13orf 2, ECM 2, NKX 2-NKMT, ATPR 2, CLNGR 4472, CLNGR 2, NL2, LOCGI 2, LOC 2, JAK2, TRK 2, CLGI 2, LOC 2, TROP 72, TRK 2, and TROP 72.
In some aspects, the interpgenic interaction affects the susceptibility of the subject to an autoimmune disorder. Exemplary interactions include HLA-DQA1, RIT1/UBQLN4, IFNG/IL26/IL 22. As another example, pediatric CD patients have additive intergenic interactions involving TLR4, PSMG1, TNFRsf6B, and IRGM.
Some susceptibility genes may be identified in the context of environmental influences. For example, SNPs for CYP2a6 may increase the incidence of CD in smokers. On the other hand, SNPs in the GSTP1 gene were associated with increased UC risk in former smokers.
In some aspects, the susceptibility gene affects the subject's response to the drug. For example, in IBD patients receiving mercaptopurine, leukopenia may be a life-threatening condition that is caused, at least in part, by genetic variation in TPMT encoding mercaptopurine S-methyltransferase. In a population of patients with low frequency of TPMT mutations (asians), the SNP in NUDT15 was associated with mercaptopurine-associated leukopenia. Still further, early-onset IBD patients deficient in IL-10R may benefit from allogeneic stem cell transplantation.
In some aspects, the susceptibility gene affects the management of IBD. For example, a susceptible locus in the NOD2 gene is associated with ileal location, stenotic and penetrating behavior, and surgical needs. Also in CD, fistulous disease is associated with IL23R, LOC441108, PRDM1, NOD2, while surgical requirements are associated with IRGM, TNFSF15, C13ORF31 and NOD 2. The stenotic phenotype is associated with NOD2, JAK2 and ATG16L 1. The MAGI1 variant (which encodes a protein involved in the tight junctions of the intestinal epithelium) is associated with a complex structural phenotype, whereas the variants in the CLCA2, 2q24.1 and LY75 loci are associated with ileal involvement, a mild course and the presence of erythema nodosum. In UC, a SNP-based risk scoring system comprising 46 SNPs is able to distinguish patients with medically refractory UC from non-medically refractory patients, thereby predicting the need for surgery. In addition, MHC is also considered to be a genetic determinant of severe UC.
Method of treatment
Some aspects include methods and compositions that alter paradigms for treating autoimmune disorders, including inflammatory bowel disease, such as ulcerative colitis and/or crohn's disease. Some aspects relate to the use of gene editing to edit genes of immune cells or genes of tissues that produce immune cells by hematopoiesis, the immune cells or the tissues eliciting an inflammatory immune response. By altering potential genes to eliminate risk alleles and/or generate protective alleles, there is no need to precisely understand the complex gene signaling pathways to eliminate or reduce the severity of the autoimmune phenotype.
In some aspects, the subject is administered a therapy that reduces the amount of one or more protein variants associated with susceptibility to an autoimmune disorder. This reduction may occur in the subject or in one or more cells of the subject. In some aspects, the number of cells having one or more susceptibility genetic variants is reduced in the subject. For example, in some aspects, a subject is administered a therapy (e.g., a genetic modifier) that modifies a genetic variant and/or reduces expression of a susceptibility protein variant in vivo. In some aspects, the therapy targets the susceptibility gene, e.g., using gene editing or gene silencing techniques. Some aspects relate to targeting one or more of the susceptibility genes (including, without limitation, environmentally mediated susceptibility genes, susceptibility genes affecting drug response, and susceptibility genes affecting management of the autoimmune disorder) and genes that interact with the susceptibility genes.
In some aspects, the method comprises increasing the amount of one or more genetic variants that prevent the autoimmune disorder. This increase may occur in the subject or in one or more cells in the subject. In some aspects, the number of cells having one or more protective genetic variants is increased in the subject. For example, in some aspects, the expression ratio of a protective protein variant is increased in the subject. In some aspects, the susceptibility gene is mutated to a wild-type variant via a genetic modifier. In some aspects, the susceptibility gene is mutated to a gene that prevents the autoimmune disorder (i.e., a protective gene). In some aspects, a non-protective genetic variant (e.g., a non-protective wild-type genetic variant) is mutated to a gene that prevents the autoimmune disorder.
In some aspects, the susceptibility gene and the protective gene encode variants of the same protein. In some aspects, the susceptibility gene and the protective gene encode variants of different proteins.
Some aspects include identifying protective variants in a gene. The same techniques discussed above with respect to identifying susceptibility genetic variants can be used to identify protective genetic variants. In some aspects, the protective genetic variant comprises a G → a mutation at rs11209026 in the IL23R gene. Without being bound by theory, it is believed that this protective IL23R mutation has a odds ratio of about 1/3 for CD and UC, and will suppress the immune response sufficiently to eliminate or reduce the symptoms of IBD. See, e.g., Duerr, Science,314(5804):1461-63 (2006); see also Sivanesan, J.biol.chem.,291(16):8673-8685 (2016). In some aspects, the protective genetic variant encodes an IL23R variant having one or more of the following mutations to wild-type IL 23R: R381Q (e.g., corresponding to rs11209026, c.1142G>A) G149R and V362I. Alternatively or additionally, in some aspects, the protective mutation (e.g., for IBD) occurs in one or more of: CARD9, NOD2, PTPN22 and SLC11A 1. Without being bound by theory, NOD2 and PTPN22 are believed to be protective against UC and susceptible genes to crohn's disease. Again without being bound by theory, it is believed that for PTPN22, R620W of the functional variant was associated with CD whereas R263Q loss of the functional variant was associated with UC. In SLC11A1, the odds ratio of the-237C/T polymorphism at SNP rs7573065 to inflammatory bowel disease is about 2/3. See, e.g., Archer, Genes and Immunity,16(4): 275-. In some aspects, the protective variant encodes a polypeptide protective against rheumatoid arthritisTYK2 (tyrosine kinase 2) variants, the protective variants including alleles P1104A (rs34536443, OR ═ 0.66), A928V (rs35018800, OR ═ 0.53) and I684S (rs12720356, OR ═ 0.86, P ═ 4.6x 10)-7). See, e.g., Diogo, PLoS ONE 10(4): e0122271 (page 21) (2015). As another example, in some aspects, the protective variant encodes an IFIH1 variant protective against type I diabetes with a odds ratio ranging from 0.51 to 0.74, the protective variant including an allele such as E627X. See, e.g., Nejentsev, Science,324(5925):387-89 (2009). There are more examples of protective variants in several diseases that can be alleviated by genetic modification of HSCs. See, e.g., Harper, nat. Rev. genetics,16(12):689-701 (2015).
In some aspects, the subject is administered an agent that targets one or more susceptibility genetic variants and/or one or more protective genetic variants in immune cells and/or hematopoietic bone marrow stem cells. In some aspects, a genetic modifier is administered to the subject to reduce the amount of a susceptibility genetic variant in the subject and/or to increase the amount of a protective protein variant in the subject. In some aspects, immune cells and/or HSCs that have been modified to reduce the amount of susceptibility genetic variants and/or increase the amount of protective genetic variants are administered to the subject.
In some aspects, the ratio of protective genetic variant to susceptible genetic variant is increased in the subject or in a cell or population of cells of the subject. In some aspects, the ratio of protective protein variant to susceptible protein variant is increased in the subject or in a cell or population of cells of the subject.
In some aspects, HSC cells are harvested from blood or bone marrow and then the genetic modifier is applied to the harvested cells ex vivo. In some aspects, CD34+ cells are isolated from blood samples using immunomagnetic or immunofluorescence methods (CD34 protein is a member of the single-pass transmembrane sialoprotein protein family expressed on early hematopoietic and vascular-related tissues. Although CD34+ is commonly associated with HSCs, CD34+ is also found on other cell types. See, e.g., Sidney, Stem cells, 32(6):1380-9 (2014). Clinically, it can be used for selection and enrichment of hematopoietic stem cells for bone marrow transplantation. CD34+ cells can be collected from blood using antibodies that bind to CD34 and are attached to magnetic beads or fluorescent labels to enable subsequent isolation and subsequent gene editing of these cells. These cells can also be cultured before or after gene editing. The cells can then be returned to the subject by transfusion or injection. In some aspects, the subject is subjected to chemotherapy or radiation to eliminate most of their bone marrow HSCs, and then the edited HSCs or CD34+ cells are returned to the blood such that the bone marrow is re-colonized by the majority of the edited HSCs. In some aspects, the dose of radiation or chemotherapy used herein is lower than the lethal dose for patients with bone marrow cancer (e.g., to deplete host HSCs but not eliminate the entire HSC population). In some aspects, an antibody that disrupts HSC function and causes depletion of host HSCs is administered to the host prior to infusion of the edited HSCs. For example, HSCs express c-Kit (CD117), a dimeric transmembrane receptor tyrosine kinase, which is involved in HSC function. anti-c-Kit monoclonal antibodies can be used with immunosuppression to deplete HSCs from the bone marrow niche, allowing for edited HSC engraftment. In some aspects, depletion of host HSCs can be achieved without immunosuppression by radiation or chemotherapy, for example, by administering antibodies that disrupt HSC function and deplete HSCs and other antibodies that make host HSCs more vulnerable. For example, it has been shown that host HSC clearance is dependent on Fc-mediated antibody effector function, and HSCs express CD47 (a myeloid-specific immune checkpoint), which CD47 generates a "no-kill" signal and binds to sirpa. See Chhabra, Science relative Medicine,8(351):351ra105 (page 10) (2016). Thus, enhancement of effector activity by blocking CD47 may extend anti-c-Kit opsonization to fully immunocompetent subjects. Treatment with the c-Kit antibody together with interference of the CD 47-sirpa axis with the CD47 antibody resulted in elimination of > 99% of host HSCs and achieved robust multilineage blood reconstitution following HSC transplantation. Thus, in some aspects, an anti-c-Kit monoclonal antibody is used to clear HSCs from a subject along with a blockade of CD47 prior to infusion of edited HSCs.
In some aspects, cells directly involved in the body's immune response are harvested from blood, including, for example, lymphocytes (e.g., B cells, T cells, and/or natural killer cells), monocytes, and/or dendritic cells. Once harvested from the blood, these immune cells can be edited in vitro, optionally cultured, and then returned to the subject's bloodstream. Without being bound by theory, it is believed that the half-life of many such cells is about one year. Some methods for isolating these cells include, for example, cell preparation tubes containing heparin sodium (CPT) manufactured by Becton Dickinson, FicollPaque Premium (density 1.077g/mL) manufactured by GE Healthcare, and Lymphoprep using SepMate tubes manufactured by stem cell Technologies, according to the manufacturer's instructions. For advantages and disadvantages of different methods with respect to cell separation efficiency and cell viability, see for example Grievink, Biopreservation and Biobanking,14(5): 410-.
Cells that encode the protective genetic variant and/or do not encode the susceptibility genetic variant can be administered to the subject via any known method (e.g., via intravenous administration or transplantation).
Some aspects relate to editing bone marrow stem cells that make blood cells. In some aspects, the genetic modifier is delivered into the bone marrow. In some aspects, the delivering comprises passive targeting via: polymers of neutral charge and suitable size (e.g., about 150 nm); liposomes surface-modified with anionic glutamate to increase distribution in the bone marrow via selective uptake by macrophages and greatly reduce distribution in the liver and spleen; and/or a molecule that specifically binds to a bone-forming surface (e.g., a diphosphate). See, e.g., Chao-Feng, Biomaterials,155:191-202 (2017). These delivery mechanisms, which may, for example, include polymeric encapsulation, can be used to deliver CRISPR/Cas9 or other gene editing complexes to the bone marrow.
Some aspects relate to direct stem cell transplantation in bone marrow with edited stem cells with or without the use of radiation to reduce a population of bone marrow stem cells with primordial germline alleles. Some aspects include methods of placing bone marrow stem cells into a patient's bloodstream (e.g., returning the cells to the bone marrow).
In some aspects, cells obtained from a subject in need of treatment are administered to the subject, followed by genetic modification to reduce the amount of susceptibility genetic variants and/or increase the amount of protective genetic variants. In some aspects, cells obtained from a different subject (e.g., cells from a different subject that have been genetically modified or naturally encode a desired genetic variant) are administered to a subject in need of treatment.
Genetic modifier
Methods and compositions are provided that can be used, for example, to perform a desired genetic modification using a genetic modifier. The genetic modifier can comprise a nuclease, such as a CRISPR system, a zinc finger nuclease system, a TALEN, a meganuclease, or an RNAi system.
CRISPR system
In some aspects, the genetic modifier is a CRISPR-Cas or CRISPR system, collectively referring to the transcript and other elements involved in expression of or directing the activity of a CRISPR-associated ("Cas") gene, including sequences encoding the Cas gene, tracr (trans-activating CRISPR) sequences (e.g., tracrRNA or active partial tracrRNA), tracr mate sequences (encompassing "direct repeats" and partial direct repeats of tracrRNA processing in the context of an endogenous CRISPR system), guide sequences (also referred to as "spacers" in the context of an endogenous CRISPR system), or "one or more RNAs" (e.g., one or more RNAs for guiding Cas (such as Cas9), e.g., CRISPR RNA and trans-activating (tracr) RNA or single guide RNA (sgrna chimeric)) or other sequences and transcripts from the CRISPR locus. Generally, CRISPR systems are characterized by elements (also referred to as protospacer in the context of endogenous CRISPR systems) that promote the formation of CRISPR complexes at target sequence sites. See, e.g., Shmakov, Molecular Cell,60(3):385-97 (2015); zetsche, Cell,163(3) P759-771 (2015); WO 2014/093622(PCT/US 2013/074667).
In the context of forming a CRISPR complex, a "target sequence" refers to a sequence to which a guide sequence is designed to have complementarity, wherein hybridization between the target sequence and the guide sequence promotes formation of the CRISPR complex. The target sequence may comprise a DNA polynucleotide or an RNA polynucleotide. In some aspects, the target sequence is located in the nucleus. In some aspects, the target sequence is located in the cytoplasm of the cell.
In certain exemplary aspects, a CRISPR effector protein can be delivered using a nucleic acid molecule encoding the CRISPR effector protein. The nucleic acid molecule encoding a CRISPR effector protein may advantageously be a codon optimized CRISPR effector protein (e.g., a sequence optimized for expression in a eukaryote such as a human (i.e., optimized for expression in a human) or optimized for expression in another eukaryote, animal, or mammal). See, for example, WO 2014/093622(PCT/US 2013/074667).
Non-limiting examples of Cas proteins include cassl, CaslB, Cas (also known as Csnl and Csxl), CaslO, Cpf, Csyl, Csy, Csel, Cse, Cscl, Csa, Csn, Csm, Cmrl, Cmr, Csbl, Csb, Csxl, CsaX, Csx, Csxl, Csfl, Csf, or homologs or modified forms thereof. Although Cas9 is the most widely used Cas protein, other complexes can also be used to edit DNA in potentially improved ways compared to Cas 9. For example, Cpf1 enables staggered cleavage of target DNA, where an overhang is present on one strand of the DNA, thereby enabling more specific DNA reassembly. In addition, Cpf1 requires one CRISPR RNA (crRNA) for targeting, while Cas9 requires both crRNA and transactivating crRNA (tracrrna). Smaller crrnas enable multiplexed genome editing because more crrnas can be packaged in a single vector. Furthermore, Cas9 cleaves the target DNA at3 nucleotide bases upstream of the target site, while Cpf1 cleaves the target DNA at 18-23 bases downstream of the target site, allowing the target region to remain intact and multiple rounds of cleavage at the target locus to increase the likelihood of specific editing. The present invention encompasses all editing methods discussed herein, as well as others, and is not dependent on the particular editing method used.
Some aspects relate to vectors, e.g., for delivering or introducing Cas and/or RNA capable of directing Cas to a target locus (i.e., guide RNA) in a cell, and also for propagating these components. As used herein, a "carrier" is a tool that allows or facilitates the transfer of an entity from one environment to another. It is a replicon (e.g., plasmid, phage or cosmid) into which another DNA segment may be inserted to cause replication of the inserted segment. In general, a vector is capable of replication when associated with appropriate control elements. In general, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Vectors include, but are not limited to, single-stranded, double-stranded, or partially double-stranded nucleic acid molecules; nucleic acid molecules comprising one or more free ends, free ends (e.g., circular); a nucleic acid molecule comprising DNA, RNA, or both; and other various polynucleotides known in the art. One type of vector is a "plasmid," which refers to a circular double-stranded DNA loop into which additional DNA segments can be inserted (e.g., by standard molecular cloning techniques). Another type of vector is a viral vector, wherein viral-derived DNA or RNA sequences are present in the vector for packaging into a virus (e.g., a retrovirus, a replication-defective retrovirus, adenovirus, replication-defective adenovirus, and adeno-associated virus (AAV)). The viral vector also comprises a polynucleotide carried by the virus for transfection into a host cell. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. In addition, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". Common expression vectors for use in recombinant DNA technology are typically in the form of plasmids.
A recombinant expression vector may comprise a nucleic acid in a form suitable for expression of said nucleic acid in a host cell, which means that said recombinant expression vector comprises one or more regulatory elements, which may be selected on the basis of the host cell to be used for expression, operably linked to the nucleic acid sequence to be expressed. In a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to one or more regulatory elements in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
The one or more vectors may comprise one or more regulatory elements, such as one or more promoters. The one or more vectors can comprise a Cas coding sequence and/or a single guide RNA, but can also comprise at least 3or 8 or 16 or 32 or 48 or 50 guide RNA (e.g., sgRNA) coding sequences, such as 1-2, 1-3, 1-4, 1-5, 3-6, 3-7, 3-8, 3-9, 3-10, 3-8, 3-16, 3-30, 3-32, 3-48, 3-50 RNAs (e.g., sgrnas). In a single vector, advantageously when there are up to about 16 RNAs, there may be one promoter for each RNA (e.g., sgRNA); and when a single vector provides more than 16 RNAs, one or more promoters may drive expression of more than one RNA, for example when there are 32 RNAs, each promoter may drive expression of two RNAs, and when there are 48 RNAs, each promoter may drive expression of three RNAs.
Guide molecules
The terms "guide sequence" and "guide molecule" encompass any polynucleotide sequence that has sufficient complementarity to a target nucleic acid sequence to hybridize to the target nucleic acid sequence and direct sequence-specific binding of a nucleic acid targeting complex to the target nucleic acid sequence. The guide sequence prepared using the methods disclosed herein can be a full-length guide sequence, a truncated guide sequence, a full-length sgRNA sequence, a truncated sgRNA sequence, or an E + F sgRNA sequence. In some aspects, the degree of complementarity of the guide sequence to a given target sequence is about or greater than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99% or more when optimally aligned using a suitable alignment algorithm. In certain exemplary aspects, the guide molecule comprises a guide sequence that can be designed to have at least one mismatch with a target sequence such that an RNA duplex is formed between the guide sequence and the target sequence. In some aspects, the guide sequence is designed as a stretch with two or more adjacent mismatched nucleotides such that the degree of complementarity across the guide sequence is further reduced. Optimal alignments can be determined using any suitable algorithm for aligning sequences, non-limiting examples of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler transform (e.g., Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies), ELAND (Illumina, san Diego, Calif.), SOAP, and Maq. The ability of the guide sequence (within the nucleic acid targeting guide RNA) to direct sequence-specific binding of the nucleic acid targeting complex to the target nucleic acid sequence can be assessed by any suitable assay. For example, components of the nucleic acid-targeting CRISPR system sufficient to form a nucleic acid-targeting complex can be provided to a host cell having a corresponding target nucleic acid sequence, e.g., by transfection with a vector encoding the components of the nucleic acid-targeting complex (including the guide sequence to be tested), followed by assessment of preferential targeting (e.g., cleavage) within the target nucleic acid sequence, e.g., by a surfyor assay described herein. Similarly, cleavage of a target nucleic acid sequence (or a sequence adjacent thereto) can be assessed in vitro by providing the target nucleic acid sequence, a component of the nucleic acid targeting complex (including the guide sequence to be tested and a control guide sequence different from the test guide sequence) and comparing the rate of binding or cleavage at or adjacent to the target sequence between the test and control guide sequence reactions. The guide sequence, and thus the nucleic acid targeting guide RNA, can be selected to target any target nucleic acid sequence.
In certain aspects, the guide sequence or spacer of the guide molecule is 15 to 50 nucleotides (nt) in length. In certain aspects, the spacer of the guide RNA is at least 15 nucleotides in length. In certain aspects, the spacer length is from 15 to 17nt (e.g., 15, 16, or 17nt), from 17 to 20nt (e.g., 17, 18, 19, or 20nt), from 20 to 24nt (e.g., 20, 21, 22, 23, or 24nt), from 23 to 25nt (e.g., 23, 24, or 25nt), from 24 to 27nt (e.g., 24, 25, 26, or 27nt), from 27 to 30nt (e.g., 27, 28, 29, or 30nt), from 30 to 35nt (e.g., 30, 31, 32, 33, 34, or 35nt), or 35nt or more. In certain exemplary aspects, the guide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 nt.
In certain aspects, the guide molecule comprises (1) a guide sequence capable of hybridizing to a target locus and (2) a tracr mate or direct repeat sequence, wherein the direct repeat sequence is located upstream (i.e., 5') of the guide sequence. In some aspects, the seed sequence of the guide sequence (i.e., the sequence associated with the sequence that recognizes and/or hybridizes to the target locus) is within about the first 10 nucleotides of the guide sequence.
In particular aspects, the guide molecule comprises a guide sequence linked to a direct repeat sequence, wherein the direct repeat sequence comprises one or more stem loops or optimized secondary structures. In a particular aspect, the direct repeat sequence has a minimum length of 16nt and a single stem loop. In a further aspect, the direct repeat sequence has a length greater than 16nt, preferably greater than 17nt, and has more than one stem loop or optimized secondary structure. In particular aspects, the guide molecule comprises or consists of a guide sequence linked to all or part of a naturally occurring direct repeat sequence. Typical type V or type VI CRISPR-cas guide molecules comprise (in the 3 'to 5' direction or in the 5 'to 3' direction): a guide sequence, a first segment of complementary sequence ("repeat"), a loop (which is typically 4 or 5 nucleotides in length), a second segment of complementary sequence ("anti-repeat sequence" complementary to the repeat), and a poly a (typically a poly U in RNA) tail (terminator). In certain aspects, the direct repeat sequence retains its native architecture and forms a single stem loop. In certain aspects, certain aspects of the guide architecture may be modified, for example, by the addition, removal, or substitution of features, while certain other aspects of the guide architecture are maintained. Preferred positions for engineered guide molecule modifications (including but not limited to insertions, deletions and substitutions) include guide ends and regions of the guide molecule that are exposed when complexed with the CRISPR-Cas protein and/or target, such as the stem loops of the direct repeats.
In some aspects, the CRISPR system effector protein is an RNA-targeted effector protein. In certain aspects, the CRISPR system effector protein is a type VI CRISPR system targeting RNA (e.g., case 3a, case 3b, case 3c, or case 3 d). Exemplary RNA-targeted effector proteins include Casl3b and C2C2 (also known as Casl3 a). As used herein, the term "case 3" refers to any type VI CRISPR system targeting RNA (e.g., case 3a, case 3b, case 3c, or case 3 d). When the CRISPR protein is a C2C2 protein, no tracrRNA is required. C2C2 or Cas13 have been described in the following documents: abudayyeh et al, Science,353(6299) aaf5573-1-aaf5573-9 (2016); shmakov, Molecular Cell,60(3), 385-97 (2015); and Smargon, Molecular Cell,65:618-30 (2017).
In some aspects, one or more elements of the nucleic acid targeting system are derived from a particular organism comprising an endogenous CRISPR RNA targeting system. In certain exemplary aspects, the effector protein CRISPR RNA targeting system comprises at least one HEPN domain. In certain exemplary aspects, the effector protein comprises a single HEPN domain. In certain other exemplary aspects, the effector protein comprises two HEPN domains.
In certain other exemplary aspects, the CRISPR system effector protein is C2C2 nuclease. The activity of C2C2 may depend on the presence of two HEPN domains. These have been shown to be rnase domains, i.e. nucleases (particularly endonucleases) that cleave RNA. C2C2 HEPN may also target DNA, or potentially target DNA and/or RNA. The HEPN domain of C2C2 is at least capable of binding to RNA and cleaving RNA in its wild type form, based on which it is preferred that the C2C2 effector protein has rnase function. See Abudayyeh, Science,353(6299) aaf5573-1-aaf5573-9 (2016).
Tale system
In some aspects, the genetic modification is by a transcription activator-like effector nuclease (TALEN) system. Transcription activator-like effectors (TALEs) can be engineered to bind virtually any desired DNA sequence. Exemplary methods of genome editing using TALEN systems can be found in the following documents: for example, Cerak, Nucleic Acids Res.,39(21): e82 (2011); zhang, nat.Biotechnol.,29: 149-.
Some aspects include the use of an isolated, non-naturally occurring, recombinant or engineered DNA binding protein comprising a TALE monomer as part of its tissue structure, enabling targeting of nucleic acid sequences with improved efficiency and increased specificity. The structure and function of TALEs are also described in the following documents: for example, Moscou, Science,326:1501 (2009); boch, Science,326: 1509-; and Zhang, nat. Biotechnology,29: 149-.
Zinc finger nucleases
In some aspects, the genetic modifier comprises a zinc finger system. Artificial Zinc Finger (ZF) technology, which involves arrays of ZF modules to target new DNA binding sites in the genome, provides one type of programmable DNA binding domain. Each finger module in the ZF array targets three DNA bases. Custom arrays of individual zinc finger domains are assembled into ZF proteins (ZFPs).
The ZFPs may comprise functional domains. The first synthetic Zinc Finger Nuclease (ZFN) was developed by fusing the ZF protein to the catalytic domain of the type IIS restriction enzyme Fokl. (Kim, Proc. Natl. Acad. Sci. U.S.A.,91, 883-containing 887 (1994); Kim, Proc. Natl. Acad. Sci. U.S.A.,93, 1156-containing 1160 (1996)). Increased cleavage specificity and reduced off-target activity can be obtained by using paired ZFN heterodimers, thereby targeting each ZFN heterodimer to a different nucleotide sequence separated by a short spacer. (Doyon, nat. methods,8:74-79 (2011)). ZFPs can also be designed as transcriptional activators and repressors, and have been used to target many genes in a variety of organisms. Exemplary methods of genome editing using ZFNs can be found in the following documents: for example, U.S. Pat. nos. 6,534,261, 6,607,882, 6,746,838, 6,794, 136, 6,824,978, 6,866,997, 6,933, 113, 6,979,539, 7,013,219, 7,030,215, 7,220,719, 7,241,573, 7,241,574, 7,585,849, 7,595,376, 6,903, 185, and 6,479,626.
Meganucleases
As disclosed herein, editing can be performed by meganucleases, which are deoxyriboendonucleases characterized by large recognition sites (double-stranded DNA sequences of 12 to 40 base pairs). Exemplary methods of using meganucleases can be found in the following references: U.S. patent nos.: 8,163,514, 8,133,697, 8,021,867, 8,119,361, 8,119,381, 8,124,369, and 8,129,134.
RNAi
In certain aspects, the genetic modifier is an RNAi (e.g., shRNA). As used herein, "gene silencing" or "gene silenced" with respect to the activity of an RNAi molecule (e.g., siRNA or miRNA) refers to a reduction in the mRNA level of a target gene in a cell by at least about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 99%, about 100% relative to the mRNA level found in a cell in the absence of the miRNA or RNA interfering molecule. In a preferred aspect, the mRNA level is reduced by at least about 70%, about 80%, about 90%, about 95%, about 99%, about 100%.
As used herein, the term "RNAi" refers to any type of interfering RNA, including but not limited to siRNAi, shRNAi, endogenous microrna, and artificial microrna. For example, it includes sequences previously identified as sirnas regardless of the mechanism of downstream processing of the RNA (i.e., although sirnas are believed to have a specific method of in vivo processing leading to mRNA cleavage, such sequences can be incorporated into vectors in the context of flanking sequences described herein). The term "RNAi" may include both gene-silencing RNAi molecules and RNAi effector molecules that activate gene expression.
As used herein, "siRNA" refers to a nucleic acid that forms a double-stranded RNA that has the ability to reduce or inhibit expression of a gene or target gene when the siRNA is present or expressed in the same cell as the target gene. The double-stranded RNA siRNA can be formed from a complementary strand. In one aspect, siRNA refers to a nucleic acid that can form a double stranded siRNA. The sequence of the siRNA may correspond to the full-length target gene or a subsequence thereof. Typically, the siRNA is at least about 15-50 nucleotides in length (e.g., each complementary sequence of a double stranded siRNA is about 15-50 nucleotides in length, and the double stranded siRNA is about 15-50 base pairs in length, preferably about 19-30 base nucleotides in length, preferably about 20-25 nucleotides in length, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length).
As used herein, "shRNA" or "small hairpin RNA" (also referred to as stem-loop) is one type of siRNA. In one aspect, these shrnas consist of: short (e.g., about 19 to about 25 nucleotides) antisense strands, followed by nucleotide loops of about 5 to about 9 nucleotides, and similar sense strands. Alternatively, the sense strand may precede the nucleotide loop structure, and the antisense strand may follow the nucleotide loop structure.
The terms "microrna" or "miRNA" are used interchangeably herein and are endogenous RNAs, some of which are known to regulate expression of protein-encoding genes at the post-transcriptional level. Endogenous micrornas are small RNAs that occur naturally in the genome that are capable of modulating the productive utilization of mRNA. The term artificial microRNA includes any type of RNA sequence, except endogenous microRNAs that are capable of modulating the productive utilization of an mRNA. Microrna sequences have been described in the following publications: such as Lim, Genes and Development,17: 991-. Multiple micrornas can also be incorporated into a precursor molecule. In addition, miRNA-like stem loops can be expressed in cells as vehicles for delivering artificial mirnas and short interfering rnas (sirnas) with the aim of modulating the expression of endogenous genes via miRNA and/or RNAi pathways.
As used herein, "double-stranded RNA" or "dsRNA" refers to an RNA molecule consisting of two strands. Double-stranded molecules include double-stranded molecules composed of a single RNA molecule that is folded upon itself to form a double-stranded structure. For example, the stem-loop structure of an ancestral molecule from which a single-stranded miRNA is derived (known as a pre-miRNA) (Bartel,. Cell,116(2):281-297(2004)) comprises a dsRNA molecule.
Some aspects relate to methods of generating eukaryotic cells comprising modified or edited genes. In some aspects, the method comprises (a) introducing one or more vectors into the eukaryotic cell, wherein the one or more vectors drive expression of one or more of: a Cas effector module and a guide sequence linked to a direct repeat, wherein the Cas effector module associates with one or more effector domains that mediate base editing, and (b) allows binding of a CRISPR-Cas effector module complex to a target polynucleotide to effect base editing of the target polynucleotide within the diseased gene, wherein the CRISPR-Cas effector module complex comprises the Cas effector module complexed with a guide sequence that hybridizes to a target sequence within the target polynucleotide.
Another aspect relates to an isolated cell obtained or obtainable from a method described herein, comprising a composition described herein or a progeny of said modified cell. In a particular aspect, the cell is a eukaryotic cell, preferably a human or non-human animal cell. In some aspects, the cell is an immune cell. In some aspects, the cell is a HSC.
Some aspects include an isolated immune cell or hematopoietic stem cell, wherein the cellular DNA has been modified by gene editing to (a) reduce the amount of one or more genetic variants associated with susceptibility to an autoimmune disorder; and/or (b) increasing the amount of one or more genetic variants that prevent the autoimmune disorder. Some aspects include a population of immune cells or hematopoietic stem cells, wherein at least about 10% of the cells in the population have been modified by gene editing to (a) reduce the amount of one or more genetic variants associated with susceptibility to an autoimmune disorder; and/or (b) increasing the amount of one or more genetic variants that prevent the autoimmune disorder.
The invention also relates to a method for cell therapy, the method comprising administering to a patient in need thereof a modified cell described herein, wherein the presence of the modified cell treats a disease in the patient.
The following examples are included to illustrate the compositions and methods described herein. The examples are in no way intended to limit the scope of the invention. Other aspects will be apparent to those skilled in the art.
Examples
Example 1: addressing immune disorders using gene editing
This example uses CRISPR/Cas9 gene editing as known in the art. CRISPR stands for regularly interspaced clustered short palindromic repeats. CRISPR sequences contain DNA segments from viruses that have attacked a cell and are used by the cell to produce RNA that can be detected and combined with Cas proteins to destroy DNA from similar viruses. CAS stands for CRISPR-associated system and the gene encoding CAS protein is found in the cell DNA in the vicinity of the CRISPR sequence. A Cas9 protein that is synthetically modified and integrated with a guide rna (gRNA) is capable of binding to a specific target DNA of a matching gRNA and cleaving the DNA on both strands. This double-stranded cleavage results in the replacement of the target DNA by the replacement DNA, or initiates a homologous repair process in the cell, wherein the corresponding DNA in the homologous chromosomal or template DNA is copied to repair the cleaved DNA.
In addition, this example will describe experiments performed on murine models to demonstrate that their IBD symptoms can be reduced. Chemically and/or genetically induces colonic inflammation in mice. In particular, 2,4, 6-trinitrobenzenesulfonic acid (TNBS) is administered intrarectally with ethanol; administering oxazolone intrarectally; or the polysaccharide sulfate dextran sulfate sodium sulfate (DSS) is administered orally via drinking water. See, e.g., Wirtz, Nature Protocols,12(7): 1295-. Alternatively or additionally, the mice are genetically modified to induce inflammatory bowel disease. For example, mice are genetically modified to Knock Out (KO) NOD1 and/or NOD 2. See, e.g., Natividad, Inflummatory Bowel Diseases,18(8):1434-46 (2012); zenewicz, Immunity,29(6):947-57 (2008). Alternatively or additionally, the mouse is genetically modified based on models involving IL-10KO, IL-2KO, TCRa KO, TGFb KO, TAK1 KO, WASP KO, or MDR1A KO, and the like. See, e.g., Mizoguchi, Progress in mol. biol. Transl. Sci.,105:263-320 (2012); wirtz, adv. drug deliv. rev.,59(11):1073-83 (2007).
More specifically, we consider two mutations. The first is a susceptibility mutation to IBD, such as a loss of function mutation on IL-10, such as, for example, 113Gly → Arg, which, without being bound by theory, is believed to result in the inability of IL-10 to induce STAT3 phosphorylation or to inhibit Lipopolysaccharide (LPS) -mediated TNF release in peripheral blood mononuclear cells. See, e.g., Glocker, ann.n.y.acad.sci.,1246:102-07 (2011). The second is a protective mutation on IL23R for IBD as discussed above: R381Q, corresponding to rs11209026, c.1142g > a.
Four different groups of mice were used, depending on the gene editing performed on embryos of standard strain: group A, having heterozygous IL-10 susceptibility mutations and no IL23R protective mutations; group B, no IL10 and or IL23R mutations; group C, with IL10 mutation and with IL23R protective mutation; and group D, no IL10 mutation and with an IL23R protective mutation.
The mice were generated by CRISPR/Cas9 editing of common mouse strains (e.g., C57 BL/6). Alternatively, mice can also be generated from strains that are less sensitive to pain, such as, for example, Nav1.7 KO mice. See, e.g., Shields, J neurosci, 38(47) 10180-10201 (2018). The experiments can also be conceptually similar using humanized mice, i.e., immunodeficient mice implanted with a functional human immune system. See, e.g., Kenney, am.j.transplant, 16(2):389-97 (2016). Furthermore, the experiments will be conceptually similar using existing mouse models that do not require specific editing, such as, for example, using C57BL/6NTac-Il10 from Tastic Biosciencesem8TacA mouse model edited using CRISPR/Cas 9-mediated gene editing to delete the Il10 locus (exons 1 to 5, including the proximal promoter and UTR) from a standard C57BL/6NTac strain.
In HSC-edited mice, HSCs are harvested from bone or Blood by capturing CD34+ cells (note that although CD34 is expressed in almost all human HSCs, it is expressed on approximately 20% of murine HSCs see Ogawa, Annals of the New York Academy of Sciences,938:139-45 (2001); however, murine expression can be stimulated and reversed to alter the fraction of murine HSCs that express CD34 and can be harvested see Tajima, Blood,96(5):1989-93 (2000)).
The harvested cells are then edited ex vivo and returned to the bloodstream of mice whose native HSC population has been largely depleted. This can be achieved by using non-radioactive non-chemotherapy techniques that administer anti-c-Kit antibodies (such as ACK2) and anti-CD 47 antibodies (such as CV1mb modified from CV1 that effectively targets human CD47 to target mouse CD47) that have been shown to deplete host HSCs in large numbers, enabling robust engraftment of HSCs delivered from syngeneic donor mice by injection, with greater than 60% chimerism of donor-derived HSCs in bone and approximately 60%, 45%, 60% and 30% chimerism in blood for donor-derived myeloid, B, NK and T cells, respectively. See Chhabra, Science relative Medicine,8(351):351ra105 (page 10) (2016). Mice can be treated as follows: 500mg of ACK2 was injected on day 1 and 500mg of CV1mb were daily for 5 days from day 1. Transplantation can be initiated 6 days after treatment by: approximately 1 million edited HSCs were transferred daily by injection for 3 days. Approximately 24 weeks after transplantation, the number of B cells, T cells, NK cells, granulocytes (neutrophils, eosinophils, basophils, and mast cells) carrying the relevant edits compared to the host primitive cells can be counted to determine whether the edited HSCs were successfully engrafted.
It should be noted that the experiments will be conceptually similar to be replaced or enhanced with other anti-CD 47 antibodies (such as CV1, MIAP410, or Hu5F9G4), which are currently undergoing clinical trials in humans for solid and hematologic cancers (clinical trials NCT02216409 and NCT 02367196). Furthermore, the experiments will be conceptually similar if more implantation procedures are performed or anti-c-Kit antibody and anti-CD 47 antibody treatments are enhanced using radiation or chemotherapy.
Gene editing can be achieved by Homology Directed Repair (HDR) via CRISPR/Cas9, where template DNA matching the homologue in the unedited DNA region but carrying the new sequence is copied to replace the DNA after cutting the strand. In particular, one quarter of the mice in group a (group a1) were genetically edited to remove IL10 susceptibility mutations; gene editing of one quarter of the mice in group a (group a 2) to add a protective IL23R mutation; and one quarter of the mice in group a (group a 3) were gene edited to add a protective IL23R mutation and to remove the IL10 mutation. Half of the mice in group B (group B2) were gene edited to add the IL23R mutation. Half of the mice in group C (group C2) were gene edited to remove the IL10 mutation. To make the number remaining in A, B and group C similar to the number in groups a1, a2, A3, B2, C2, D, we can start with the number of mice in the 4:2:2:1 ratio in A, B, C and group C, respectively.
After waiting for the edited HSCs to generate immune cells (e.g., after about 6 months), and assuming successful engraftment in the edited group, one of the above methods was used to chemically induce colitis in mice. The phenotypic severity was then compared between A, B, C, D, A1, a2, A3, B2 and C2 groups in terms of weight loss, bleeding and diarrhea. The following table (table 1) shows the initial genetic state, the theoretically edited genetic state and one possible grouping of symptom levels. Without being bound by theory, if HSC editing is perfectly efficient, we expect the symptoms to be similar between groups A3, B2, C2 and D, between groups a2 and C, and between groups a1 and B. If the protective effect of the IL23R variant far counteracted the susceptibility effect of the IL10 variant, we expect symptoms to rank from worst to lightest as a to D.
Table 1: genetic status and symptom level of each group
Figure BDA0002888085510000191
CRISPR-Cas9 with guide rna (grna) was used to confer a protective mutation to gene IL 23R. More specifically, grnas were designed to attach to DNA encoding IL23R amino acid sequence as shown below:
MNQVTIQWDAVIALYILFSWCHGGITNINCSGHIWVEPATIFKMGMNISIYCQAAIKNCQPRKLHFYKNGIKERFQITRINKTTARLWYKNFLEPHASMYCTAECPKHFQETLICGKDISSGYPPDIPDEVTCVIYEYSGNMTCTWNAGKLTYIDTKYVVHVKSLETEEEQQYLTSSYINISTDSLQGGKKYLVWVQAANALGMEESKQLQIHLDDIVIPSAAVISRAETINATVPKTIIYWDSQTTIEKVSCEMRYKATTNQTWNVKEFDTNFTYVQQSEFYLEPNIKYVFQVRCQETGKRYWQPWSSLFFHKTPETVPQVTSKAFQHDTWNSGLTVASISTGHLTSDNRGDIGLLLGMIVFAVMLSILSLIGIFNRSFRTGIKRRILLLIPKWLYEDIPNMKNSNVVKMLQENSELMNNNSSEQVLYVDPMITEIKEIFIPEHKPTDYKKENTGPLETRDYPQNSLFDNTTVVYIPDLNTGYKPQISNFLPEGSHLSNNNEITSLTLKPPVDSLDSGNNPRLQKHPNFAFSVSSVNSLSNTIFLGELSLILNQGECSSPDIQNSVEEETTMLLENDSPSETIPEQTLLPDEFVSCLGIVNEELPSINTYFPQNILESHFNRISLLEK(SEQ ID NO:1)。
the corresponding DNA sequence is shown in SEQ ID NO 2 of the sequence Listing.
The criprpr-CAS 9 complex is designed to cleave DNA in the region of R at position 381, and the template DNA is designed to effect homologous repair such that R at position 381 is converted to Q, or alternatively such that G at nucleotide position 1142A is converted to a. Template DNA that can accomplish this will match the DNA sequencer around position 1142 on the reference DNA (SEQ ID NO: 2).
The guide RNA template was designed to target a specific region of the IL23R gene.
Exemplary murine IL23R target sequences for constructing guide RNA sequences include:
ATAGAACAACAGCTCGGATT(SEQ ID NO:3)
ACAACAACTACACGTCCATC(SEQ ID NO:4)
CCCTTAAGCACTGCCGACCA(SEQ ID NO:5)
TGTGTCATTTATGAATACTC(SEQ ID NO:6)
ACCATCTGAAGAGCACATAA(SEQ ID NO:7)
ATCTCCACTGACTCACTGCA(SEQ ID NO:8)
an exemplary guide RNA sequence targeting murine IL23R comprises the following sequence:
AUAGAACAACAGCUCGGAUU(SEQ ID NO:9)
ACAACAACUACACGUCCAUC(SEQ ID NO:10)
CCCUUAAGCACUGCCGACCA(SEQ ID NO:11)
UGUGUCAUUUAUGAAUACUC(SEQ ID NO:12)
ACCAUCUGAAGAGCACAUAA(SEQ ID NO:13)
AUCUCCACUGACUCACUGCA(SEQ ID NO:14)
exemplary human IL23R target sequences for constructing guide RNA sequences include:
GTGCAGTACATAGAAGCATG(SEQ ID NO:15)
ACAACAACTACACGTCCATC(SEQ ID NO:16)
CTACATAGACACAAAATACG(SEQ ID NO:17)
ACCAGCTGAAGAGTATGTAA(SEQ ID NO:18)
CCCTTTACATACTCTTCAGC(SEQ ID NO:19)
ACTTCATCAGGAATATCTGG(SEQ ID NO:20)
an exemplary guide RNA sequence targeting human IL23R comprises the following sequence:
GUGCAGUACAUAGAAGCAUG(SEQ ID NO:21)
ACAACAACUACACGUCCAUC(SEQ ID NO:22)
CUACAUAGACACAAAAUACG(SEQ ID NO:23)
ACCAGCUGAAGAGUAUGUAA(SEQ ID NO:24)
CCCUUUACAUACUCUUCAGC(SEQ ID NO:25)
ACUUCAUCAGGAAUAUCUGG(SEQ ID NO:26)
exemplary target sequences for constructing a guide RNA sequence targeting G1142A in human IL23R include:
TGTCAATTCTTTCTTTGATT(SEQ ID NO:27)
TTTAACAGATCATTCCGAAC(SEQ ID NO:28)
TTAACAGATCATTCCGAACT(SEQ ID NO:29)
CAGATCATTCCGAACTGGGT(SEQ ID NO:30)
CTGCAAAAACCTACCCAGTT(SEQ ID NO:31)
an exemplary guide RNA sequence targeting G1142A in human IL23R comprises the following sequence:
UGUCAAUUCUUUCUUUGAUU(SEQ ID NO:32)
UUUAACAGAUCAUUCCGAAC(SEQ ID NO:33)
UUAACAGAUCAUUCCGAACU(SEQ ID NO:34)
CAGAUCAUUCCGAACUGGGU(SEQ ID NO:35)
CUGCAAAAACCUACCCAGUU(SEQ ID NO:36)
the wild-type human IL-10 sequence is shown below:
MHSSALLCCLVLLTGVRASPGQGTQSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMKDQLDNLLLKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAENQDPDIKAHVNSLGENLKTLRLRLRRCHRFLPCENKSKAVEQVKNAFNKLQEKGIYKAMSEFDIFINYIEAYMTMKIRN(SEQ ID NO:37)
exemplary target sequences for constructing guide RNA sequences targeting human IL10 include:
GAACCAAGACCCAGACATCA(SEQ ID NO:38)
CAAGGCGCATGTGAACTCCC(SEQ ID NO:39)
AAGGCGCATGTGAACTCCCT(SEQ ID NO:40)
AGGCGCATGTGAACTCCCTG(SEQ ID NO:41)
GGCGCATGTGAACTCCCTGG(SEQ ID NO:42)
GGGAGAACCTGAAGACCCTC(SEQ ID NO:43)
GCCTCAGCCTGAGGGTCTTC(SEQ ID NO:44)
GGGTCTTCAGGTTCTCCCCC(SEQ ID NO:45)
GGTCTTCAGGTTCTCCCCCA(SEQ ID NO:46)
an exemplary guide RNA sequence targeting the G113R amino acid mutation in human IL-10 comprises the following sequence:
GAACCAAGACCCAGACAUCA(SEQ ID NO:47)
CAAGGCGCAUGUGAACUCCC(SEQ ID NO:48)
AAGGCGCAUGUGAACUCCCU(SEQ ID NO:49)
AGGCGCAUGUGAACUCCCUG(SEQ ID NO:50)
GGCGCAUGUGAACUCCCUGG(SEQ ID NO:51)
GGGAGAACCUGAAGACCCUC(SEQ ID NO:52)
GCCUCAGCCUGAGGGUCUUC(SEQ ID NO:53)
GGGUCUUCAGGUUCUCCCCC(SEQ ID NO:54)
GGUCUUCAGGUUCUCCCCCA(SEQ ID NO:55)
example 2: machine learning method for selecting gene mutations to be edited
Machine learning techniques are used to describe the likelihood of developing a phenotype based on gene mutations to determine which genes or variants should be edited. Such techniquesIncluding, for example, linear regression models, logistic regression models, nonlinear regression models that contain interactions of genes or gene variants, regression models that use principal component analysis or limiting functions to add constraints to the regression problem in cases of underdetermined or noisy due to too many possible genes or too little patient data. The limiting function of the regression parameters may include L used in ridge regression2L used in norm or LASSO regression1And (4) norm. Non-linear interactions between genes can be captured while still keeping the model linear in regression parameters by logically or mathematically combining independent genetic variables to create new variables to be used in the linear model. Nonlinear interactions can also be captured using models that are nonlinear in terms of parameters, such as neural networks including deep learning neural networks, or support vector machines. Several of these methods are described, for example, in Rabinowitz, Bioinformatics,22:541-549 (2006). The genes or genetic mutations that most affect the disease phenotype or disease phenotype risk are determined by looking at the size of the regression parameters, which is particularly simple for linear models, or by modeling different data and presenting them to a non-linear model. Other techniques to identify which variants are associated with disease include tools to identify genes most likely to cause a phenotype near the risk locus from Genome Wide Association Studies (GWAS) using gene function and gene signaling pathway data. See, e.g., Pers, Nature Communications,6, article 5890 (page 9) (2015).
In addition to the already mentioned references, the following should be mentioned:
sands, inflam. bowel dis.,23(1):97-106 (2017); jinek, Science,337: 816-; salerno, Oncoimmunology,5(12) e1240857-1-e1240857-14 (2016); sivanesan, J.biol.chem.,291:8673-85 (2016); pidasheva, PLOS ONE,6(10) e25038 (2011); SNPedia, rs 11209026; US National Library of Medicine, dpSNP, rs 11209026; duerr, Science,314(5804):1461-63 (2006); hazlett, Genes & Immunity,13:282-87 (2012); ferguson, Gastroenterology Research and Practice, article ID 539461 (page 12) (2010); mu, Biomaterials,155:191-202 (2018); angermann, Nature Methods,9:283-89 (2012); gong, j.r.soc.interface,14:20170320 (page 13) (2017); drug Targets,15(6) 565-72 (2014); Bassaganya-Riera, Clin. Nutr, 25(3) 454-65 (2006).
Sequence listing
<110> Sehm Barn Co., Ltd. (Themba Inc.)
<120> Gene editing for autoimmune disorders
<130> M107385 1010WO
<150> 62/762,708
<151> 2018-05-14
<160> 55
<170> PatentIn version 3.5
<210> 1
<211> 629
<212> PRT
<213> human (Homo sapiens)
<400> 1
Met Asn Gln Val Thr Ile Gln Trp Asp Ala Val Ile Ala Leu Tyr Ile
1 5 10 15
Leu Phe Ser Trp Cys His Gly Gly Ile Thr Asn Ile Asn Cys Ser Gly
20 25 30
His Ile Trp Val Glu Pro Ala Thr Ile Phe Lys Met Gly Met Asn Ile
35 40 45
Ser Ile Tyr Cys Gln Ala Ala Ile Lys Asn Cys Gln Pro Arg Lys Leu
50 55 60
His Phe Tyr Lys Asn Gly Ile Lys Glu Arg Phe Gln Ile Thr Arg Ile
65 70 75 80
Asn Lys Thr Thr Ala Arg Leu Trp Tyr Lys Asn Phe Leu Glu Pro His
85 90 95
Ala Ser Met Tyr Cys Thr Ala Glu Cys Pro Lys His Phe Gln Glu Thr
100 105 110
Leu Ile Cys Gly Lys Asp Ile Ser Ser Gly Tyr Pro Pro Asp Ile Pro
115 120 125
Asp Glu Val Thr Cys Val Ile Tyr Glu Tyr Ser Gly Asn Met Thr Cys
130 135 140
Thr Trp Asn Ala Gly Lys Leu Thr Tyr Ile Asp Thr Lys Tyr Val Val
145 150 155 160
His Val Lys Ser Leu Glu Thr Glu Glu Glu Gln Gln Tyr Leu Thr Ser
165 170 175
Ser Tyr Ile Asn Ile Ser Thr Asp Ser Leu Gln Gly Gly Lys Lys Tyr
180 185 190
Leu Val Trp Val Gln Ala Ala Asn Ala Leu Gly Met Glu Glu Ser Lys
195 200 205
Gln Leu Gln Ile His Leu Asp Asp Ile Val Ile Pro Ser Ala Ala Val
210 215 220
Ile Ser Arg Ala Glu Thr Ile Asn Ala Thr Val Pro Lys Thr Ile Ile
225 230 235 240
Tyr Trp Asp Ser Gln Thr Thr Ile Glu Lys Val Ser Cys Glu Met Arg
245 250 255
Tyr Lys Ala Thr Thr Asn Gln Thr Trp Asn Val Lys Glu Phe Asp Thr
260 265 270
Asn Phe Thr Tyr Val Gln Gln Ser Glu Phe Tyr Leu Glu Pro Asn Ile
275 280 285
Lys Tyr Val Phe Gln Val Arg Cys Gln Glu Thr Gly Lys Arg Tyr Trp
290 295 300
Gln Pro Trp Ser Ser Leu Phe Phe His Lys Thr Pro Glu Thr Val Pro
305 310 315 320
Gln Val Thr Ser Lys Ala Phe Gln His Asp Thr Trp Asn Ser Gly Leu
325 330 335
Thr Val Ala Ser Ile Ser Thr Gly His Leu Thr Ser Asp Asn Arg Gly
340 345 350
Asp Ile Gly Leu Leu Leu Gly Met Ile Val Phe Ala Val Met Leu Ser
355 360 365
Ile Leu Ser Leu Ile Gly Ile Phe Asn Arg Ser Phe Arg Thr Gly Ile
370 375 380
Lys Arg Arg Ile Leu Leu Leu Ile Pro Lys Trp Leu Tyr Glu Asp Ile
385 390 395 400
Pro Asn Met Lys Asn Ser Asn Val Val Lys Met Leu Gln Glu Asn Ser
405 410 415
Glu Leu Met Asn Asn Asn Ser Ser Glu Gln Val Leu Tyr Val Asp Pro
420 425 430
Met Ile Thr Glu Ile Lys Glu Ile Phe Ile Pro Glu His Lys Pro Thr
435 440 445
Asp Tyr Lys Lys Glu Asn Thr Gly Pro Leu Glu Thr Arg Asp Tyr Pro
450 455 460
Gln Asn Ser Leu Phe Asp Asn Thr Thr Val Val Tyr Ile Pro Asp Leu
465 470 475 480
Asn Thr Gly Tyr Lys Pro Gln Ile Ser Asn Phe Leu Pro Glu Gly Ser
485 490 495
His Leu Ser Asn Asn Asn Glu Ile Thr Ser Leu Thr Leu Lys Pro Pro
500 505 510
Val Asp Ser Leu Asp Ser Gly Asn Asn Pro Arg Leu Gln Lys His Pro
515 520 525
Asn Phe Ala Phe Ser Val Ser Ser Val Asn Ser Leu Ser Asn Thr Ile
530 535 540
Phe Leu Gly Glu Leu Ser Leu Ile Leu Asn Gln Gly Glu Cys Ser Ser
545 550 555 560
Pro Asp Ile Gln Asn Ser Val Glu Glu Glu Thr Thr Met Leu Leu Glu
565 570 575
Asn Asp Ser Pro Ser Glu Thr Ile Pro Glu Gln Thr Leu Leu Pro Asp
580 585 590
Glu Phe Val Ser Cys Leu Gly Ile Val Asn Glu Glu Leu Pro Ser Ile
595 600 605
Asn Thr Tyr Phe Pro Gln Asn Ile Leu Glu Ser His Phe Asn Arg Ile
610 615 620
Ser Leu Leu Glu Lys
625
<210> 2
<211> 93494
<212> DNA
<213> human (Homo sapiens)
<400> 2
acaagggtgg cagcctggct ctgaagtgga attatgtgct tcaaacaggt tgaaaggtaa 60
ataggcagcg atcatccaaa tacttaaaga cagctatatt tccttttgga aatacatggg 120
ccaagttgtt ttctcttgca agttctcatg atattccatg cagtggttac tgatgaaaag 180
ggaatctata atattatatg gcatcacatt actttaaata ataattattg catatttcca 240
tcagttaact tctaactagg aacattttta gggcttctgt tgcttcttat gaagagaaga 300
attactattg ctaacaaata atgaaaggga tccctatatt tctgagccaa ggggacccca 360
gtttttttaa atgttactag atattttatg cgatatgatg agccatgcat tgcgttctct 420
tgtagtttta tagaaaaagc tcaggtttta ttaaacagat aaaataactg aataatgttg 480
atcattgagt aaatgagtta attcatgtaa ctgattaatc aaatagtgta actctagttg 540
taaactaaca acggtattat taggaatttc tataacgtgt tcctttcgcg ttctctacag 600
atgaaaggct ttttcctctt ttttaggggg tgcgggggac aaggtctcac tctgtcgccc 660
aggctggagt gcaatggtgt gatcatggtt cactgcaacc ttcacctccc gggtagctgg 720
gatgaccgtc acatgccacc acactgggct aatttttgta tttttagtag ggacagggtt 780
tcaccctgtt gcccagcctg atctcgaact cctgggctca agcaatccac cggcctctgc 840
ctcccaaagt gctgggatta caggcatgag ccaccacgcc tccccagatg aaacgctttt 900
tagagtctca ctggtgagag cacatattgc ttaatctcac ttcacttttc ttaattttga 960
atccattttc tctgggagtt ctgaaatttt tggctcttcc caagtttagc tcatcaaaga 1020
ctagtatttc tggagtgtga taagtatgta actttggcag ggagaagaat tcatcaccag 1080
aagttagctc agcccaggca ccatggttca tgcctgtaat cctagcactt tgggaggttg 1140
agttgggagg accgcttgag cccaggagtt tgaggttaca gtgagctatg ataatgccgc 1200
tgcactccag cctgggctac agagcctggc ccttgtctct aaaaaaattt aaaacataaa 1260
ataaaaaaag aagttaactc agaggaggag gtttctgatg agaaaggcta gattaggagg 1320
cactgtaatg gatcaaatgc cctactgagt taattcatag tgacttttga agagtataaa 1380
attccattta tttgctttac ttctccatct cttgttatat ctcctaaata taccagtaac 1440
atttctttgc tctgtttcct tccttccttt cttccttcct tctttccttc ttcctcccta 1500
atcaaaggtt cccatcaaat acaataattc ttagggaaaa atgttatgct ttttattatt 1560
ttactaaaat actacaattt aaacattttt catatttttt ttccagaggg aaacagtctt 1620
ttcctgcttc cagacatgaa tcaggtcact attcaatggg atgcagtaat agccctttac 1680
atactcttca gctggtgtca tggaggtatg gtgttttatg tatctattgc tatctttcat 1740
tcaacaaatg gaatattgag tgattatcat tttcatggtt ttatgttaga atctctgaag 1800
aatacaaata ttattagact agaaaaaatg tgtgcataaa aattacatag aatgaaataa 1860
aaatggccca atctccttcc aaatgcagga tttctttctc aaatttccct tctagacagc 1920
cctcttactc acatgtggat atttccacaa aggagcttat tagtttgagt tggcatgttc 1980
tattgtcaaa ctattataac tgttatataa ttacctgtca aacatttgga tgcaattcta 2040
tttcacaaac cacttgttga tagttacttt gtgccgggca catagtaact atgtgggcca 2100
ttggcaagag tatgatttta ttcattatat tcaaacttta ctgaaaaaag taggctttat 2160
ctaaaaaaga acaaaagatt ggttgagtag ctagagaatg gggttcagat tctacagtgc 2220
ctagtgttat ttctaatctt acctttgaaa aatactgtag ctttataatc tctcggttct 2280
ctactttaaa gtaggagagc taattatatt tgctctttag acacttagag aagcttccag 2340
gctgactcta gtcttgtgtc atggtgctga acatcaataa aagcataaca gaggccagac 2400
gaggtggcta atgcctgtaa tcccagcact ttgggaggcc gaggcgggtg gatcacctga 2460
ggtcaggagt tcaagatcag cctggccaac atggtgaaac gccatattag ccgggcgtgg 2520
tggtgctcac ctgtaatccc agctactcag gaggctaagg caggagaatc gcttgaacct 2580
ggaaggcgga tgttgcagtg agccgagatc gcaacactgc actgcagcct gggtgacaga 2640
atgagactgt ctcaaaaaaa aaaaaaaaaa aaaaagccta acagaaacac actgtaatag 2700
gctagtttat gaaaagatac atctagtcct aaaactgttt tcaatggaat catttagtta 2760
atagaaatga taaatttaaa atgcaatagc atattcttct gaatctcttg atttaatgtt 2820
ttacgtgtaa tttattattt ttccatttat ttctaggaat tacaaatata aactgctctg 2880
gccacatctg ggtagaacca gccacaattt ttaagatggg tatgaatatc tctatatatt 2940
gccaagcagc aattaagaac tgccaaccaa ggaaacttca tttttataaa aatggcatca 3000
aagaaagatt tcaaatcaca aggattaata aaacaacagc tcggctttgg tataaaaact 3060
ttctggaacc acatgcttct atgtactgca ctgctgaatg tcccaaacat tttcaagaga 3120
cactgatatg tggaaaagac atttcttctg gatgtaagtg ttggggcaca tttgaaatgc 3180
aaacaaaagc tagtttaaca attaactggt cattaccaca ctagtctaaa aatagggaca 3240
aaataatata gttcagtttt tagattagtt tcatacagga gctgcaaact caaatgtctc 3300
cagggccagg ttggtgaact atatgaactg tagccactgc ccagatccag taatcacagg 3360
tgcccggtat tcctacatct tttggctttt caaaggaaga cagaaacata aaattttaat 3420
gtgtactctc taaattttaa aatgttgcca atacattcaa aaaacaattt ttcacctcta 3480
ccctgaacga acactgcata tgtgagggcc agccccgtta gatttaaaat gttgctcttt 3540
taatcttctt gtttattttt ctaaactaat ataatataat taaccttgaa gcagatccca 3600
ttgagaaatt ttgaggccaa ggtttaggga gagttgcaaa actagttttg tgctcccact 3660
gtactgctag gtttgtgacc ttggacaagt tgcttaagcc tcaattcctc gcctgtaaaa 3720
ggaggctaat tatacaggct gtgttatgca cttaatttca ataatttatt tggaagcata 3780
tgataaagtt taaagtacat cagtacccaa atccttaaaa atgcatcctt ttgataaaac 3840
atagggagag tctcctacag tcctctgttc ctaatctcac tattccaatt tagaatcact 3900
gtgtttgtta ttgtaactat taattttttt ctttttctta aaacccacct tgaagggaat 3960
aattattaat ttatttaaaa gcttagtcaa gtcaatctta aaaatatacg ctaaattcaa 4020
tgtgtgctct gagtgtcctg gaggtgttta aatcactata gtgatatggg ctggctcgta 4080
taattatata cctagtttgg gttctactat tatgaagggt gtaaatcaat aagttcagca 4140
ctgttttaac tcagatattc attctctata gcacttgaac ccattttcag taaaaaaata 4200
aaggaatttg tgtctttgcc atgttcccgt cctccacatt tttgagaatc aagcctcagt 4260
tcttgcttct tcttcacctt tacaacttag ctggggggca gacccatatc accactacca 4320
cctgacccca ttgtggctgc ttggaaagta agaggcttcc ttgctctata atgaggccat 4380
tgtcctactt aactctgagc agctgatctt gcaagctttt caagagaagg aactatagaa 4440
agttgtagag gtgagttgag gaaggaaagt cataggtttt ggagtcaaag aataaatcta 4500
ccttaaactg atgccttaaa gctgctaaac ttgccctaaa ttgtggaaat taaaccgcag 4560
gcagacatct tatctgatgt aagaaatctt cttagcttgt ccacatcctc aggaaacata 4620
accaaacctc aatgcccaaa tactttacta tttatccttt gggggtggga gttgggtaga 4680
gagactatac aatttctttg gagggcaaat aagcaacttt cacagttaca gaaaaagctt 4740
agttgttaat ttaagccaga ggaaaaaaaa ggaagcaaaa taaacattgt ctctgttaaa 4800
aaacaaaatt tcagcaaatt tagtttttag atctgatagg tttttatgtg tgattcatga 4860
atcggcagca tctctttcta aaaaactgat atgtgctctg agtgtcctgg aggtgtttaa 4920
gttactatag tgatatgggc tggcttgtat aattatatac ttagttttgg ctctactatt 4980
ctaacagaac agttggtttt tgtaaggtag gaacaagaaa tagaaatttt tataaaaact 5040
accagattgg ttaacattgt tacttcaggt tattttcctt gtaatggtta aagcagaggg 5100
gatttcctta tcatccctgc tcaggttgac tgggctcttt ctacgtggtt gctgtgaatt 5160
ttctgttttc aggaaaaact agtctgtggg agttttacct gcttccttaa agtttcagct 5220
tggttatatg tcacttaaca ggagtgactt cattttggtt tggtatgtgg gggcctagtg 5280
caggagctca gtccaaaaca atggtctcct atacatttta tttaacacca ccttccgtgt 5340
gttgcagttt gtataactga ttactcccaa aagccctccc aagtgttggc tggggggcct 5400
ctgtccccaa acccaacacc aggcaatgta gaaggtaaga gaatggactt tgttcctctt 5460
ccaggacagc ctaatagaaa tacattctct gccgatggct gcttagaaag aacatcactc 5520
tttccactta tttaactttt gagtttgtga attgtaactc cttacatagg cctctggtta 5580
tgagtgtaaa aatgtaactg ccaggtgaga atttactcaa acccctggat tcaagctgaa 5640
tgtcttcttg agctctacat tcttagcaaa caaaacttcc tatttaagta ggtcaaaaaa 5700
gggtttttga gggttttgtg gcattctaga aatcacattg ctttcactgg accactttga 5760
tcacaggata tttgtcatgt gagatttatt atgtcaactt atcatcactg ctttgaacaa 5820
aatgattata tgtatttttt tagactagag acaaattgta aaagacaaga taaatgagtc 5880
attgctttcc ttgaaaagct atccaaatat attttaaagt gctgtgcttt aatgtataat 5940
ttgtgaaata taaaccatat tatcacaatt tccattttta gccacaatcc tagacacttc 6000
ttagattctt atctaagact aaatgcacac atattatggg aaatttgttc taatcaggcc 6060
acaccaatca tgggataaaa tacaagatgt ctttattcat ttaaaaatac caaattaaac 6120
catgcacagt catgtttcca cttaatcatt tgtttaaaat tttaaatatc tttgactttt 6180
taaattttaa cttttggact ttatttacaa tgatgaaagc acatttgtta ttcaataaaa 6240
gcctctgaat atttgtttct aacattgcta ttaagtatga ttacggaaca attaggctgg 6300
cctgtgccct gcttgagtaa gaaattatag agtgatcttt gccagaagca ttgcatctct 6360
ctccatttta atccttcatg ttattatctt aatcaagcca atcaattcat ggaataaact 6420
ttattgagtg gttactatgc accaaaaatg tgttaaatgc tagaagtaca aagaagagga 6480
aatcacggac tgttttcaag aagttctcag tagaaaggga tccttggcta gactctgaat 6540
taacaagaaa cctggcctgt gattcctgag tgtcccaata ataggggagg ggtgggattg 6600
gcaagaaaga gcaaaaacat aagccccctt ttgtatacct cagagtattc tctagtatct 6660
agttgtatag ccaggttttg ttcttggata ttgaataacc tggcaatgag gcctaacaac 6720
aacttgatgt tattatcata agcatactca caggcccatc tttacattgc ttcatgttaa 6780
caaacactta tttgcatgtg tgtgtatagt catctttttg atcttttgca aagttaattg 6840
accaccagac atttgtaacc ccaagaattc acttcatgta gatgccgtgg agtaacacag 6900
cccaaacaat ctgatagcca aatcaatggc actctgtatc tgaaaccaga ggaaaaaata 6960
acttcagcac aaatcattgt aatcaatgag ggaccacaac tcaaactcca aaatgattta 7020
aatttatgtt tccacaccta cttcatttaa ggctcaatta aaacaaagat ttattttacc 7080
ctacttggag cccagtttct ctccattgta actcaatgct acaagtcgcc aaaatgttgt 7140
aaagtacttt ttagtgtgtt cttactgttt gaatataggt ttttttaaaa ggatattaga 7200
ccttcgatat atgaaaatag ttttttaatt ataaaatcaa attgcattga atatagagag 7260
tttttaaaat gtagaccagc aaaaaagaaa tacctatcat tcccataaaa ccataacttt 7320
actagtaacc ataatccctc tttaataatt tggaatatgt ctttgaaatt tcagaccctc 7380
tctttctcag tctctcactt aaatgaaacc actaattgaa ccattttgca acctgctttt 7440
ttcactttgc catatgatca tgacttcact acatatactt ttaattcctt ccaaaggcca 7500
agtacttaaa ctgtcttctt caacattgct tttggatgtg tttaggactg tattatagtt 7560
tatttaacct tattttggaa aattaagttt gtttacaatt ttttcattgt tatgaacaat 7620
aagggaacat cctttaagcc aaatatttta tatatctatg aacatttcaa taaggatgca 7680
ttcttagatg tataattgct gagttgcaaa atattacacc tgcttttaca gattgtgata 7740
tgtaaagtgc tctccataaa ggctgtacca atttgtactt ccaccagaag tgtgttagag 7800
gatttccatg agtccactcc aacactgtgt actatcattt ttcaaaatcc ttgctaattt 7860
gataggcttg aatgacatct agtattgcct tgatttgcag tgagaataaa atttttaata 7920
tatttgttta ttgttctaca agcaatattt ttggtaagca atttgcaggt gaagtgaaag 7980
catatatgta cttaagataa atctttggat gtaacttcag acgcataaat gtctgtattt 8040
tcattcttta tgagccccta tccttccatt tgtcttgtca ttctctgagc agtcaagtgt 8100
cccagcagta tttcacacgt agggatgaac taagagagcc acacctgaaa agtgaatatt 8160
taacaaacac tcaatatttc tatacttaaa aaaatcttaa tcttattcac tattgaatga 8220
tataactgaa aattctaggt gtcattctat agttgttggg gtttcatagg ctttagaggc 8280
ccccaaaact caatgtcatc agaactctct catcttttcc agtctgctag gtattgtttt 8340
cccctgtgtt ggcttcattc ttaaatagac taaagactgt gaaaaagcct gtttcacaat 8400
gacagcaaga tggccaccag caacttacag ctcacatgct actcagagat agcagtttca 8460
ggaggaaaga gtgtgcttct tttacagtgg tttagaaaaa gtgccttgga gaattctgat 8520
tggttcatct tgagtcatat gttcattccc aaaggcacac tcctattagt cggcctacct 8580
cagaggcaca cttctgtgga gagcctcttg attgacaggt cttggggttg gggtgggggt 8640
gagattggag tgaggggctg gaggggatgt cagttctcaa gagggaaaga cgctagccaa 8700
tgaaaaataa aaatgtttgc cataacatgg ccacctggag aaagagctgg gcaggaatgg 8760
gggtgggatg agttgagtgg agtgacagga aaagagcctt gaaatagagt tgcatgaata 8820
ccaaacttta aaaaaacctt gttgtgttgg tggtaaaata cataacataa aatgtaccat 8880
ttttaccatg gttaagtgtg cagttcagtg gcactaagta cacttacact gttgtacaac 8940
catcaccacc atttatctcc agaaccctct tattgcaaat ggaaagtctg cagcctttaa 9000
acaaatatcc acttccctct cctccaagcc ccagcaactg ccattctact ttctacaagt 9060
ttgactcttc cagatacctt gtgtaagggg tcatgcaatg tttttccttt agggtctgtc 9120
ttacttcgct taatataatg tcttcaagtt tcatccacat tgtagcatgt gttaaaattt 9180
ccttcctttt taaggctgag taatatctta ttgcatgtat gaacacccaa cttttaaaat 9240
gagtagtgga aaatgtgcaa gagaagaaga tagtctgcca gagtagtaga agaaaactac 9300
aaagaaccca ttcgcaagag ccaaaggcaa agaggtttct tttcttgtct cgtttttgag 9360
acaaggtctc actgtgtcac ccaggctgga gtgcagtgtc ttggtcatag ctcactgcag 9420
cctcaaactc ctaggctcca ggaatccttc cagcctcagc ctcccaagta gctgagacta 9480
cagatatgag ccaccacacc cagctttaaa acagagagct ttcaaggagg gagtgagcaa 9540
aatatcaaat gctgctcaat gacatcaaac tcaaactcaa tgacaaatga ccagagatgg 9600
ggtctgttga agagaaagtc atcaatgacc ttagcaacaa tggttttggt ggaattgtgg 9660
aggctgaatc ctgattgttt tgggtttaaa tgcatatggg aaatgaagaa taataggctc 9720
tttaaaagtg tttagctgtt aagaaaaaaa gaaagataca ggagtagctg ggggagactg 9780
aatttaggat aatatagtca agtataagaa gaagaggaat ggatatttga tggtaaagtg 9840
ggttgcaagg taaggtagta gggatggaat gaggagcagg gaggtgctga gtactgattg 9900
gcctgacttc tcaaataaaa ttgtcagttt ctcaacggac tatagagaac ttcatatttc 9960
tttttttttt attcttccat tacaaattta ttatcttttc agacaagttg agacatacta 10020
atttaaaata aattcccttt tcagtgaaaa gttgataagt ttaatcaggt aaagctaatg 10080
attaggtaag caatcaatgt ttataattgc atcacaactt ttctggccag tgacttttta 10140
tttatctatt taattttttt aaattatact tgaagtttta gggtacatgt gcacaacgtg 10200
caggcttgtt tcatacatat acatgtgcca tgttggtgtg ctgcacccat taactgatca 10260
tttaacatta ggtatatctc ctaatgctat ccctcccccc tcctcccacc acacaactgg 10320
ccccggtgtg tgatgttccc cttcctgtgt ccatgtgttc tcattgttca gttcccacct 10380
atgagtgaga acatgtggtg tgatagtttg ctgagaatga tggtttccag cttcatccat 10440
gtccctacaa aggacatgaa ctcatcattt tttatggctg catagtattc catgctatat 10500
atgtgccaca tttttttaat ccactctatc attgttggac atttgggttg gttccaagtc 10560
tttgctattg tgaatagtgc cacaataaac atacgtgtgc atgtgtcttt acagcagcat 10620
gatttataat cctttgggta tatactcagt agtgggatgg ctcagtcaaa tggtatttct 10680
agttctagat ccctgaggaa tcgccacact gacttccaca atggttgaac tagtttacag 10740
tcccaccaac agtgtaaaag tgttcctatt tctccacatc ctctccagca cctgttgttt 10800
cctgactttt taatgatcac cattctacct ggtgtgagat ggtatctcat tgtggttttg 10860
atttgcattt ctctgatggc cagtgatgat gagcattttt tcatgtgtct gttggctgca 10920
taaatgtctt cttttgagaa gtgtctgttc atatctgttg cccacttttt gatggggttg 10980
tttgtttttt tcttgtaaat ttgtttgagt tctttgtaga ttctggatat tagccctttg 11040
tcagatgagt agattgcaaa aattttctcc cattctgtag gttgcctgtt cactctgatg 11100
gtagtttctt ttgctgtgca gaagctcttt agtttaatta gatcccattt gtcaattttg 11160
gcttttgttg ccattgtttt tagtgttttc atcatgaagt ctttgcccat gcctatgtcc 11220
tgaatggtat tatctaggta ttcttctagg gtttttatgg ttttaggtct tatgtttaag 11280
tattgaatcc atcttgagtt aatttttgta taaggtgcaa ggaagggatc cagtttcagc 11340
cttatgcata tggctagcca gtttcccaac acaatttatt aaatagggaa tcctttccct 11400
attgctcgtt tttgtcaggt ttgtcaaaga tcagatggtt gtagatgtgt ggtgttattt 11460
ctgaggtctc tgttctgttc cattggtcta tatatctgtt ttggtaccag tatcctgctg 11520
tttttgttac tgtagccttg tagtatagtt tgaagtcagg tagcatgatg cctccggctt 11580
tgtccttttg gcttaggatt gacttggcga tgcaggcttg tgtttggttc catatgacct 11640
ttaaactagt tttttccaat tctgtgaaga aagtcattgg tagcttgatg gggatggcat 11700
tgaatctata aattaccttg ggcagtatgg ccattttcac gatattgatt cttcctcccc 11760
atgagcatgg aatgttcttc catttgtttg tgtcctcttt tatttcattg tacagtggtt 11820
tgtagttctc tttgaagagg tccttcacat cccttgtaag ttggattcct aggtatttta 11880
ttctctttga agcaattgtg aatgggagtt cacttttgat ttggctctcc atttgtctgt 11940
tattggtgta taagaatgct tgtgattttt gcacattgat tttgtatcct gagactttgc 12000
taaagttgcc tatcagctta aggagatttt gggctgagac gatggggttt tctagatata 12060
caatcatgtc atctgcaaac agggacaatt tgacttcctc ttttcctaat tgaataccct 12120
ttatttcctt cacctgcctg attgccctgg ccagaacttc caacactatg ttgaatagga 12180
gtggtgagag agggcatccc catcttgtgc cagttttcaa agggaatgct tccagttttt 12240
gcccattcag atgatattgg ctgtgggttt gtcatagata gctcttatta ttttgagata 12300
cgtcccacta atacctaatt tattgagagt ttttagcatg aagcttgttg aattttgtca 12360
aaggcctttt ctgcagctat tgagacaatc atgtggtttt tgtcattggt tctgttgata 12420
tgctggatta cgtttattga tttgcatatg ttgaaccagc cttgcctccc agggaggaag 12480
cccacttgat catggtggat aagctttttg atgtgctgtt ggattcggtt tgccagtatt 12540
ttattgagga tttttgcatc gatgttcatc agagatattg gtctaaaatt ctcttttttg 12600
gttgtgtctc tgccaggctt tggtatcagg aagatgctgg cctcataaaa tgagttaggg 12660
aggattccct ctttttctat tgattggaat agtttcagaa ggaatggtac cagcttcttc 12720
ttgtacctct ggtagaattt gtctgtgaat ccatctggtc ctggactttt tttggttggt 12780
aggctattaa ttattgcctc aatttcagag cctattattg gcctattcag agattcaact 12840
tcttcctggt ttagtcttgg gagggtgtat gcgtccagga atttatccat ttcttctaga 12900
ctttctagtt tatttgcatc aaggtgttta tagtattctc tgatggtagt ttgtatttct 12960
gtgggatcgg tggtgatatc ccctgtatca ttttttattg catctgtttg atgcttctct 13020
cttttcttct ttattagtct tgctagtggt ctatcaattt tgttgatttt ttcaaaaaaa 13080
acagctcctg gattcattga ttttttgaag ggttttttgt gtctctattt ccttcagttc 13140
tgctctgatc ttagttattt cttgccttct gctagctttt gaatgtgttt gatcttgctt 13200
ctccagttct tttaattgtg atgttaggtt gtcaatttta gatctttcct gctttctctt 13260
gtgggcattt agtgctataa atttccctct acacactgct ttaaatgtgt cccagagatt 13320
cgggtatgtt gtgtctttgt tctcgttggt ttcaaagaac atctttattt ctgccttcat 13380
ttcgttatgt acctagtagt cattcaggag caggttgttc agtttccatg tagttgagca 13440
gttttgagtg agtttcttaa tcctgagtcc tagtttgatt gcactgtggt ctgagagaca 13500
gtttgttaga atttctgttt ttttacattt gctgaggagt actttacttc cgactatgtg 13560
gtcaatttgg aagaggtgtg gtgtggtgct gagaagaata tatattctgt ggatttaggg 13620
tggagagttc tgtagatgtc tattaggtct gcttggtgca gagctgagtt caattcctgg 13680
atatcattgt taactttctg tctcgttgat ctgtctaatg ttgacagtgg ggtgttaaag 13740
tctcccatta ttattgtgtg gggagtctaa gtctctttgt aggtctctaa ggacttgctt 13800
tatgaatctg ggtgctcctg tattgggtgc atatatattt aggatagtta gctcttcttg 13860
ttgaattgat ccctttacca ttatgtaatg gccttttttg tctcttttga tctttgttgg 13920
tttaaagtct gttttatcag agactaggat tgcaacccct gccttttttt gttttccatt 13980
tgcttggtag atcttcctcc atccctttat tttgagccta tgtgtgtctc tgcacgtgag 14040
atgggtttcc tgaatacagc acgctgatgg gtcttgactc tttatccaat ttgccagtct 14100
gtgtctttca attggagcat ttagcccatt tacatttaag gttaatattg ttatgtgtga 14160
atttgatcct gtcattatga tgttagctgg ttattttgct cattagttga tacagtttct 14220
tcctagcctc gatggtcttt acaatttggc acgtttttgc agtggctggt actggttttt 14280
cctttccatg tttattgctt ccttcaggag ctcttttagg gcaggcctgg tggtgacaaa 14340
atctctcagc atttgcttgt ctgtaaagta ttttatttct ccttcactta tgaagcttag 14400
tttggctgga tatgaaaatc tgagttgaaa attcttttct ttaagaatgc tgaatattga 14460
cctccactct cttctggctt ttagagtttc tgctgagaga tccgctgtta gtctgatggg 14520
cttccctttg tgggtaaccc gacctttctc tctggctgtg cttaacattt tttccttcat 14580
ttcaactttg gtgaatctga caatcatgtg tcttggagtt ggtcttctcg aggagtatct 14640
ttgtggcgtt ctctgtattt cctgaatctg aatgttggcc tgccttgcta gatttgggaa 14700
gttctcctgg atcctactct ggggaagtat cctgcagagt gttttccagc ttggttccat 14760
tctccctgtc actttcaggt acaccaatca gacatagatt tggtcttttc acatagtccc 14820
gtatttcttg gaggctttgt tcatttcttt ttattctttt tcctctaaac ttctcttctc 14880
acttcatttc attcatttga tattccatca ctgataccct gtcttccagt tgatcgaatt 14940
ggctgctgag gcttgtgcat tcatcatgta gttctcgtgc catggttttc agctccatca 15000
ggtcctttaa ggacttctct gcattggtta ttctagttag ccatccgtct aatctttttt 15060
caaggttttt aacttctttg ccatgggttc aaacttcctc ctttagctcg gagaagtttg 15120
atcttctgaa gccttcttct ctcaacttgt caaagtcatt ctccatccag ctttgttcca 15180
ttgctggtga ggagctgcat tcctttggag gaggagaggc gctctgattt ttagaatttt 15240
cagtttttct gctctgttct ttccccatct ttgtggtttt atctatcttt ggtctttgat 15300
gatggtgatg tacagatggg gttttggtgt ggatgtcctt tctgtttgtt agttttcctt 15360
ctaacagtca ggaacctcag ctgcaggtct gttggagttt gctggaggtc cattccagcc 15420
ctgtttgcct gggtatcagc agtggaggct gcagaacagc gaatattggt gaacagcaaa 15480
tgttgctgcc tgattgttcc tctggaagtt ttgtctcaga ggagtacctg gccatgtgac 15540
gtgtcagtct gcccctactg gggggtgcct cccagttagg ctactcagag gtcagggacc 15600
cacttgagga ggcagtctgt ccattctcag atctcaagct gtgtgctggg agaaccacta 15660
ctctcttcaa agctgtcaga cggggacatt taagtctgca gaggtttctg ctgccttttg 15720
tttagctatg ccctgccccc ggaggtggag tctacagagg caggcagtca ggcctccttg 15780
agctgcagtg ggctccaccc agttcgagct tcccagccac tttgtttacc tactcaagcc 15840
tcagcaatgg cgggcacccc tctcccagcc tcgctgccac cttgcagttt gatctcagac 15900
tgctgtgcta gcaatgagtg aggcttgatg ggcataggac cctctgagcc aggcatggga 15960
tataagctcc tggtgtgcca tttgctgaga ctgtcggaaa agtgcagtat tagggtggga 16020
gtgaccctat tttccaggtg ccatctgtca cccctttcct tggctaggaa agggaattcc 16080
ctgacccctt gcacttcccg ggtgaggcaa tgcctcgccc tgcttcggct cacactctgt 16140
gcactgcacc cactgtcccg cacccactgt ctgataaacc ccagtgagat gaacccggta 16200
cctcagttgg aaatgaagaa atcgttcgtc ttctgcatca ttcacgctgg gagctgtaga 16260
ctggagctgt tcctattcag ccatcttggc ttgggaccag agaacttcgt atttcttaca 16320
gcacctccta agtgttatgt tttgttgcag atccgccaga tattcctgat gaagtaacct 16380
gtgtcattta tgaatattca ggcaacatga cttgcacctg gaatgctggg aagctcacct 16440
acatagacac aaaatacgtg gtacatgtga agaggtaggt cacttcctca cggcttcata 16500
taagcagttc caccccagtt cagccagagc tctgcctcca gcagagatcc aagaaatcag 16560
cctcaaacat taaatatata ccctgattta tcccttattt cctacttatg atcagtgaaa 16620
ctaccaaagc ccttttcaag ccattaatat tttcactctg gcaggcaaag tgctctatga 16680
tctttctgtc ctttttattc attagtaggt aactggtagc aggctcctaa tggtggtaca 16740
gcctagcaca gttttaagcc attgcttagg acgggcacag tggctcacac ctgtaatccc 16800
acactttggg aggccaaggt gggtgaataa cctgaggtca ggagtttgag accagcctgg 16860
ccaacatggt gaaacctggt ttctactgaa aatacaaaaa ttagccaggc attgtggcag 16920
gcatctgtaa ttccagctgc tcaggaggct gaggcaggag aattgcttga acccaggagg 16980
cagaggttgc agtgagccga gactgtgcca ctgcactcta gcctgggcga cagaacaaga 17040
ctccatctca aaaaataaaa taaaataata aattattgct taaatccctg ctctattctt 17100
cttctagggt ttcaacaact taatttcccc gaattgctat tatttttaat ctttaaatgg 17160
gcctaaaaat aaaacataac acacaggttt gttctaatta attatgtgga atttggcttt 17220
taaagtgtat ataattatgc catattacca ctaaattcat ggaagctatt gttaataatg 17280
accctcagat cttaaattta gtgtctacat agctgatcaa ctttcctgtt tgccttatac 17340
taagggggtt ttcaggacaa aggattttca gttttaaaac ctggaaagtt gtgggcaaac 17400
taggacaagt tgcttacctt atccgtgttt cttgttttgt ttagtttatt aaaaaataaa 17460
attccaggcc aggcatagtg gctcatgcct gtaatcccag cactttggga gactgaggct 17520
ggtggatcac ccgaggtcag gagttcaaga tcagcctggc caacatggtg aaaccccatc 17580
tctactaaaa atacaaaaat tagctgggcg tggtggtggg cgcctgtaat cccagctact 17640
caggaggctg aagcagggag aattgcttga acccaggagg cagaggttgc agtgagctga 17700
gatcacgcca ctgcactcca gcctgggcga aagagcgaga ctccatctca aaaataataa 17760
taaataaaat aagatgccgg ctgggcgcgg tggctcccgc ctgtaatccc agcactttgg 17820
gaggctgagg tgggtgcatc acctgagatc aggaatttga aatgagcctg gccaacatgg 17880
tgaaaccccg tctctactaa aaatgcaaaa attagccagg tgtggtggca cacacttgta 17940
atcccagcta ctggggaggc cgagacagga gaattgcttg aactcaggag acaggagctt 18000
gcagtgagcc aagatcgtgc cattgcactc cagcctgggc aacaagaggg aaactctgtc 18060
tcaaaaaata aataaaataa aataaataaa ataaaataaa ataaaataaa ataaaataaa 18120
ataaaataaa ataagccttc tgtggtgttg ttgaagtatg cttttttttt tctgtcacta 18180
attcttaaaa atttcacaaa ccattttgta aagcatttat tggaccctta ctgtttgcca 18240
agcactgggc caagagcttt ataaatgctg cctcatttaa taccctatac aaccatgtga 18300
agccctggga tcatacaaat gcttatatcc tcctaaaatt catatgttga aacaaacccc 18360
caatgcaata gtaacaagag ttggggcctt tgaagtgaga ttaggtcatg agggtaaagc 18420
cctcatggat ggaattattg cccttccata agaggcctga aagagagctt gtttgccctt 18480
ctaccctgtg aggacacaac cagaaggtgc tgtctgtaaa gcagagagtg agccctcacc 18540
agacactgaa tctgctgatg ccttgatctt ggacttccaa gcctccagaa ctgtaaacaa 18600
taaatttctg ttgtttataa attgcctagt ctaaggtatt tgtatggcag ctcaaagaga 18660
ctaagacagc tgcatacaat tatttttccc atttgtatag acaagggaac tgagacttag 18720
tgaggtcagg taatgaatgt atccaggacc acacagctgc agagaaggag aggtggaatt 18780
tgaacatagg ttgcctgact gtcttctcaa cttattttct gctgaaggtg tgtggaggac 18840
cagatcgcag ggcatattta agatattcta ctcagttctc atcattatgg aagggaataa 18900
ccttcttttt aaaaaaaatc tttttattta tttatagggt ttttgttttg ttttgttttc 18960
gtttttgttt ttgtttttga gccacggtct ctgtcgccca ggctggagtg cagtggcaca 19020
atctcagctc actgcaacct ctgcctcctg ggtttcaagc aattctccca gccaccaagc 19080
ctgatctcta tggaagagaa taacctaatc ttgctctctc tctccacttt ttggatactc 19140
agaataattt tgattaagtg aaacctaaaa agaaacacct catcagtcaa gaaagtccac 19200
gtagaaacta gacagatttt atgaacacat tgccaggcct agagttacca gctacatgcc 19260
attggcaaga ggcgtacacc tttcattctg aacaggagtt aaacagaggc atattctggt 19320
accaaagagg tgatgaaaac tctgatatca gggatgggtg gaattgattg aagagatgca 19380
atatgctaag tactgtgctc tgtacttcat gtgcatgaca tcttcaattc tcaacttaac 19440
cttgtgaggg aactatcgtt attgttccca ttttacagat ggcgtgggga gctcacatta 19500
cctctccaaa gtcacttgac taagaagtaa aggagcaggg attctaacag ggatttctct 19560
ggctacacca ctggagacta aacctctacc ccttgcctat agggtaaagt agaaaagcca 19620
tgagagcaag acaactagag tctcattgct aagtcaactt taggaatgtg aaggtgaggg 19680
cagtatggca gcaaactttg cacttcaagc acacagaaaa accaggcagt gccagattga 19740
cagagatagc ctagtgtctt gaggatcttc actatctccc agaacctgga aggatctcct 19800
gaactgctta tcctggttgt ttggttaatt cattctttct tttattttta atataaccct 19860
ttattaagta taattcatct accatacaat tcaccttatt taaagtatat cattccttga 19920
gttttagcac ccatcactac aatcaatatt gaacattttc atcatgccaa aaaaaaaatc 19980
acatccatga gcagtcactt cctatttccc ctcaatcttc ccagtctatg gcagccacta 20040
tttgctttcc gtttctgttg atttgcctac actggacact tcatgtaaaa ggaatcatat 20100
aatatgtggt cttttgtgac tggcttcttt catttagtat aatgtcttca aggttatcta 20160
tggtgtaaca tgtatcaggc tggagtgcaa tggtgtgatc tcggctcact acaacctctg 20220
cctcctgggt tcaagtgatt ctcctgtctc agcctcctga gtagctggga ttacaggtgc 20280
acgccaccac gcccagctga ttttttttgt attttagtag agactgggtt tcaccatgtt 20340
gcccaggctg gtatggaact cctgagctca ggcaaccctc ctgccttggc ctcccaaagt 20400
gctaggatta caggcataag ccaacgcgcc tggcccttta ttcctttttt taataatgtt 20460
ccattatttg gaacacattt tatttattta ttccttggtt gatgaacttt ttggttgttt 20520
ccacttttca gctattatga attattcttc tattaatatt tgtgtacacg ttttgtgtag 20580
acatattttt atttctcttg ggcatatatt taggaataga attcctgggt ctcttggtaa 20640
ctctatgttt aatcttttgt tcaactgcca taatgttttc caaagcagcc acaccatttt 20700
acattcccaa caacagtgta taagggttcc agtatctcca cattcttgcc aacctttgtt 20760
tttatcttgg ttattgccat cctagtggat gcaggttaat tctttcaagc ctgacttacc 20820
tgccttctga ggttcctgat agtaaaactg cattgcaaat tccagacaga tgaaccacaa 20880
tttgaaaaaa tatatttgtt ggatacaatt ttaaacttgc taacccccac ctaatttcct 20940
atttagtatc ataaaaatat tttctgaata ttttatatga ctatgtatta tatatttctt 21000
ttaaaatcct ttaatgtgtt caaaattatg tatgtttaca tttatttaca catgactttt 21060
gaggaacaca ttcactttat aaagtaagga atatttgtag tagttatgag tactaagatt 21120
gttctcagta ctcaaaaagt cactctgaaa gtattaagaa tgagtttact aaagagaatg 21180
ctttcagaaa tattcattgg gaagagcatg ggctttagag ttttagattt aatttccagt 21240
tctgaaactt accagtcagg tgtcttttat gatacaaata tcagaaaact caagtgctgg 21300
ccaggcgcag tggcacacgc ttgtaatccc agcactttgg gaggctgagg cagatggatc 21360
acttgaggtc cggagttcaa gaccagcctg gccaatatgg tgaaacccca tctctactaa 21420
gaatacaaaa attagcaggg catgtaatcc cagctacttg ggaggctgag gcaggagaat 21480
cgcttgaacc tgggaggtga aggttgcagt gagctgagtt catgccattg cactccagcc 21540
tgggctacag agtgagactc catctcaaaa aacaaaaaaa taaaagaaaa ataaaaaaac 21600
tcaagtgcag tcacttaaat agacatggac ttatttatat caggtcataa ttatatgtag 21660
taacagatgg catgataatt cagtaatacc ccagggatct aggctctttt cctctttcta 21720
ctctgccatc ttcagtgtgt tgaccttaat cttcagatgc tgtatctcca ggcttcttat 21780
ccaagttcca ggcaggaaaa gtggtaaaga gcaaaggagt tcctcctgtg gacttcgacc 21840
tacactgagt tggccacaac agtgtcacat gtctactctg tctggatggg aacctggcag 21900
aagggcattg taaatggagt tggataccgt catccaacag tatctgccat agttgctagc 21960
tgtgtaatct tagaagagtt atttagcctt gctgagcctc agcctcctgt gaaatgagga 22020
taattaatgc cacaaagctt ataaaaaagc aaattatagg aagtgacttg catataggaa 22080
atgcttagaa ttaagtacaa cacaaaatga tgtcttagtc ccttcaggtg actatgacaa 22140
agcacctaga ctgcgtaatt tgtaaaaaac agaaattcgt tgctcacagt tctggaggct 22200
aggaagtccc agatcaagtg tcaacagatt ttgaaggtct gttcttcata gatggtgact 22260
tctatatgtt ctcacatagt agaaggggcc aggcagctcc cttcaacctc ttttataggg 22320
gcactaaatt gattcatgag ggaaaagccc tcatgactta accactttct aaaggcccca 22380
cctcttaata ctattacatt ggggtttaag tttcaacatg taaattttga gggtacacta 22440
atattcagac tatagcaaag gatattataa tattatggcc taagggaaac ctgaccgatt 22500
tgattgaggg aaatattaat gtaaagccat aaaaattatt atttatagga tattatagat 22560
aattttattc atatattttt aagtaataca ataattttgg aaaaatctag aaagagatgt 22620
tgcatgtgct ctaatagaaa gacttatttt ttgtatgtca atagtacatt tattcattca 22680
aactagaatg taggcttaat gtgggcaaga atttttgttt gattttttca ttgctatgtt 22740
gattgaatct agaatggggc ctgacacata gtaaatgctc aataaatatt tgttgagtaa 22800
ttattctagt tgataactag aaatagacat ttcctgaatc tccccttcac tgtctagtta 22860
agtaataata taaggtcata tatattttat aaattatttt tcccatcttc tttcttaaaa 22920
tccaacaata aactataacc aaactctgat aaacctaacc aagttctgaa ttgatggagg 22980
ccagattaat gggattttat tacattctaa acaggacata aaagatataa aaggttagaa 23040
taaaagtgaa tgttctcctc tagaaaagtc aaaggactaa cttataaata tagacaggtc 23100
agaaaaggaa acaaacacct atttatctaa tgattagtta caaacaaact aatgagttga 23160
aaaaaattag agaagagggc tgggcgcagt ggctcatgcc tgtaatccca gcactttggg 23220
aggctgaggc aggtggattg cttgagctca ggagtttgag accaacctgg gcaacatggc 23280
gaaaaataca aaaaatataa aaatttctac aaaaaataca aaaactagcc aggcgtgttg 23340
gcgggtgcct ggagtccaag ctacttggga agatggcttg aacccaggag gcagaggttg 23400
cagtgagcca ctgtactcca gcctgggcga cttagccaga ccctgtctca aaaaaaaaga 23460
aagaaaagag caagtcaatt tccctaacta ccagaaaaaa tctttccctc aaggagaaag 23520
ctgacttata atgaatgttg tggtcgaggt agtattatgt ttaaaggagc tcttctaaac 23580
gttcagttat tagggtattt tccacattgg taactaggca gagatcagca tgtgcaaggt 23640
ttcacttcta actcatgtgg ttcagttttc cagtaaaatc acatgtagag agaagctttt 23700
tacctgagac cacctactca tttctccagt tgcagaaagg cagtgtttcc cctatggcaa 23760
cataggtgcc atcacaggcc tcctcatgtt ggggtgaagt tgtaaagtag aattttgtct 23820
gttttgcttc aagagctttc tttcttccca gctcctttgc ggtggcctca ccagacagag 23880
cctcctggct gttcacatac cttcttttac ctcctgtatt ttgctgtttc aaagggtaat 23940
gatagggaaa aaaaaaaacc aaaaaaaaaa caaaaccagt gctaataacc atctccctac 24000
tgtagtccca ctatcttcag caatttcatg taaatatatt ttttatttat cttggaaaca 24060
ctggtaatgt ctggctcagt gtattctact ccataaatat ttgttgaata aaaatgcatg 24120
aatgatagcc ctgcattctg ttccattcaa gtcatcttag caaatattta tttagcattt 24180
gatggtttcc tggaattgta ttaaactgta gatatttaaa aaaaagagat catctctgtg 24240
catgacaagc tcataaacag tttagaataa catcaatgtt gggattttca cgcaccgtag 24300
aagaccaata aggcaaatgt tttcagatgc agtatcatgt tagagccctt aaattcagcg 24360
gcctactctg ctaattcata aggcctgttt gtttttgcca cagcttctct acatgcatat 24420
ttttaataac cagaaagagt tcttaggtgt gattccaaat actattttta aggctacgtt 24480
aggtttcagt aattccttta ggactcaaaa tgtagtttat attttagaat ccatttcctc 24540
actgattatg agcccagaga gctaattgtg gctggagaca aacagaacct tgctgactga 24600
tactgcttta tattcatgac cactaacctc aactgggccc ggagagccac acagtaatcc 24660
tactacattt cactagccaa gtcactgtct tgctaagcca ggtcattgct tcattacttt 24720
ttctgtcatc tctcctctct agtatcttcc cttcctcact ctctattgaa gacctgcttc 24780
ctactttcct gagaaaacag aagcaatgag aaataccaca gcctccctca ttgactaatg 24840
cattgacatc tgtacccata tagttgatct ttcctgctat tgctatggat gaattaccat 24900
tgccctaagg tcaactctcc acttgggtac tagatcttat cctgcctgcc tactggagga 24960
cactgctcca aaactttcct ctcttccttc tgcattgtca ttgtctctgt ctttactgga 25020
tcattcccat tggcttttaa gcatgctgta gcctttgccc ttttgaaaaa tataaccctc 25080
cctttgttcc tgacctctac cacccaattt ctctgtttct ttttatgaaa aaaaatcaaa 25140
agagttgtct gcactgtctg tctctatttt ctctcttctc ttttatctag tttagtcatg 25200
ttttatgtcc tcaccactcc actgaaacag ctcctgtcaa agtcactgat gatttcccca 25260
ttgccagatt gaatggctta ttctcagtct ttatcttact tatgaaacat ttactatccg 25320
agcatttaat gtagctcttc acttcctcca tttggcttcc aggacaggac tcccttttgc 25380
tgctcctccc accttcctgg aaactttatc tcagtctctt ttgctgattc atcttcattt 25440
cagataaatt catagtgacc cagagctcta tattttgtca gcctaaaaaa agacactagg 25500
gaagattatc ttcaaatttg ttgggtttac ttgagaatat aaataaggag tataatacag 25560
aatgcatgac atggcaagcc agcagtgcat ttggtgaggg aaaggataaa gggaagcttt 25620
tattaccaaa aaggaatata tgtgagctat ttaggaacag agttcattag ttccagaggc 25680
tcaaagccag agtgattgtc aattaataag tggagatgta ttactgggta agcggtcttc 25740
caaaaacatc ttatctggat tactgcagtc ctaaaggatg tctagtgata aaccttatca 25800
aagcagggga tgactgaaag gtttttagaa agtccttggg aacagttctt atctcagaca 25860
tgtaagcatg ggcctcttct ccttcaggcc tttcttgccc tattttgtct gggtctgaca 25920
aaagtgattt catcctggta tgtgcaactt tcacacctag gaccttttat tatctctatt 25980
tacagtcatt acctaaagga tagccttcaa atttgtggtt taaaattcct caatgtatat 26040
ctgtgtctaa atatctccac caaatacagc tgccatgttt ctaacctgtc attcaaggta 26100
tcttgaagtt aacattttca aaaccaaaca cccagtttcc tctcccaaga cttgcatttt 26160
ccatttcagt aaatggcaac tgtatccttt gcattattca ggtcaaaatc aggtagattc 26220
tcctggattc ctctctatta tggccttcat ctaattgatc agcaaaacct tccggctcta 26280
tcttttaaaa tgacctcacc acctacactg caatccaagc cagatcatct ctcacttggg 26340
agtataagaa cttctaactg gtccactcgc ttcctccaga gtcccttatt catgagtttt 26400
cacagtaatc cttttcacat gcacctcagg ccatgtcacc cttctgctca tgaacctccc 26460
atttcattca gagatcaaag ccagagtccc tcaaggactc tatgtgacct tgcaagtctt 26520
ctaaactttc ccctcttcca aaactctctg attttgtctt taatcccttt cctagtaaaa 26580
cctcactgac ctccttgctg ctctttgaac aggccaagca aggtcctgcc tcagggcctt 26640
tgcatgttac ctagaatgct cttcctccag agagccacag ggtttcctta ttgccctaat 26700
gtcaccctct cagataagac tttcctcatc tctctaaaaa acaaaaacct taaaacccac 26760
ccctactctc agaactgcct aaccttttta ctccgcttta gttttcttct gaacatttct 26820
caccatacat agatcagatt ctatatttat ttgtttccac caaaatgtgt gcttcatgac 26880
agttgggact ttatctgttt tgttcattgt agccccaata tctaaaaata tacttggaat 26940
atagtcagtg ttaaataaat atttattgaa tgagtgatta aatgaatgaa agacactatt 27000
taccattatc aacataaatc tgcaatgttt tttgaaaatc tataaattac aactatatct 27060
aggtgctcag ggaacatcag aaaaatatga attatactaa ctcccttcac aaatcatctg 27120
tcatgtatta gcccatgaaa aaaagaaata gaaataagat attcaaaaac tttgtaatat 27180
acagttatgt aaaagataga ggaaaaacca aagtgttgtt ctcctttcta ctctcaacag 27240
cactcctgac acgaaatgtg ggaagatttt ccccacacac caatcaattc tcctgcagac 27300
atcagctaga tgtcctctaa tttaattcaa ttctgactct gtctacctgg aggtagcatc 27360
agatcccaca gctaaaggct cagtcccaca agactcaacc ctgttttaaa tgtcaatcac 27420
aagccccagg tcatgacctg tgcttttgac caaccggcta aaaattgtgg tttccacgat 27480
acactcctca ggtttgatta acttgctaga gtgtctcata gaactcagga agacacttta 27540
cttatattta tccatttatt ataaagaata taacaaaggc tacagatgaa cagccagatg 27600
gaagagatgc atggggcaaa gcatgcggga acaccaccct gcaggcatcc tcatatgttc 27660
agatatctgg aagctccctg aacccagtcc ttttgggttc ttatggaggc ttcattacat 27720
aagcacggtt catcatatca ttggccattg gggatcattc agcccttctc tcttcccagg 27780
agatgggggt gggtaaaggg caagggggtt ggggggactg aaagtttcaa tcttctcatc 27840
acattgttgg ttcccctggc aaccagcccc taccctaagc ctatccagga gcccccagcc 27900
atcagccatc tcattagcac tttggagatt ccaagggttt taggagctgt gtgctgggaa 27960
ccagacagaa accaaatata tatttcttat tatgtcacaa tatcacaagt tctatataaa 28020
aataacccta aggtgtaatt agtcattatt atcagattct tcaattaaaa cagtgctttg 28080
tggtctaggt gctaatatgg ggtagacttt aaaagcagaa ttaaattact tagtaactat 28140
ggttactgtc agtttgaaaa tacatttcca ttttgacttg tggtctcagt atgtgtggta 28200
aaagaattag ccacaaacca atgaagaaca tataatgtgg ttttctctaa ctggaaaata 28260
ttcaaagatg tcctacttac catttacaca tagttgccat tttcttgttt tcacatttga 28320
attcttactt agcatgaggt taacatactt taacaagttc tctgttaagg tatttacgtt 28380
tcatcttatt tcagaaagaa tataaggtaa ctatgtaaac atctcaattt aacggcataa 28440
tttaacttaa gatacagtga tataagagaa attttactgg taagaaatat agcaatttta 28500
aaagtttcat ttgtattctt tagaatgtgt caaagtcaca tatcataaat atcttctttt 28560
tttatttaaa tggacacata gtctcactct gtcatccagg ctggagtgca gtggtgcaat 28620
gttggctcac tgcagcctcc atctcctggg ctcaggcaat cctcagcttc ctgagtagct 28680
gggaggacag gtgcctgcca ccacacctgg ctaatttttg tatttttagt agagacaggg 28740
tttcaccacg ttggccaggc tagtctcaaa ctcctgacct caagtgatct gcctgcctca 28800
gcctcccaaa gtgctgggat tacaggtgtg agccaccatg cctggcctca gccagtatct 28860
cttaattcag aaaaattgtt gtttaatgag tccttcatta ggtgagaagc catctactct 28920
gtttcttatt taatttactc atgataacaa caacgttatc attcctatac tgaggatgag 28980
taaactgagc tgtatagagc ttaagtaact tgctccaagt cttacaactt atcaaggggc 29040
agagctggga tttgaaggta ggtctgtctc taaaatccaa gccctgtgat tttagtcacc 29100
atgacatacc ctcctcgtcc tctcatggtg ttcatagtga tctcacgctg gtatgaggaa 29160
agaggtaaca cagaaaaaat gcactggaac cgaaaaacct gagctgaata ggaggagttg 29220
ctcctcaccc ctccaatgac tatcagcctt agagagattc cttgaccact tgctgaggtt 29280
gtcttgttct gatagtagca ataagtttat ataaattata taaaatatag aatttctata 29340
gtacttagat gcacacatct gcttattgct tggtattaat agcataaggc tggttccttt 29400
tctctgcgtc tcagcaagca cgtttcttgg attccaaaag atgtaagtgg ctagcaagtt 29460
taatcctggt gggatatttt ggggctagaa aaatttagga gttgctgaaa agatatatag 29520
tagtaacagg acttggtgga gccttggtgg agggacagtg atttttaagc tttatcttct 29580
ccacaaatcc aatcaaggca gtcccctgag agagagggca gttgatggta ttagatttaa 29640
aaaatcaggt tagagtctgc ctcaacagca caaacagtgt aattggaaca agacaaagaa 29700
gatggcatga cccctgatca aggacggcat gcaaatttgt gaagtatttc catttgatac 29760
aaataagaat gtatatggct gagcacggtg gctcatgctt gtaatcctca cgtgggagga 29820
tcccttgagg ccaagaattt gagaacagcc tgggcaacat agcgaggctg catctcttaa 29880
aaaaaaatta ttttaaataa aaaaattagt taggcctggt ggcacatgcc tgcgatccca 29940
gctactcagg aggctgaggt gggaggatca cttgagccca gaaagtcaag gctgcagtga 30000
gttatgattt gtgccactgc actcaaacct gggtgacaga gtgagaccct gtctctaaaa 30060
aatagaagaa aataagaatg taggctactt ggctttccag cattgttcag atttcaaggt 30120
tactttcctt ctaaagtagt atatctatat caagttaagt ttcatgatgt aatgcaatta 30180
acttaggagt ctgaaagtca taaaccaaac aggtaacaaa gacctagacc attgccatag 30240
ctatcaaaac agggaaaaaa gataacatag gaaaataata ttttaatgct taaaaaaatg 30300
cttaaccttc tttagtaatt ggttggctct taaaggtgac gaagagaaaa ttgttaaaaa 30360
tggcaaactg agaaaggtgg accgcatgcc tttgacaaca atgaagacac tggcaagaag 30420
tgctgatttg catggaaaga taatttagtt gtcagttttc tatagttctg gttccagtca 30480
gacatccaaa tgaagctccc agtgagggca caggtatgcg tgagacacac atgtgaaata 30540
gcaggtgaag ctgagaaggg agtgagccca gaaaaagggg tcagggaaaa ggcaaacacc 30600
agggctgacc ttcaatgtga gtgaactcag agagtaggga aagaaaccca ggtggaaggc 30660
tggaggggga catgccacta agtaggtgtg agagaggaag gccctctaac ccagaagaca 30720
ggctttgggt agcaaggaag tgagaattat aaccaatcaa gagggataaa tgcttaaatg 30780
aggattcaga ggacttcacc ttgtaaagga caccatttta aaagagcagt ttcaaggaaa 30840
agtaaaggca aagatcacaa taaaaggact aaagaccaaa tgggaataag ttggatgtag 30900
ttactaagga ggtagaaaat ctgagaagct taagaacatg aaataatgga gtaggtagtt 30960
caaggggctc aagaaatggg aactgaggaa attctagtga aaatacttcc atgttacaaa 31020
tgaatctgat tacagattat gttgtgtttt ggagtctgag gggggcccta ttcatctctg 31080
cagaagaatg agtgaacaag gggtgggaca agaggctagg agatttgagg acactcctgt 31140
gttagtccat tcttgccttg ctataaagaa atatctagac caggtgtggt ggctcacacc 31200
tgtaatccct gaactttggg aggccaaggc aagaggatca cttgagctca gagctcgagg 31260
ctggcctggg caatgtggca aaaccctgtc tctacaaaaa attagctgag agtggtggtg 31320
catgcctgta gtcccagcta ctcaggaggc tgagatggga ggacctcctg agcctgggag 31380
gtcaagactg cagtgagctg tggccatacc actgcactcc agcctgggtg acagagtgag 31440
accctgtcat taaaaaagaa aagaaaagaa aagaaaagaa aagaaatacc tgaggctcgg 31500
taatttatga agaaaagagt tttatttcag ctcacagttc tgcaggctgt ccaggaagat 31560
tgtgaacaag atagagggag gggggatatg ccacactctt taaaatgacc agatctgcct 31620
gaactcagag ggagaagtca ctcattactg ccaggagggc agcaagccat tcatgaaggg 31680
tctgccccac aagtcctcac ctccaacact ggtgatgact ttgcaacatg agatttggag 31740
aggatgaggg tggaaacaat atcaaatctc ttcacagaaa tcagaggagc aaagaagcat 31800
tctccagcac tcctttcgcc accgcctcca accctcgtcc actaaaaaca tcatgtgatt 31860
atttaggggt agagatttaa aaacagaggc tcaaacattc tgtccaaagc cagtgaaaac 31920
aatttgaaac tctggcatta acagatatca ttcggaattc taccaagttt attgggctac 31980
ttggatattc tcattcaatt ataaatactt agataaatat gctttgaaat gatacttaat 32040
agccctctct attcccctgt tctaaactag atctttcctc tttatctttt ccatcctctt 32100
ccacagtgca tgactccctt tcccctcatc aaacctgtca ttaggtccag tcagttctac 32160
actcaaaatc cttcatgggt tgggcgaggt ggctcatgcc tataatccca gcactttggg 32220
aggccaagac gggcagagtg cttgagttca agagttggag actagcctgg gtatcatggg 32280
aaaaccccat gtctacacaa aatacaaaaa ttaattgggc atggtagtac gtgcctgtgg 32340
tcccggctac tcaggaggct ggggtgggag gatcactcga gcccaggagg tcaaggttgc 32400
agtgagccaa gatggcccca ctgcacgcca gcctgggtga cagagccaga ccctgtctca 32460
aaatccttca tatccacccc cattggcttc cacctatttc agactaataa tccaattctg 32520
gattattgta tagccttttg atttttccac taccaccact ttcatttccc acaaatcctc 32580
cgtaaaggtg ctagacagtc ccagagaccc tcaaaatagt gtgaatctca ctatatgcac 32640
tcactttcta tcacttacat gatacagtcc tgatccatca gtagctcatg gaaggtcttc 32700
tgacaggcct gctccactac aagtttcttc ttgcattttc aggatccagg ctattgcact 32760
tgttgaacct tctcagaaat gtcatgttat ttcacgtatt tgtttcagaa catgctggtt 32820
gtctctgtcc aggaggttgg ccttccccct accccattgc gatctctcac cccatcctga 32880
ctcctcccca ccactccatc ctcaccctat gtcctgatag aaatgtctga cttcacagtc 32940
cttgcactga accaaaatgc agtgctcttt tccaaaggca gctattctgg ctattccaag 33000
ctatgtccag tgccgacttc cctaacaggc acagtaggca cagtggctag ggcccacaat 33060
aattttagga gtccatgaaa atgtttaatt ttacttaaaa tcagaagaga aaaataactg 33120
ttatgttcat gtatatgcat gtatatggca tgcatatgta tacatctatg tatatgtgtg 33180
tatatttttg tgtattttat atatttatat aatatatacg ctcattgttt ttttaatgga 33240
ggaaagggtc catgaaggca gaagtgttca gggcccattg aaatcatact gtggcccttg 33300
tcagatttga atttattttt taaaattgtg aaaataaaat caattttgaa atatttttca 33360
gtaaaaggtt gcatatttga aagcaggctt aaaaagttag cgtttttgtc caggcacagt 33420
ggctcatgcc tgtaatccta gcactttaga aggctgaaat gcacggattg cttgagtcca 33480
ggagtttgag accagcctga gcaacacagc aagaccctgt ctctactgtt tagaaaatta 33540
aattttaatt ttttgttttt gtttttgttt ttgagacgga gtctcgctct gtcgcccctg 33600
ctggagtgca gtggtgtgat ctcggctcac tgcaagctcc tcctcctggg ttcacgccat 33660
tctcctgcct cagcctcccc agtagctggg actacaggca cctgccacca cgcccggcta 33720
atttcttttt gtatttttgg tagagacagg gtttcaccat gttagccagg atagtctcga 33780
tctcctgacc ttgtgatccg cccgcctcgg cctcccaaag tgctgggatt acaagcgtga 33840
gccataaatt ctaatttttt ttaaaaaggt aacattttaa aaatctggaa taattaattc 33900
aaactttttt tctttttttt ttttttgaga cagagtctca ctctgttgcc caggctggag 33960
tgaatggcgt gaccttggct cactgcaggc tctgcctccc gggttccagc aattctcctt 34020
tcgcagcctc ccaagtaact gggattacag gcacatgcca ccaattattg tattttttta 34080
atagagacag ggtttcacca tgttggccag gctggtctcg aactcctgac ctcaggtgat 34140
ccaacccgct tggtctccca aaatgctagg attacaggtg tgagccacca tgcctggcca 34200
attaattcaa actaaataca atttatgatc atcttttttt tttgttttaa gtttagagac 34260
agaagaagag caacagtatc tcacctcaag ctatattaac atctccactg attcattaca 34320
aggtggcaag aagtacttgg tttgggtcca agcagcaaac gcactaggca tggaagagtc 34380
aaaacaactg caaattcacc tggatgatat aggtaaagaa taagaaattc tgtaagtctt 34440
taataataac cagtttgtgc tgaccttgtc aaatgaggtc tagatctgaa agaagttccc 34500
ctaaagttcc tgcagagcat gataaaagaa acagaaatta cccataattc tacctgccca 34560
agacaactta gagatgagta gtgctgctgc cattttgttg tatatccttc cagtcttatt 34620
tctaaattgt tgtatgtggc tgggccggtg gctcacgcct gtaatcccag cattttggga 34680
ggtcgaggtg ggcgatcact tgaggtcagg atttcgagac cagcctggtt aacatggtga 34740
aaccctgtct ctactaaaag tacaaaaaaa aaattagcca ggcatggtgg cgggcacctg 34800
tagtcccagc tactcaggag gctgaggcag gagaattgct tgaatctggg aggcagaggt 34860
tgcagtgagc caagattgtg ccactgcact ccagcctggg tgacacagca aaactcttgt 34920
ctaaaaaaaa aaaaaaaaat ccatatatgt gtttttacaa atatttattg gaaacttctt 34980
attttcaagc attgttctaa aggctagagt gaataagata gacaaggtgc ctgccctgaa 35040
ataacttaca atctactagg gaaggcaaaa aaaaaaaaaa caaaaaaaca ctatgatcat 35100
gataaagttt gttgagtctt acgttgtgaa aagtacagca tgctaaattc ttatactcta 35160
tacactactt ggggacttat gtaaggtttt tttgtttgtt tgtttttatt ttgaaaagtt 35220
ttacaaaata catagaaaat tgcagagaat tatgtagacc tctctatgtt catcagccag 35280
atttaacaaa cattaatagt ttttgtttca gatattttat accctgcctt tttatactta 35340
tatattagta ataaacattt ctattaattt aatctatagt tttattttta atgttgtctg 35400
aatatatagc agtttaatcc ctattgttgg agattaacac tgttttcagt ttttaaccat 35460
ataaactata ttgccatgaa caactttgtg gctgaatttt agcatagttt ttgattgttt 35520
ccttaagata aattccaaaa agtaattacc cttgagcctt ttacaactac atccaagtcc 35580
taaaaccaca attcagccaa atgacaccaa gtctgaatca tcctgtcttt gcagatccca 35640
gtaccaatga ttcctgttgt tataattaaa gatatttcaa taagctaaca tttattgagc 35700
actttcttat gtgctaacta ctttttcttt ttttgaggca gagtctcact ctgtggccca 35760
ggctggagtg cagttgcaca atctcggctc actgcatcct ctgcctcctg gcttcaagca 35820
attctcatgc ctcagcctcc ctagtaactg ggactacagg tgtgtgccac catgcccagc 35880
tgatctatat tgccacaaag ttgttcatgg ctatatagat ttttgtattt ttagtagaga 35940
tgggattttg ctatgttggc caggctggtc tcaaactcct gagttcaggc aatcctccca 36000
cctcagcctc ccaaagtgtt aggattacag gcgtgagcca ctgccagcta acagcttttc 36060
acatacgtta tttaaccctc atatcaaccc tattttgtag atgagattat aatttatata 36120
ttagaaaact gaggtttgat ggcattaaaa aatttgagat cacagaggta gggaacattt 36180
aattcagggg atcctcctgc cttagcctct cgagtagctg ggacgacagg ccacaggcca 36240
cagtgcctgg ctaatttttt taaatctctt ttagagacag agtctcattt tgttgcccaa 36300
acttgtctcg aactctgtgg ctcaagcgat cctcctgcct tggcctcaca aaatgctggt 36360
atttcaggcg tgagccacca tgaccggcct gaatattaga tttgaaaaca cactctgttg 36420
aatatgatga tggacaatta ttccatttta ttgtatatcc ttggagttac agttctcttg 36480
actatgctct atacattttt gtgaatttac attttgaggt agaatgcagt aatataccct 36540
tttcttacga tagataaatt aatgatgttt aagagctatc atgaccagta tcattttagc 36600
agtgcaattt ttaggaacta aataataata ataatacttg tattattatt accattctga 36660
tcttaatatc attgcatcaa tttatttagc accttctgtg ttccagacac ctctcatgca 36720
catcacgttt cattctggaa acaaccatac atgatactac tgtccccatt ttacagatga 36780
agaaagtgat aaaatgattt gcgcaaagtc acttagctag taatgaggaa agccagattt 36840
catcccagac atgctgactt gctatagttt accaccatcc cacctcccac aaaggaaaaa 36900
atcccatctg gcctctactt ccagactgac ttctcacact gggaactagg agtttggagt 36960
tgtggttcct tttccttctt ctccttcttt ctctttccct cctcctcttc ctccacctcc 37020
tcctcctcca cctcttcctc cccttttgtc tctattcctt tccttgcctt ttcattatcc 37080
cagaatgtac tcagaaactc aggttgaaaa atatggatta attgtatagg aggccccagc 37140
caacaaaacc accagattat taacagatga gccgtcttca tgggtaacac tttaagaatg 37200
agacaacgca aattagataa atgaactgtt ctatgccact gagaacagaa gactgtcctg 37260
ggaacaattt ccacatagca gctacgggct gggctttaat gacattaggg aggttatgct 37320
gaatggcagc gcagagttag tagcacatta acacttgcca aaaaagcata tgagaggaat 37380
gcttttaact tctcttgtag ggaaataaat tcgggtacag aaattgctgt gctttctgcc 37440
tgccattttg aatattactt ctccccatta tataaatatg gataaatatg tgttggaaag 37500
atgctaaaag gctataatct cgcttttatt tcaatacgag tagaatttaa aaatatgaca 37560
tctataataa aattgatact ttttttttct ttttttgaga cggagtctcg ctctgtcgcc 37620
caggctggag tgcagtggcg cgatctcggc tcactgcaag ctccgccttc cgggttcacg 37680
ccattctcct gcctcagcct cccgagtagc tgggactaca ggcgccagcc acctcgcccc 37740
gctaattttt tgtattttta gtagagatgg ggtttcacca tgttagccag gatggtctcg 37800
atctcctgac ctcatgatcg gcccgcctcg acctcccgat acttttttaa aatgtaagat 37860
ctggtggaaa tatgtgaaac ctaatcagta agaataaaaa ttcaacatct gagtcttgtg 37920
taacaaacta aatattcaag tatgtattac ataataaatg ccagtttgca aaaatatgaa 37980
ctcattcaaa cttaaagact taaatctgga ttgcactgac ctgctttatg ctgtgattct 38040
tactgtgcta tctgcatttc tcataagact aaacagattt ttactttctc ctcagaataa 38100
ttcttttgcc aaaagggtcc tagaatgctt gtgctgctat aacagtggcc aagccgaact 38160
cagaggtgga ggtgggtgac aggaggaggt gagaaattta tggccttgag ggtgcttaaa 38220
atggtcctaa gcaatttcag agccccaggg atccatgccc ttgactctag aatctcaata 38280
ctgatttttt ttttttttcc agggttgggg ttgggcagag tcttgctctg ttacccaggc 38340
tggagtgcag tggcatgatc tcagctcgct gcaacctcta cttcttggat tcaagtgatt 38400
cttgtgcttc agcctcccaa gtagctggga ttacaggcgt ctgccacaac acctggctaa 38460
gttttgtatt tttagtagag acaggtgttt cgctatgttg gccaggctgg tcttgaactc 38520
ctgacctcaa atgatctgcc cacctaggcc tccccaaagt gttgggatta caggtgtgag 38580
ccactgcgtc cagcctgaat actgattctt attacaagaa gcttgcacta gcaaaaggaa 38640
atcagctatg gaattcagat gataaaggtt gagtacagta aacttgttaa ctaaattaaa 38700
gctactgcta cttctacgcc aggtgtagcc cccaaaattt tattagagga ctgtgttact 38760
agacagcaaa tccttaattt ttgtttttct ctgtaaatca tctacctttg cacataattt 38820
tagataataa tagtataata gtcattgtag taaaacaata attttcttaa agaaagtttt 38880
ataaacctag aataaatgaa aataaactaa ttcatagaga atattaacct gtaatagtgg 38940
tctctaaaac cacgcctaca ggcccttgag ttctttgtta aatagtacag ctatcaaagt 39000
cataggtttt cattgttcct taggggagaa atggaaagtg ttaatgattc tattctgttc 39060
agacaaaaca aacttacaag tatttacaca gtttagaaac atagcgattc caactatata 39120
cctcctacta taacaaaaca actaataaaa taaccaatca gaatttcagt tccttctgtg 39180
aaggttatta ttatagaaca tgccaacaat ttacaaagcc ttagagtctt atgagatctg 39240
ctttcttcaa ataaaatttc aaggaaggac agatttattt taaaggagaa caaaacaagt 39300
tagcaataga tataaatatt catatgtttc cctaatacac aagagaagga gaagattatt 39360
gtgataaaag atctgaattg aacatccatc tttctttctt tctttctttc tttctttctt 39420
tctttctttc tttctttctt tttctttctt tctttctctt tttttttctt tctttctttc 39480
ttgctctttc tgtctcttcc tttctttctc ttttccttcc tcctttccct tcctttcttt 39540
cttttttgac agagtctcgc tccgccaccc aggctggagt gcagtggcat gatctcagct 39600
cactgtaacc tctgcctccc gggttcaagc gatcctcctg cctcagcctc ctgagtagct 39660
gggattggca cgcaccacca ccacgccggg ctaatttttt ctgtttttag tagagacagg 39720
gttttgccac gacgaccagg ctggtctcaa actcctgacc ttaagtgatc tgcccacctc 39780
ggcctcccaa atgctgggaa tacagacatg agccaccatg cccagccttt ctttcttttt 39840
tttgagacaa gctctcattc tgtcgtccag ggtggagtac agttgcacca tcatggctca 39900
ctgcaacctt gaactcctgg gctcaagtga ccctcccatc tcagcctcct gagtagttgg 39960
aatttcaggc acacatcacc acacctggct caatttaaca tcttttcaaa tctgatcatc 40020
tgaactaaat ttgggtgcat atcatctctc ctcgaacaga tggagggaag aggggatagc 40080
tcctttatct catttttata ctcttttgtt aacaaggcta ggctctggaa ttttattagt 40140
taggattgta agggagtgaa aggtggggga aagacaggac tattagagtt cagttttttt 40200
ttttttaatg gggaatgggc tgaatagaat tttccttaac agcagttttc ttctatgtaa 40260
caaattagca aataagaaaa tgtccataat tgttcattag accatgaatt ttattttttt 40320
ttactttgag ctttctcata tctagatatt gacgaaaaga tgccagtttc tccctaggca 40380
agttttaaac agccaggtct tttttttttt tttttttttt ctagtgatac cttctgcagc 40440
cgtcatttcc agggctgaga ctataaatgc tacagtgccc aagaccataa tttattggga 40500
tagtcaaaca acaattgaaa aggtttcctg tgaaatgaga tacaaggcta caacaaacca 40560
aacttggaat gtaagctcaa ctttcattat gctttagcat gtgaatgaat gatttaaaag 40620
ccaaccatca gtggctacag tggacttatt atgtctattt tacatgtttt taatctgatt 40680
gtttgcatga tattcaagcc actttagttt ttgttttata atttcaactt ttattttaga 40740
ttcgggggca catgtgcagg tttgttacct ggatatattg catggtattg aggtttgggg 40800
tatgattgat cctgtcaccc aggtgctaag catagttacc aataatttgc ttttcaaccc 40860
ttgccttcct accttcctcc acactctagt gtggtcccca gtgtctatta ttgccatctt 40920
tatgtccatg agtacctgat atgatttggc tgcatcccca ccaaatcgca acttgaattg 40980
tgtctcccag aattcccagg tgttgtggga gggacccagg gggaggtaat tgaatcatgg 41040
aggccagtct ttcccacact agtctcgtga tagtgaataa gtctcacgag atctgatgcg 41100
tttatcagag gtttccgctt ttgcttcttc ctcattttct cttgccacca ctaagtaaga 41160
agagcctttt gcctcccacc atgattctga ggccttacca gccatgtgga actgtaagtc 41220
caattaaacc tctttttctt cctagtcttg ggtatgtctt tatcattagc atgaaaatgg 41280
attaatacag taaattggta ccagtagagt ggggcattgc ttaaaagata cccgaaaatg 41340
tggaagcaac tttggaactg ggtaataggc agaaattgga acagtttgaa gggctcagaa 41400
gaagacagga aaatgtggga aatttggaac ttcctggaga cttgttgaat ggctttgccc 41460
aaaatgctga tagcaatatg gacaataaaa tctaggctgg ggtggtctca gatggagatg 41520
aggaacttgt taggaactgg aggaaaggtg actcttgtta tgttttagca aagagactgg 41580
cagcattttg cccctgccct agagatctgt ggaactttga actcgaaaga tgatttaggg 41640
tgtctggtag aagaaatttc tacgcagcaa agcattcaag tggtgatttg ggtactatta 41700
aaggcattca gttttaaaag ggaaacagaa cataaaagtt cagaaaattt gtggcctgac 41760
tatgcaatag aaaagaaaaa cccattctgg gggggagaaa ttcaagccag ctgcagaagt 41820
ttgcacaagt agcaaggagc ctaatgttaa ttccctagac catggggaaa atgtctccag 41880
gccacatcag agacctttac agcagcccct cccatcacgg gcttggaggc ccaggagaaa 41940
aaagtggttt catgggctgg gaccagggtc actgtgctgt gtgcagctta gggacttggt 42000
gccctgtgtc ccagctgctc caaccatggc tcaaagggcc aacatccagc ttgggctgtg 42060
gcttcagaag gtggaagccc caagctttga cagcttccac atggtgttga gcctgcgggt 42120
acacagaagt cagaattgag gtttgggaac ctccacctag atttcagaag atgtatggaa 42180
atgcctggat ggccaggtga aagtttgctg cagggacggg gccctcatgg agaacctctg 42240
gtagggcagt gtggaagcaa aatgtggggt ctgagcctcc acacagagtc cctagtgggg 42300
cattgcctag tggagctgtg agaagagggc caccatcctc cagattccag aatggtagat 42360
ccaccaacag cttgaaccgt gcacctggaa aagttgcaga cactcaatac cagcccatga 42420
aagcagctgg gagggagact gtaccctgca aagtcacagg gttggagctg cccaagacca 42480
tgggaaccca cctcttttat cagcataacc tggatgagag acatggaata aaagaagatc 42540
atttgggagc tttaaagttg ccctgctgga ttttggactt gcatgggcgc tgtaacccct 42600
ttgttttggc caatttctcc catttggaat ggctgtatta cctaatacct gtaccctcat 42660
tgtatctagg aagtaactaa cttgcttttg attttatagg ctcataggtg gaagggactt 42720
gccttgtctc agatgagact ttggactgtg gacttttggg ttaatgctga aatgagttat 42780
gactttgggg gacaattggg aaggcatagt tggttttgaa atgtgaggac acgaatttgg 42840
aggggccagg gatggaatga catggttttg ctgtgccccc atcaaatctc aacttgaatt 42900
gtatctccca gaattcccac atgttgtggg agggagccag gggaggtaat tgaatcctgg 42960
gagcccgtct ttcccatact attctcatga tagtgaataa gtctcatgag atctgatgca 43020
tttatcaggg gtttccgctt ttgctttttc ctcattttct cttgctgctg ccatgttaag 43080
tagtgccttt caccacccat catcattctg aggcctctcc agccatatgg agctataagt 43140
ccaattaaac ctctttttct tcccagtctc cagtgtgtct ttatcaacag catgaaaaca 43200
gactaatgca gtacccagtg tttagctccc actcataagt gagaacatgt ggtatttgat 43260
tttctgttcc tgtgttaatt cacttaggaa aaccactcta gctttaataa tgattattgt 43320
atgcttgcaa acagagaact gtttcctcaa acgatccact tgccttttat tagttgctaa 43380
atagacaaag ctccgactaa gaggaatcta attagctatt tgtaattcag tgtctcctag 43440
ggtgaaattt atatcagtga tcatggataa aaaatttaag tattctgtgc tgaaatttga 43500
caggcatcca gggaaacaaa aattgttcgg aaaggagaac taagatgtat gaatgtttct 43560
ttttaagtga aaagtgtata gttcagagtg taatatttat taccagtata ggcctgagtc 43620
ttaggtgagc ttaaagatga tgataatccg agtaaaaatg agtttaaaaa agtgaacgtc 43680
tagagaaaca aactaaccat ccttaaatgc caaggttaaa ttatctagtg tcttaagaaa 43740
ggcatagctg caaggttcat taataaagtc acatcagata acagcacctg ggaacaacgt 43800
aataaaactc agtaatttca gctgtggagg aacactagcc tgatttagga agaagttcca 43860
attttgatat attttaaaag aaatgctatt tgattatttt taagcgtaac aaactgccat 43920
ttagtccaaa taattaagaa atagtttctg gccttttttt ttcccttccg atactttttt 43980
aaggtttttt ttttagagat agactctcac ttcatcaccc aggctgaagt tcagtggtgc 44040
aatcatagct cactgcagcc acaacctctt gggctcaagt gatcctcctg ccttagcctc 44100
ccaagtagct gggactacag tcactcatca ctatgcctgg ctaatttatt tttattttta 44160
tttttttgta gattcttgcc atgttgccca ggccggtctt gaactagcct caaataatcc 44220
tccccctggc tttctcgtca gcctcccaaa gtgctaggat tacaagcatg agccacagca 44280
cctggcctgg cttttcttaa ttaacagtta tgtatcagct gtgaaattac cagttttcag 44340
cgcgttaaat aaagtgatat gtatttaaca ctaaaataca ttaaacataa cttaattttt 44400
ctttggtgct aagcatgatt ccaaatcctt ttgctgttta agactgattc tgagtatcgg 44460
ttttgctata gagtaatata tcttaaaagt atcaagaaga tgggggcaaa actatactaa 44520
ttttattata taccctaaaa attactcatt aaaagtaaat tccttacgtc aacttgttta 44580
cctttgttca ctcaaatcat aaatgtgaac tttatggttg tttgcataca cttaaatggg 44640
atccacgttc tgcatcattt gattgataat caagtgaaga tcctgctgaa ttccttttgc 44700
atatgcagaa tttagattaa atttcaaaac aacacaaata caattctcaa gtcctagatt 44760
ctgaattaat ggggttttat cctaataaga cacctggggt ccttgtatag tatcacagtc 44820
atagaatgat attaaagaat actgagtttc ttaggctggg tgcagtggct catgcctgta 44880
atcccagcac tttgggaggc caaggcaggc ggatcacctg agctcaggga ttgaagacca 44940
gactggccat catggcaaaa ccccgtctct actgaaaata caaaaaattt agccaagcct 45000
ggtggtgtgt gcctgtaatc ccagctactc agaaggctga ggcaagagaa tcgcttgaat 45060
ctgggaggtg gaggttgcaa tgagccaaga tggagccact gcactccagc ctgggtgaca 45120
gagtgactct gtctccagag gaaaaaaaaa aaaaggatac caaatcctct tacttcatgc 45180
aaataggagt atgtaataga ctagaaaaag tgtttagaaa atagaaagga attatattat 45240
cagtgtctct gaataagttt tcagaagcca actgttttct ggttgaaact cttattctct 45300
gctccccctg gtggtgctac ataggccatc ttggtaacag gtacatttga gctcactttt 45360
caaaaccttc tctttatcag aagtggcaaa tagagtagaa agaatatttg ttatctcata 45420
tgctcttcat aacaatcctt tgtgataggt agtattagct ccattatata aatagggaaa 45480
tagagtttga aagaagtcaa gccagatttt tttgaactta taccgtcagt aactaagtgc 45540
ctctcacaga ctctacatca ctttaaagac caaataaata tttagaaaat gaaaagacag 45600
gtttcaatcc aaagccactt ctgtctcctc caccattatt tttttcagaa agttttttta 45660
aactcatgac tccctcagtc aatctaccac gtttccttta aacacaacca ctaacacaga 45720
aaaagtgaat taccatttct atccagatca ctcaagccaa gtcactgtag ccagaatgaa 45780
gctttgttta catttgctac tgtcaatttc atctgggtca tgcatgaagt gttgtctctg 45840
catgtctgta ggaagacagg aaagtcagag tcaagaggag tgggaggata ccaaagatta 45900
caggtctctt ctaccacttt agctccgtgg tggcattgcc tccattagat attgctggag 45960
gtggggggtt tacttcaaag cgacaggaaa gccttgtggc caagagcaca ggctctagag 46020
ttcaaagcct ggctctgcta ctttctagtc atgcaatctt tttttttttt ttccttttga 46080
gacagggtct tgctctactg cccaggctgg agcgcagtgg cgcaatctca gctcactgca 46140
gccttgacct cctggactca agcaatcctc ctgcctcagt ctcccaagta gctgaccaca 46200
ggagagtgcc accatgccca gctaaatttt aaaaattttt ctgtagagac agggttgtgt 46260
catgttgccc aggctagtgt caaggtctct aactgctgag ctcaagcaac catcccgcct 46320
cagcctccca aagtgctggt attacaggca cgagccactg ctcctggcta agtcatgcaa 46380
tctttctttt tctttttttt tctttttaga cagagtctca ctgtgttgcc caggctggag 46440
tgcagtggcg tgatcttggc tcactgcaac ctctgcttcc cgggttcaag cgattctcct 46500
gactcagcct ccctagtagc tgggattaca ggcatcgggc accacgtctg gcttcttttt 46560
gtatttttag tagagatggg gtttcaccac gttggccagg ctgatcccaa gtgatctgcc 46620
catctcggcc tcccaaaatg ctgagattac aggtgcgagc cactgcgccc ggcctagtca 46680
tgcaatcttg agcatgtttc ttatcttctc tgtgcctcgt tattcccata cataacatgg 46740
ggataagata agcccttata tcatgtgttt gttgtgggaa aggggatcca atgatgtaag 46800
aagttagcta caagcctgga atagtgtaat tgttcactaa atgctagcta gtaatgttac 46860
tctctagcct ctaggggagc catgcagcag ggatagtaga gcaaaggaat ccaactgaaa 46920
gtcacagtat tgagggtgct tttcagcccc tttagctaag gtacatacag actgtgaagt 46980
atctaaggga attaggctga cgaggcaagg agaatatgtg ccacgcagca gtccatgttt 47040
caggcaatga tggatggcat atatgatggt ggtcccataa acttatcatg cagctgaaaa 47100
atttctgtca cctagtgatt tatattacaa ttgcctgcag gattcagtac agtaacatgc 47160
tttataggtt tgtagcctag aagcaacagg ctataccata tagcctaggt gtgtagtagg 47220
ctataccacc caggtttgtg taattacaat ctatgatgtt cgtacaatga tgaaatcgct 47280
taatgatgca tttctcagaa tgtatccctg tcgttaagtg acacatgact ctagttatct 47340
cttgaaagat ggttccaggt caaagcttca gattttgtct ctggagacac agctgcctct 47400
gggagaacat ttacaaacat cttgctccca cctcatttac ctctctccct tctgaattcc 47460
ctagaagtct agcttagacc aggttggaat atatacagat tttagtaaag gctcagagat 47520
agcaagaaga aaataaatct cagctgggag gggtgataca agcctatatt cagctacctg 47580
agagactgag gcaggaagat cacttgagcc agggttttga ggctgtaatg cactatgatc 47640
ccaccaggga tagccactgc actgcagccg gggcaataca gtgagacccc catctctata 47700
aaaagaaaga aaataaacat ctcagagaaa aaccacctac tatgtaatct tgattacaaa 47760
atataactag cttttcaaag ttggtttgag acctgtcttt tcattttcta aatatttatg 47820
tggtctttaa agtgatgtag agtctgtgag aggcactcag ttactgatgg tataagttca 47880
aaaaaatctg gcttgacctc tttcaaactc tgtttcccta tttatataat ggagctaata 47940
ctacctgtca caaaggattg ttatgaagac catatgagat aacaaatatt ctttcagttc 48000
catttgccac ttctgacaaa gagaaggttt tgaaaagtga gctcaaatgt acctgttacc 48060
aagatggcct atgtagcacc accaggggga gcagagaatg agagtttcaa ccagaaaaca 48120
gttggtttct gaaaacttat tcagagacac tggtaatata attcctttct attttctaaa 48180
catttttcta gtctattaca tactcctatt tacatgaaat aagagggatt ggtatatcgg 48240
ctatctactg ctacgattga gggaagagag agaccctctc atattgtttt atattttttt 48300
atactcagta cctgttttaa gaaaaaacaa caaggaagta aaagcaaaga caggcaaccc 48360
agcaccaggc ccgaaaccag gactgggcct gcctggccaa aacccagtag ttaaaaatca 48420
actcataact tagaaagcga tgttattcat agattccaga cattgtatag aagaacattg 48480
tgaaactccc tgccctgttt tgtttctctc tgaccactgg tgcatgcagc ctctgtcacg 48540
taccgcctgc ttgctcaaat caatcacgac cctttcatgt gaaatctgta gtgttgtgag 48600
ccctttaaaa ggacagaaat tgtgcattcg gggagctcgg attttaaggc ggtagattgc 48660
cgatgctccc agctgaataa agcccttcct tctataactc ggtgtctgag aggttttgtc 48720
tgcggctcgt cctgctacac aataatgtgt aacaaactgc cacaaaagct gaagggacat 48780
ataacaataa acatttattt ctcaatgtca gtggggtcca gctggtctaa ggtgagcttt 48840
gctggaattg ggcatgtgtt tgcagctcag ctggctcact cctatgtctt tgcatgagct 48900
ctcctctaca tgtctcctgg tcctctttct gccatcaaca ggctagcctg ggcatgtcct 48960
tatggtgatg gcagagggca agagtaccta aggcccaatc tttccagtgt ctttcaatcc 49020
tctgcttata tcaggcttac caatgtctgt tggctcaaag caagctacat ggacaaacca 49080
gagccagaat gggagaacgt tcaaagctac atggtaaagg gccaggatat ggggctggga 49140
aattacctgg gcattattgc aatccacctc aaaatgtcat caaggctctc cacctgctgc 49200
tggaaccagt tcgtgtgagg agaggaagat ggtagcatct ttccaaacaa taaagaccaa 49260
gaaccttggc agtcttcatc ctactctagc atttgacact gttgaccacc ttgtcctgaa 49320
aatgtctctc ctcttggttt tcccatttca agaatgtgtt agtcttctat caatatttct 49380
ggatgccctt tcctttgtaa attatttttt ctgccaattc cctaaacatt gacattccct 49440
tcatacctac catctcactg tctcctctct ttcttactcc tttcacctat tcccaaggcc 49500
tcagctacac ctgtatgtag gctagaaact ggagccctcc caactctcat gaaagtcaga 49560
cctatatttc taactatttg tttgtatctt tatgggctgt ctcctaggcc cctcaaattc 49620
atgtcaaaaa ttgagctccc agttgcgaac ggcaatccac acctacttcc gtatactctg 49680
tttcagggca tttgccacat tgtatatact tgcctgttta cacttctatt tctctactct 49740
ttaactgtga actcatggaa ggcagagatg tgccatgatc attttttgca tctccattga 49800
tttttataat gtcaagttca tgtggataat attttgaaac attagctatt actattatta 49860
ttattatttg tctaatggtg tccaacttta gtgacagagg cagggaaatc tcagctatgt 49920
gttcaagtaa gtggattatt ggtgactcat ttctctaatt aagctacacc agggtctcag 49980
caaacttttt attcaagggc caaatggtaa acattttagg ctttgcagaa cataagattt 50040
ctgtctcaac tactcaactc tgtgtttgta gcgtgaaagc agtcacagac aattatgtaa 50100
atgaatgggc atagtctgtt ccaattaaaa tttcattttt ggacactgaa atttgaattt 50160
cacataattt ccatacatca tgaaatagtc tttttttaaa aaaaatttct ttcaaccatt 50220
taaaagtgag aaaaccattc ttaacttagg ctgcacaaaa ccaagtattt attcttttct 50280
tgaaagggct gatagaacag catacagata gcaaagacaa atccttggct tcggcatttc 50340
caagtctgaa ggttggtata agacagaaaa tgtggaaaaa tgtatgatta gtcacaaata 50400
agtttcccca tcaccacccc atttccctcc tctaccaaac actagataaa aattacttgg 50460
gcagaaaggg gaggaggttg tagggtaaag ggagaaacca agggtttaga cactggtggg 50520
ttaccaagga ccctctcatc cagtgccatg ccccatactg atagttgggg aaggtaggaa 50580
ttatagaact ctaactaggt tggagatttt ttcttccctc cacccaagga tgttcccagg 50640
aacttatatt taacataaga aaagagagat ctcaaactga agaatattac gtttcaatga 50700
cccctaacct tcagagttga ggctctaagt agaaatggac ttacttcaaa atttcttgca 50760
ctcttgaaat tatactattt acagaggcac tcaattaagt ccagctcttt caatgttcat 50820
tttagcctcc aaagatatca tcctgaggta tcatgttgta cttgcagggc cctaagcagc 50880
cacctggttt gcctcatggt ttaaacaact gataacagtt ccataacgtt cttcttacta 50940
ttttggaatt ctggctgtac tttacggtat ttctttcctt taagaggact tatctataaa 51000
tgtaatggca gcaaacatat tggagactaa caacttcctt acaagagaca ctaatatgaa 51060
gcagagtgca tttgagagtc aaatctttgg cacagtaagt aaaatttctc tagatcccag 51120
gagacctcag acactctcca gttatattaa cattgcagaa aatttccagg gccatgaata 51180
gagacatggc ttatggaaac tctgaaagat atctttcatg cagagtttga aaaatatcat 51240
tcagagtttc cataagccat gtctcaatag acaaaactat tctagggcag atgacatccc 51300
ccaaacaaat attttcatga attttacatt ttcagtgcat tgcaagtttt aaggattaat 51360
gttaaggttg ggttttaaat ggaagcatcc ctgaatgagg ttgatacctc attctttttt 51420
ttttttaatc tcaatcgttg taactttctc tttcatgagt atctgataac tgctttcacc 51480
tagttgttgc ataaatgcat ttctagacat attgacatat tttatgtctg cctttcaatc 51540
atgcttcact ttttccagta aatcagttac tagaacatac tgaagatgct gtacaaatgc 51600
cttggtttct ttctgccaac tgaaacagct tgtttggggc tcatttttca ttacgtttta 51660
tagcagggtg tagtgctcca gggaaaaaag gatttttgtg tttatccctc agctattttc 51720
tttatcctcc attggatttc tcagttcaac tttcttaata ttttaatttt tctctgacac 51780
atacacatat atatatatat acatacatat acatatatac atatatacac atatatgcat 51840
atgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtatatat atatatatgt atgtattatt 51900
gggccttgta gaatctgcaa taacctgcaa tgaggaccaa cttacagctt agcttatagg 51960
tatttttttc taaaagtcac cattagcgag taaaattatt tcatcattca ggaagaatta 52020
ttgatctaaa tatccagctg caggggagag gggaattcag acaattgcta tcagctacca 52080
tttctccacc ccattaaaag agtatattcc aaaattaaga atatattcca aaattaagaa 52140
tatattccaa aattaaggct gggtatggtg gctcactcct gtaatctcaa cactttggga 52200
ggccaaggca gagagatgac ttgtgcccag gagaccagcc tgggcaatat aatgagaact 52260
tatctctaca gaaaaattta aaaattatcc aatcatggta gtgcatgcct gtagtcccag 52320
ctacttggga ggctgaggca ggaggatcac ttcagcccag gaggaggtgg aggttgcagt 52380
gagctgtgat cgagccactg cactccacag tccagcctgg gcaacagagt gggaccctat 52440
ctagaaaaaa aataaaataa aaaatatata tatacacaca cacacatata aataaataaa 52500
tatatataca cacataaata aatatatata cacatatata taatatcaca tttggacttt 52560
ctggagattt gagacagttg tcaaacataa agcagtatgg gctgggcacg gtggctcaca 52620
cctgtaatcc cagcactttg ggaggccaag gtgggcggat cacttgaggt caaaaattca 52680
agaccagcct ggccaacatg atgatacccc atctttacta aaaatacaaa aaagtagcca 52740
ggtgttgtag tgcatgactg taatcccagt tacttgggag gctgaggcag aagaatcgct 52800
tgaacccggg aggcggaggt tgcagtgaac tgagatcgag ccaccgcact ccagcctggg 52860
caatagagcg agactccatc tcaaaaaaag cagtgtgtgt ttcagtttta atgtatttca 52920
gagacagtat ttgattatgt acggccacgt tttatataaa gaacactttg ttttcctaga 52980
gtctagaaga cagcttggaa cataataggt gttccataca tttctgctaa ataaaatagt 53040
tgttttaaaa gcacaccaca ttttattatt gttacccatc cattttaggt taaagaattt 53100
gacaccaatt ttacatatgt gcaacagtca gaattctact tggagccaaa cattaagtac 53160
gtatttcaag tgagatgtca agaaacaggc aaaaggtact ggcagccttg gagttcactg 53220
ttttttcata aaacacctga aacaggtgag tgtacttata tattttattc tgttgggctt 53280
ttctttatat atcttttctg ctgagcacag tggctcacac ctataattcc agcactttga 53340
gaggccaagg caggaagatt gcttgagcct aggagtttga gactggcctg ggcaacatag 53400
tgagacccta gtctgtacag aaaaataata attattatta gcctgggtgg tagaatgcat 53460
ttgtagtcgc agctacttgg gaagctgagg tagtaggatt gcgtgagccc gggagtttga 53520
tgctgcagtg agctatgatc atcccactgc tctctagcct ggaggaaaga ccaagaccct 53580
gtttcctaaa aagtttaaaa cagccaggtg cagtggctta tgtctgtaat cccagcactt 53640
tgggaggcca aggtgggtgg attaccttag gtcaggactt caagacctcc tcggccgaca 53700
tggtgaaacc ctgtctctac taaaaatacg aaaattagct gggcatggtg gcaggtgcct 53760
gtaatctcag ctactcggaa ggctgaggca ggaaaattgc ttgaacccaa gaagtggagg 53820
ttgcagtgaa ctgagattgt accaccgcac tccagcctgg ccaagagaga gagacttggt 53880
ctcaaaaaaa aataaaaata aaaataataa taataaataa gttaaaaaca aaataaagct 53940
acaagatatt ttttttctct ttacctttga ccaaaattga caaaactatt ctagggcaga 54000
tgataacatt taaattgtca ttttgctttg attttcttaa ggcttactac aatttatata 54060
atggttctca aacattcctg ggtataaaaa ccatctggga ggctgggtac gctggtttac 54120
acctgtaatc ccagcacttt gggagaccaa ggcagaaaga ttgcttgagc ccaggagttc 54180
aagaccagac tggacaagat agggagaccc catctctacc aaaaatacaa ataaaattac 54240
ccaggcatgg tggcccacgc ccatagtccc agctacttgg ggactacagg aagaattatt 54300
gatctaaaca ggcttcaatc atagctcact gaagcctctg cctcctgggc tcaagcaatc 54360
ctcctgcctc agcctcccaa gtggctcaga ctacagatgc ggtccaccat gctagctgag 54420
gcaggaggat cacttgaacc tgggaggtcg agaatgcagt gagccacgtt catgccactg 54480
aactctagcc tgggtgacat cctgggcaat tgtgagccat acaataagct aagaacttgt 54540
tttgaaaaat attatctggg tgtggtggct caagcctgta atcccagcac tttcagaggc 54600
ggaggcagtt ggatcacttg agcccaggag cttgagacca gcctggccaa cgtggcaaaa 54660
tcccatctct actgaaaata caaaaattag ctgggcatgg cggtacatgc ctgtaatccc 54720
agctattcag gagtctgagg caggaaaatg gcttgaaccc aggagacaga ggttggagtg 54780
agccgagatc gcgccactgc actccagcct gggtgacaga gtgagactcc atctcagaaa 54840
attttattaa gaacatattc tcctaaaaga gacacaaaac aatcatatca ataaacgtta 54900
tctactatat gtaaagcaat cagaaagtta aaactcctaa acacagaatt ctcttctcct 54960
caacaggatt tagctgattt attgtttatc tttagatatt ttcctgcttc taatattatt 55020
agtttaattt tatattcatt tattcatgcc attcaataac atcttagcca aatagacttc 55080
agttgaagca cataataaaa tgaatctatt gtaattgtaa taatactcct aatggcccca 55140
ttaacctaaa gatgtctccc tactgtaggt accttataca ctagatttaa cattttcttt 55200
tcagaactga aggactttat tataatccca gtatgaatag catcattatt ataacattct 55260
ggaattgtgt tttatgtttt caaggcactt tgacatacat tataaatatt gatggctgcc 55320
aaattagtag agggagcaaa gagcatgact tgctgcaaag ctcttctggt atctcctact 55380
gcccaaatct tagaaatact ttggccaggt gcagtggctc atgcctgtaa tcccagcaca 55440
ttgggaaatg gaggcaggtg gattgcttga gcctaggagt tcaaacccag cctgggcaat 55500
atagtgagac tctgcttcta tttaaaaaaa ataaaaataa atagaaatta aatttaaaaa 55560
tgttaaaatg aagaaacaac ttattaggga atccttttct ctttctttct ttctttcttt 55620
tttttttttt tttttttttt tttttgacag tcttgctctc ttgctctttt gcccagcctg 55680
aggtacagtg gtgtgatctc ggctcactgc aacctccacc tcctgggttc aagagattct 55740
tgtgcctcag cctaccgagt agctgggatt acaggcaccc accactatgc ctggctaatt 55800
tttgtatttt taatagaggc ggggtttcac catggtgggc aggctggtct cgaactcacg 55860
acctcaggtg atccgcccgc tttggcctcc caaagtgctg ggattacagg cgtgagccat 55920
ggcacccagc cagggaatta ttttcagtat cagttctctt ttttaaaagt tagtttttaa 55980
ttgaaggtat tctgtcaagt tgatactgtt aacaattcgt ggactttaga tgccatttta 56040
taatagtcag aatttagttg ataacccttt tttttaatga actctataac tgcctagcaa 56100
gattatgcaa attgataact accatttatc atttacgaag tactcctgtg tataagcttg 56160
tttgattatg atgtcagcca tatttggtag tgtaattagc gctactttac aaaagcggaa 56220
actgggcatg acttactaaa tagtacattg ctggtgggta atgacaccta aactataaca 56280
aaacttttct tattcaaaat attgaactgc ttggctaggt cagttggtag agtatgagac 56340
ttttaatccc agtgtgaaaa tactgtgcat tttccccacc atccctcagc aatttcattc 56400
tttaatttca gggaagcaga ggagcaactt acttaagtat tctaagtata ggactacaaa 56460
tgttcttctt taaacataaa agtcttggcg aggtgtggtg gctcatgcct gtaaccccag 56520
cactttaaga ggccaaggcg agtggatcac ctaaggtcag gagtttaaga ccaccctggc 56580
caacatggtg aaaccccgtc tctactaaaa atacaaaaat taactgggtg tggtggcagg 56640
tgcctgtaat cccagctact agggaggctg aggcaggaga atctcttgaa cttgagaggc 56700
ggaggttgca gtgagccaag atcctgccac tgcactccag cctgggtgac agagcgagac 56760
tctgtctcta aataaataaa taaataaagt aaaataaaga taaaagtctt aagcttcagg 56820
tagaaggaaa taggaacacc acagtttaaa tttaaggtct gtttcctgag gagaaaaatc 56880
acttaagaga caaaaatacc aattaaaatt aagtatccct gaaaacttgg atttattaaa 56940
gtttaacatg ttagctaaga gaaaccatag actgttctct tggtacaaat tcccttctaa 57000
gacacattac atgagaaaca gtaaaagtgt gttagggaaa gtgctcatgt taaatctctt 57060
tgaaaatgta cctttttttc tgtgtgtaaa agcaatgtaa gtttactgta gtatgcaacc 57120
taaaaacatc cactatttac atttatttaa tttaatacta gtttttccta tgcatttttt 57180
taatgtttgg ggctatgatg tatatactat tttatatcct gattttctta cttaatctac 57240
cctgttaagt ttttaaaaac tgatttcatg gctgcacggc attctcgttt atgtatgtac 57300
tataatttat ttaggcattt ccctacctaa ataacatcta ggtcatttcc attttatcca 57360
ttatcaataa acttctttgc atagctttgt atataaatgg tctttattcc tttagttcta 57420
aagaagaatt attgcatcaa gagttaagca ccttttaaga tgctgatgta tgttgtcgaa 57480
ctgcttttta ccgaatcttt aatattgatt gctttttaaa aagggaccta tgaaaagaca 57540
gtcattcaca aaatactcat ttagcctcta ccatgtgcca ggcattttta gatccttgca 57600
gaacctcagt gagcaaagga gacaaaattc cctgccttgg acaagtttcc ttctggagaa 57660
gacacacagt aaaaatcaag cataataatt acataaatta cattgcatca tacataaaga 57720
tgtaaataaa agcagtaaga atcagacttc acagctgaag tatgaattgc ctcacaaatg 57780
aaaaaataaa atgatatcat ttctgtaatt atttatttaa ccaacttgtt tgataatgag 57840
gttttttggc cagccaaact tttccagtgc ttaaaggttt atttatgaag aaacacagcc 57900
caggcagtaa tgcctcttcc aagcaggact tttctgaatt agtctctaag attctgacat 57960
gtgtattact gaattgattc atctcaatac aatgtgtttg caaaattctg cccagctaag 58020
accagaggac aaatcctgaa gtgggtatgg cttgtcctgc agcctcggca ttcttattct 58080
tttctgttgc tttccctctg aatagtgcct ggcttggcca ttaaaaacct ggtctcaaaa 58140
atgaaccaaa ccaactcact tataatcaac tttaatgact tattctcttt ttcttactta 58200
gagtatttag actttaatag gacaaacaaa gccttatact gaaaaagaaa atcaatcctc 58260
cagaataccc atttattcta tctgatataa tagcaagagg ccaattaaca gactgaatcc 58320
cagggtgact tcaggataat aaataataat agctaacatt tattggatgc ttactaagtg 58380
ttgggcattt tgataagcat tttacatatg aattgttctt tatttatcac tgcagctcta 58440
taaaaggagt gtaattatta tcccagttgc acagatgaaa ccatatggcc caagcagttt 58500
tgtcaaacat tacaaggctg gtaaacagta gagccagggt ctaactcagg ctatgggatt 58560
ccagcaccca tgttatttat agctctgcta gtctccttcc taagagacct aggagggtcc 58620
tgcatccgcc tgtgaaacaa aatcattctc tacacattag ctagtaataa aactatgcca 58680
acagagcttc atttctaatg cagtgtttgt tatggaaatg caaacgcatg agaaaagaac 58740
cagaagatac tactgactac tgctactttg gcttgaatac aagatgtgga agcagatttg 58800
cagtagatga tgagaatgaa accatagtac tataggaggt ttctgatagg ataggtaagg 58860
aaggggcagt ctgagatgag gataaaggat aggtaaaaaa ggcagcctta gccaagacag 58920
gaccatcatg ggcaattcat catgtgcttt accagctaat tatgggctat ctagaaagca 58980
ctgtttctca tagtagggtc tgtggacaat ctacattaag aatgcttggg cacttttttt 59040
ttttttgata cagtctcgct ctgtcaccca ggctagagtg tagtgcacca tctcagatca 59100
ctgcaacctc cgcctcctgg ttcaaacaat tctcctgcct cagcctctca agtagctggg 59160
actacagaca tccaccacac ctggctattt ttttttgcat ttttagtaga gacagggttt 59220
cgtcatgttg gccaggctgg tctcgaactc ctgacctcaa atgatccccc tgccttggcc 59280
tcccagagtg ctgggattac aagcacgagc cactgtgcct ggcctgaatg cttgggcact 59340
tcttaaagta cagattcctg agccctttgc caagcgatac ttctgcagtg aagcataaaa 59400
tccattgctg tagaggtcag acacactctt taagagaagg aagtgtcatc ataaaagaca 59460
acatagggaa tggacagaaa atgtggacag aaaggcagag tggatatgat tgcccaagcc 59520
attgaaacgg gagagttccc tgactcctgt cgcatatcat gtggctcatc tattctgcca 59580
aggcacatgc tcaaacccgt tacaggaggg ggagcacaca gatggacagg tgcgcaggag 59640
ctggggtgag caccttgggg ctccagcccc acagtagcat ctaggggtgg atgcctgtga 59700
ctcccaaagc ccaagtggga atgtgataca gttcactatt ttagctttgc tgtctgcaga 59760
cagcttaact gttaaccagc tcagtgccct cttggtaccc aggtccttgt ccagtgtcca 59820
ggaagaatca ggtcacacac agatttgaag gatgaatgtg ggggttttat tgagtggtgg 59880
aggtggctct tagcgggata gatagggagc tggaaggggg atagagtggg aggatgatct 59940
tcccctggag ttggctgtcc agcggccgat ctcctctctg atcgtcccca ggggaacttc 60000
tctcagcatt cagatgctcc ttttcttctg tccttctctg ccgagccatt ctgccattct 60060
tctgctcttc tatttatctc tctgtctgct tctggaacct ggggtctgga gtttatgagg 60120
gtacaggata gcggggcata gcaggccaaa aggcaacttt tgagcacgaa aacaagaatg 60180
cctgcttcta tttagggcta tgggtttcca agcttgaggg tgggacctct gccagggaac 60240
caccctcatt tattcagtat tttcctgttt gctgtttgta tcaccatcgc cttagtagta 60300
gtggtttggg tgacagaaaa gggtgggcat gtgagaatct taggccatta tctctagtac 60360
tatctggtca cctctctgtt tcctatttct cctgagtcac tgaccacccc agcccacctg 60420
ggcattacag gaacccccca aagcacagga tataggactg ttgtcgtaat taaccatcac 60480
atcacacatg accctcttct gcctagaact caccctgtct ctggatgtga ggtttcagct 60540
gagattatga gaaccgctga gagctgctga agttagagct tctgatccac caaccttgat 60600
aggcactgtt atcctggggt ctttcagcag tgcggaaaga gccccaaagg ggaaaagaca 60660
atttgtcatt gtagaaaacc aacactgaaa atgtataagt cagtagtcta aatttgctac 60720
tactgactta aaaaagctga aacaacaatg gctagccagg aatctttttc aattctgcat 60780
tgtaatatag atcccttttt aacgaagaaa agacacaggt tctataattc ctttaataac 60840
aggttaaagg cttaagggaa gggcagtcac atttcatgat gactaattca cttgcttgaa 60900
ttgctgcttg ccatagaaaa gtttcccaga gaactcatat tactcttttt ttttttttga 60960
cagttttcca gaggaaggca agtatgagca agatattaaa caacattttg ctttcctctc 61020
acaaaacagt attggttgtt gcactaccag tgactccttg aagatgctca ttaatttttc 61080
aggtttttaa gtggctaaaa gggaaaaagc aaatattatg ttaacggaac taaatatcag 61140
tgctattaaa tataatgcaa attagatgat ggcacacaga atgtattttt caaacatttt 61200
attatgtgta attagagatt tgtgaattgt ccacatagag atgggttctg aacttgtaga 61260
ctctattggt tactaaccca tgttaaacag acacggtgtt tcttgaaatt ctaatcactt 61320
tagacttttc atttgggttt aactttcttc aggtcctgcc tctgataaac caccaagttt 61380
ctgcagaata ggaaacaatt cagaagagtt ccataatctc cctgaagttt gcaacctatt 61440
actacagaac aaagatcttt ctttctttct ttctttcttt ctttctttct ttctttcttt 61500
ctttctttct ttctttcttt ctttctttct ttcttccttt ctttcttttc tttctttctc 61560
tttctttctt tctttctctg tctctctctt tctttctttt ctttctttct ttctttcttt 61620
ctctctcttt ctttctttct ttccttcttt ctttctgtct ttctttttcc ttccttcctt 61680
ccttccttcc ttccttcctt ccttccttcc ttcctccctt cttttttaga cagggtctct 61740
ctctgtcacc caggctggag tgcagtggtg tgatctcagc tcataagatc tgggctcaaa 61800
caatcctctc accttggcct ttcaagtacc tggaactaca ggcatgcacc accataccca 61860
gctaattttt tttcttcctt tttttttttt tttgtagaga cagggtttca ccatgtttgc 61920
caagttggtc ttgaactcct ggactcaaga actctgccca ccttggcctc ccaaagtgct 61980
gggcttacag gcaggagcca ccatgcctgg cctatgatta tgctttttct tgaagtcatc 62040
atcttctata ttagtttcct attactactg tcacaaatca tcacaaactt gaaagcttaa 62100
aacaacatga atttattatc ttatagttct ggaggtgaga aatccaaaat cacaaccact 62160
gggctgaaat cagggtgtca atagggttat gttccttctg gaggctacag gacagaatca 62220
gtttcattgc tttttctata ttctagaggc tgcctacatt cctcagctca tggctccatc 62280
cttcattttc aaagccagaa gcatagcatc ttccaatctc tttctctgac tctcaacctt 62340
ctcccttctg cttataagaa ctcttgtgat tttaccagat ccacccatgt aatctaggat 62400
agccacttcc tctcaattcc cttttgcctt ataaggtaac tgagtagaaa gaacatactc 62460
aatttctctt gctatatagt actttcacaa cacaggtcac ttctgtgacc tctgattacc 62520
aacatgtgta tggggatttc tccccctcag caacaaatta tctggcagat tctttgaggg 62580
acaccagctg tgtgtcctcc aagtcaattc attctggcac tatctgccta gacatagtgt 62640
cagatcctac aactcccacc tcagatgcca gtctcaagta ataggtggtt acctatactt 62700
ccatctgatt ggctataaat tagagtttgt ttcctgatct ttttttcaga tttgatcaat 62760
ttgctaggat gccccacaga acttgggaaa acacttatga ttactggttt atgataaaca 62820
gcattacaaa ggatacagtc gaacagccag atggaagaga tgcagtgggc aaggcatgtg 62880
gggaggggca tggagcttcc ataagctttc caggtgcatc acctgccagg aacctccatg 62940
tgttcagcta tcctgaagct cctagaactt aggcctttgg ggttttttgt aggcttcatt 63000
acataagcat gattgattaa accattggcc attggtgatc aacttaatct tcatcccctc 63060
tcccctctgg gaggttgggg atgggttgaa aaatcccaac cttctaatcg tgccttgatc 63120
tttcctctga acaaccccca tcctgaaact acataggggc ggccagccac tagtcagctc 63180
gttagcatac aaaatgaccg ttaccacttt gggcattcta aggattttag gacttgtatg 63240
ccagaaaacc aggatgaaga cacaatatgt acttcgtaat attatagtaa cctgttcaca 63300
gattccaggg attaggacac ggacatcttt atgatgccat tatttgtcct actacatctc 63360
cctacctccc caaccactac caccaattgc agtttttact agtcaggatg attaggtgta 63420
agcaaaataa atcaaggctg gttatcttaa gcagaaagag aattattaga aaggtagctg 63480
aaaatcagta gaaagcctgg caaaatgggc atgaacagga tccgagtgag agcaggaccc 63540
agaaccacag ccaaaatcac agcctaggaa aagtctggcg aggaccctgc agctgacgct 63600
gatcactgcc actgcctgcc ctggtgccac tgtcactgta ccctggatac agctatggtg 63660
cccacattgg attctaagtg gtttctggaa gccctatgtc aacccttcaa cattcacagc 63720
ctgggtgtta ggggaggggg catctggttg gtgaggttta ggccatttgc ttgtagccct 63780
actgcctctc agctttttta ggatgcccac aaagaagtat atcctagtgc tgggcaaata 63840
aaacatggca aatgtctgct agactataca gattggaaga tgctatgcct ggagagcaag 63900
ggtgtacttc tgaggaatct gttggccact gtgtagactt ggaagctgtc cattctttca 63960
tatagagttt tgctacactt tgacatcaga ccttctctgt atggtccttg tcatttagga 64020
aaatttcctg ggtggctact gctttttgcc ttttcctcct cttattcttt ctttttaaca 64080
atgtaactgc catatgtaga tttcttacct tctccctaca taccaagtac ctaaagccca 64140
ggaatataag aaggaagata aacccttgaa tatgtctgtg tgtaccctgc tacccttata 64200
tacaccgctg atactataat ccactaaatg attcattgct tgacttgttt ttcaaggtgt 64260
ggtaatgagt ttgttctgac acaccgtttt ccctgccctg ggcttctggt gcctatttga 64320
tatgttggca ttagttttgc cttgctaatt gacatactca actctttacc cttggcccga 64380
taatgttgaa ttctgaccac agagctaaac tggcctggct tggagaaatg gcacttaagt 64440
gctgtgaaac agctgaatta ttaaaaggag atgcgaaaga gagaaaccaa aaggaggtat 64500
ttgtgttttg agaaaaatag gagggagggt gggggcgaat ctccaatgat ttaaaaaaaa 64560
acacatcctt tgtctccttt aatatgactc ctctttcttg aatatctaga acccctgaaa 64620
ggtccagaaa agtccatgtg tctgctctaa tcaaagcctt tatgatgcag gccttggtta 64680
ctgtggcttt gacatcaaga ttggcaagcg caaaagtaaa taaagaaacc ttagagatgt 64740
ctataccctt tggctcagta attcctcttg tagagatctg gccttaagaa ataatcagtg 64800
gaaggaaatt tatgtacaat gatatacatc caaaacctaa ttataatagt aagaatttgg 64860
aaccagtcta aaagttcaac aatagcaata attagtgctt attaaggttt tatttgtgta 64920
aaacatggta ctaagtgctt gatatgaact gtctcatcaa acctcatgac ctcactgctt 64980
ttatctaatt ttacaaatga agaaactgag tcactgaggg gttaagcaat ttgcccaggg 65040
ccatggaact ccatctagta gagccaggac ttggactgag tttcgtttga gtctgcagtt 65100
ggtgtttgaa accacctagc tatacagttt ctcaataggg gtaagattga ataaatacag 65160
taaaacatga tgaaacatta actagccata gcatgatgtt ttgaacaatt tttaataaaa 65220
tgaggaaatt tttattaagt aatattgaat aaggctgggt gtggtggctc acacctgtaa 65280
ttctagcact ttgggaggct gaggcaggca gatcacctga ggtcaggagt ttcagaccag 65340
cctagccaac acagcaagac ctcatctcta ctaaaagtac aaaaattagc tgggcgtggt 65400
agtgtgcacc tgtaattcca gctactcagg aggctgaggc tggaggatag cttgagccca 65460
gggggcagag gttacagtga gccaagatca caccactgca ctctagcttg ggtgatggtg 65520
tgagactctg tctcaaaaga aaaaaattga ataaaaaagg caagacaaaa catttataaa 65580
gagtatgatc tccactaggc taccaacata cacaaaagac tgttaacatt ttttttaaat 65640
aatagtttct agtttgcaaa caaatataaa attgtattat cttctccata cccttctata 65700
cttttcaagc atcctgtaat tagcatgtat tacttgtgta ataaaggaaa gtagtcggtt 65760
ttaagaagaa aataactcta cgctagaaga tttaaagcat cagtgctaaa tgggttagca 65820
cagtagggct tgtggggtcc agagccccac aaggccaggc agccccaaca caccatggcg 65880
agtcctcagt ggagcaatgc taagtctcat cctgggagag gctgcttgca gggctgactc 65940
tgcctcccac cctgagccat cctgctgtgg aagtgaggtt attaatttaa tgagatcagt 66000
gaccagcaca aactacatgt cagaactgga tgggaatttc cactcttcac cctctaccta 66060
ggtgactttg agcaagttat ttatcctttc tactcttttg tttccttatc cgtataatga 66120
ggataataat attgtctgtg tgattgggtt gttgtgagga ttaaatgaga gaaaacatgt 66180
aaagtttagc atgttacctg tgacataatt aatactcatt aaatggtcac tttaaaagga 66240
tgacaaaaca cactttgccc catggttgat gatatggttt ggctgtgtct ccacccaaat 66300
ctcatcttga attgtagttc ccataatccc catgagtcgc gggaggtaat tgaatggtgg 66360
gggcagttgc agtcatgctg ttcttgtgat agtaagttct catgagatat gatggtttta 66420
taaggggctt ttcccccttt gcttggcact tatctggcct gttgtcatgt aagacatgcc 66480
tgtttccccg atcaccatga ttataagttt cctgaggcct ccccagacat gtggaactgt 66540
gagtcaatta aaattctctt ctttataaat ttcccagttt tgtccaggtg cggtgcctca 66600
cacctgtaat cccagcattt tgggaggctg aagcaggtgg atcacctgag gtcaggagtt 66660
cgagaccagt ctgaccaata tggtgaaatc ctgtctctac taaaaattcc aaaaaaaaaa 66720
aaaaaaaaaa aaaagccacg cgtggtggca tgctcctgta atcccagcta cttgggaggt 66780
tgagacagga gaattgctag aacccaggag gcagaagttg cagtgagcca ggatcatgcc 66840
actgcactcc agcctgggca acagagggag attctgtctt aaaaaaaaaa atccggtttt 66900
gattatgtct tcatagcagt gtgaaaacag actagtacgg ttgatgtaga aagaagagct 66960
gaggtgatga tttggcatca tccttaaaat acagatggaa tacgttattg ctaaaaccag 67020
gtccttttga gtggatttga ttaaactagc ctggtgtttt ggtaggccaa aaaatatagt 67080
tgttatgctt taaattttgt ccaacaataa gaaaccatat ttctcgtttg agatcactct 67140
aaattcccac aggcacattg tcttcttgta agactaaagt ttggtgccag tgtgtacaag 67200
ttatataaaa attcttccca aattaaagat aatttggatt ttttttagta tattcaagta 67260
tgtcctgtga gattaatagg cataagttaa tattctgttg caaggatgga actgtctcat 67320
tatggacgta acaccacaaa caccaaatac agtaagatat catgaggttt tttttttttt 67380
tagcaaatta ggcaatgcac tgatgacaga actgatataa aaaacagttt ccagtcataa 67440
aggctgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgag attctgtgtt 67500
tgctaatgct tttgtatgtt aaaatacttg caaataccat aaagcactaa tagcaggtgg 67560
attaaaagga tgggattagg gatggttctt tttttctcct tttaatttct cctgttgaaa 67620
atttttctgt actttaatta tcgcttttac agtcaaagat gttaagtata atttaaaaag 67680
aaatgacgta gccacgtggt ggcagtattc catgaagaat gtaatctaca tagctttgtt 67740
tcagtcctat gtctaacatt ggcttgattt cttctctgac aattttgttt ataaattgtc 67800
ttattttaga taactgattc cttgtgaaat ttccctatga ggattaagca cctcttataa 67860
gtgactttaa tttaatgcac ctgtttgatt tggaactatg ataacaaata gactctaaag 67920
gaagattgta tttattccct gttagggcta ataaaaccct agtcagatat gaaaattgtt 67980
tttatatgat gcaaattaat aactgaatga agtttcattg ccaataacta cctgtagttt 68040
atacaacaga attacattaa cctgtattaa aagccaacaa caccatatat tacttttaaa 68100
ttaaaaatgc taattttaaa ataataaaag tgaaaacaaa aatactacag cagcatatgc 68160
tataagccca tgattttgct aaattgaaaa ttgtgttacc ttttaatgta gtatttttac 68220
tctttttttt tttttttttt gagatggagt cttgttctgt tgcccaggct ggagtgcagt 68280
ggtgtgatct cagctcactg cagcctctgc ctcctgggtt caagtgattc tcctgcctca 68340
gcctcccgag tagctgggac tataggcacc tgccaccatg cctggctaat ttttgtattt 68400
ttagtagaga tggggtttca ccatattggc caggctgatc ttgaactcct gacaccctcc 68460
tcagcatccc aaagtgctgg gattacaggc atgagccact gcaactggcc agtattttta 68520
ttcttaaaat ttcaaaataa tggagattca gactcctgcc tgagctccct gcaaatgaac 68580
attggcctgt aaagatagca ctttagatga ataaacctga ctgttggcca tcagggcata 68640
accttgttcc ctcagagttt ggtggaacca tatacccatg gagcaaaaga gacttagcga 68700
ggcattgaga agccaaaaac aatttctgat ttgtcacaat tccgggtgaa acattttcct 68760
cttgctgtag agaagccagg acaaaaaaca cgggaaataa cttttggctt ttctgatgtt 68820
ttcatcttct aaaatccctc acccactgtt ctcagaaaac taccctcctc acgcttatgc 68880
ctgcacccag agcagccttt tttctttttt cttttttttt ttttgtgaaa tggagtctcc 68940
ctctgtcacc caggccggag tgctatggca cgatctagac tcactgcagc ctccacctcc 69000
cgggttcaag tgattctcct gtctcagcct cccaagtagc tggtattaca ggcacgcacc 69060
accatacctg gctaattttt gtatttttag tagaaacagg gtttcaccat gttgcccagg 69120
ctggtctcaa ctcctggcct caagtgatcc acctgccttg gcttcccaaa gtgctgagat 69180
tacaggcatg agccactgtg tctggccaga ccagcctttt tcaaaaattt ctgaagcccc 69240
gtagaaacct tttcattgga aatgtaggac acttttctca aagacagtca catgggccac 69300
actactcctt atacaagcct gtgatatctc agcctcaagt tgtgatttct ccctgccccc 69360
aaaagtaatt tttttaaaag aaaaatttga gcactgaaat cagagtgacg gaatacacag 69420
ggcttgaagc aatctcaggg atccaaggct tagagccatc ttcagaaatg tcttctgcca 69480
gttgggagaa ttgtgtcctt gaagtcactt ctgtcagctt ttaattatca ggaaggagga 69540
gactggcaag gctgcaccag gacccctttg agttcagact gaaagttagg taccagggtt 69600
gctcacccca ccctggtcag aatcattcat tagcagtttc ctgacagcct ttataactag 69660
accaggctgc caggaaaaga aaagagcaga gagaagtcat tggtgacatc ccacccaggt 69720
gttacaacac caaagtgcct gctaaccaaa attaggtttc ttatgaggag ccaggagaag 69780
gtgaacagca tcccaaagat tgtgcaaagg caaaagtgac acatcttggg gaccctcaag 69840
gaaatctgaa ccttattgca ccatcaattg caaggaatca aatagagatt agttatcatg 69900
cgttttttct ggctcagtaa aataaagctc tttggtattt gctgcctaga agcctcatga 69960
aattagtgga cacaccttga agttttacaa cctaggtaga ttatagttgc ccttgcagtg 70020
tttcctcctt tgagatttac ccaattaaat aaaaagaaga agaaaagaca catactcgaa 70080
gactattgct tttattccac ccttcaagcc cattaaagtt attggtttac tttagtcatc 70140
tctaaacaag ggaagaaact ccgttgggaa atttggcaag cagagtgcaa aatgtaagaa 70200
actgacactc tttccttttg gtttaagttc cccaggtcac atcaaaagca ttccaacatg 70260
acacatggaa ttctgggcta acagttgctt ccatctctac agggcacctt acttctggta 70320
agaaaataca acttaggctt tttgagtagt cttttagtaa ttgcccattt taacccatca 70380
tactgaaaaa atcacatcag gtgttaagtt tctggacaat aagatatgcc ttatgtcttc 70440
cataggaaaa taatagacaa agtacaaaga tctgcttaaa actgaatgta agaagtggct 70500
taggtggatt ttgccggctt ttgcaataga ttgtatacat tttttaaaat ttttatttat 70560
tttattttat tttttgagac gaagccttgt tctgtcaccc aggctggagt gcaatggtgc 70620
aatctcggct cactgcaacc tccgcctccc aggttcaagc gattctgctg cctcagcctt 70680
ctgagtagct gggattacag gcatccgcca tcacgcccag ctaatttttg catttttgta 70740
gagacgggtt tcaccatgtt agccagactg gtcttgaact cctgacctca ggtgatccac 70800
ccacctcagc ctcccaaagt gctgggatta caggtgtgag ccaccgcacc tggccacatt 70860
tttattttaa tagctgctag ggctcaagac ccaaaaactt ctttcaaaac aaattactta 70920
cctatcttgt gctaggactt gtctagacat cttcttcaat ctttaaaaca acccatgaga 70980
taagtgttac gcatctattt tataatgagg aaactgaaac ttagagtagt tgaggaaact 71040
tttcaaggtc atagagctgc taagtgacag actaaaattc aaatcctttt ctttcaatgt 71100
cctggagtct attgtctttc ttttatacaa accagctccc atttcagttg ttagcatgac 71160
tattatcgta ttgatgagct tgcctaaacg ttttaggcgt aaaaaaattg agatctggtt 71220
gtacaatggg tgaacataac tctaaataga aatttcgagt tgaaaacttt taggcatgac 71280
tatttcacca ttgaccactg acagaccatt tatctccttg tgtagaaatc aggcaggaat 71340
agtataagaa cttttgcagg ttgtattgct attctttgca ccttcattta tttaatattc 71400
attaagcaac tcctgtgtac gaggcactgt tctgggtact ggggaatcag cagtgaaaac 71460
aatgagcaaa gcccctgtct tcatggagct tctattctag ccagacaggg cagaaaaaca 71520
gcaaacaaaa caagaagaaa agtcaggtgg tggtgaagtg tcgtaaagaa acatgaagtg 71580
ggtaggcatg gtggctcaca ttttgtaatc ccagcacttt gggaggccaa ggcaggcaga 71640
ttgcttgagt ccaggagttt gagaccagcc tgcacaacat ggcaaaaccc catttttaca 71700
aaaaatacaa aaattagatg ggtgtggtgt catgtacctg tagtcccagc tacttgggag 71760
gctgaggtgg gaggatcaac tgagcaccag agatagaggc tgcagtgagc tccactgcat 71820
tcccgcctgg gcaacagagc aagaccctgt ctcaggaaaa aaaaaaaaaa gaggaaaaag 71880
aagaaaaaga aaaagaaaca tgaagaaagg taagggcact ctgaattatc aatcaattgc 71940
aagccaagtg cttaggttca gtacagttcc ctaattatag atgcctacac agacctacct 72000
acaccttgat atttctgtgg gatcagtgga ggttaggaac tcatggcagc tctgttagat 72060
aagtattatt atctctattt tccaaaagag aaaacctgag actcagcaag ttcataatta 72120
tgccccaagg tcacagagct gataagaggc agagtttaat tcaaacccag gtatatcagg 72180
ccacgctctt ggtcattctg ctctactgct tagacccctt tgccgagcac tgtgttgacc 72240
tgagggctgt ctatcctctt ccaggcacta attaatgccc aagggtgtgt ggcagccagt 72300
acccccaatt agttgcttca aatagtcaga aatagctctt tagccctggg aaaacattaa 72360
tttcatatcc catcaagatt ttgcagtgag ctagagttac tcagactcct gcctgctgat 72420
tggctttaga agagggctgg gcagcctgga gaccccggta tgtgaaataa ctagggtggg 72480
gcaaacacag tgtctgccac atggtaagta cccaataaac atttgctgaa ggaagggagg 72540
gagtgaggaa ggaggatgga agggaagcca atacccaaca tggctctaga acaaattcca 72600
atgtgataag taatgcctca actatcttct atatttgaaa atagggcttt ttcatgtacc 72660
agggagaaag catgatgagc ctggtgggta atatgtgttg aataaattat attaattatt 72720
taaatatttt aggagattaa ctcaactttg acatgcaaga aaagcattgg ttttgtttgt 72780
ttgtttgttt gtttttgaga cacagtctgg ctctgtcgcc caggctggag tgcagcggca 72840
cgacctcagc tcactgcaac ctccacctcc caggctcaag ccatcttcct accttggcct 72900
cccaagtagc ggggactaca ggcacatgcc accacacccg gctaattttt gtaatttttg 72960
tagagatgga gttctcactt tgttgcccag gttggtctca aacttctgag ctcaagtgat 73020
cctcccacct cggcctctca aagtgctggg attataggcg tgagtcactg tgcccagcca 73080
gcattgtttt ttaactaagt gtgagtgcag cataaaggca attttgattt cttttttatt 73140
ttttattttt atcttaactt gccagtgtat gatttctttc ttatcacgta tattgctcta 73200
agtaaagtgg atgtcctttc tcagcaggaa aaatttcatg agcaatagat tttgaagaat 73260
gatgacaaat tgcacacatt ctatctcaca caaaaagtta aaaaaaatca gtatgattgt 73320
aaccagcttt agacattgtt acagcaattg ggaattctca cctgtgtcag acaagccaaa 73380
tgaagctcac cactaagaat ttatacgaaa tttgcatgca caagccgacc acatttgcca 73440
gagatgcact tctaaaaacc cactgacatc agatacatgt agcccaactt tctcaaacaa 73500
aaagttgttt cctggggtag ttgtgcactc tggaaaaaca gtcactctgt ggcctaaagt 73560
aaaggttaat tttgcttccc cccacccttt ctcctttgag acctttgctt tgagcagagt 73620
aaagagaata gtaattctgg tatcaaatga agactaatgc ttggttaaaa ttatttttct 73680
ttcctttcat tagacaacag aggagacatt ggacttttat tgggaatgat cgtctttgct 73740
gttatgttgt caattctttc tttgattggg atatttaaca gatcattccg aactgggtag 73800
gtttttgcag aatttctgtt ttctgattta gactacatgt atatgtatca ccaaaattta 73860
gtcatttcag ttgtttacta gaaaaatctg ttaacatttt tattcagata aaggaaaata 73920
aaaagaacaa tgtttaataa gtacttaccc atgccaaact ctctacaaat gtctttcctt 73980
taatcctcaa aatgaccctg ccagaaaagc ttcctggcct attttacagg tgacttaaat 74040
gaggcttaaa gaggctaagt cctcagccca gaatcactga acagtaagcc ctgagtccaa 74100
acacagctga tatcaaagcc catttctctc ctttactaca cggcgttttc cattgtgcct 74160
caaatttacc tacagtgcct agattcttga gagtggtgaa gtcacaaatt gccttgtgtt 74220
aaaagaaaaa cttcagccaa attaaattta aaggagttta attgagcaat gaatgtgcga 74280
attgggcagc ccccagaatt acagcagatt cagaaagact ccagggttgc cttgtggtca 74340
gagcaaatgt atagacaaaa aaaaaagtga cacatagaaa ttggcagtga ggtacagaaa 74400
cagctggata ggttatggat tggcatttgc cttatttgaa cacagtttga acacttagca 74460
gtctatgagt ggttggagta tggctgctgg gattggccaa gactcagcta ttgttacggg 74520
cacatactac taagttaggt tttcaatctt gtctgcctat taggctaggt tacagttcat 74580
ccacaaggac ttgaatatag aagtatggag tccttctcag atcatattta gtttgcttta 74640
ataattcccc ccttttggtg attttctcaa ttttgagaga ttgaccaaaa ctttagtcat 74700
tgatgtcact atcaccattg taaatgtact tatatggtct ttaaacccac tgggaaacag 74760
tagaacagtg ggttctgtaa ggtggcaaca aggactgagt agaaggtacc tccttatgct 74820
ggaacatcct gtttatagga gaaaaacaaa acctggtctg ttctaggatc tatgtgtttc 74880
cttaaagtct tagtttgact ttgtcacatt tagcatgaac aactccattt tggtttggtt 74940
tggtctgttg gagtctagtg catgagctca gtccaaaaca atggcctccc ataatttcgt 75000
tttaaaaaaa aaatccccct ttttggtcag gttctcactt aggtgacagt gtgaccaaaa 75060
cctagggcct cagtgccact ctcagttacc atcattttgg gtttctgttc tcagcatgta 75120
attcataggt tatggtgtcc tgatggtcac acatttcttt tagctcttgt tattccagtt 75180
gaagagagac catttgacat tctggagatg gctgcttgta aacatttaaa acctttgaga 75240
gaatacagca taccagggag attactatta ggactattgg gagaataata ctaagagttt 75300
gggttatgtt ccttacccag ggtcctcata aaccaaacca aaccatctaa aaatcaaata 75360
gatcaaagaa tgagctacat gaagagtcta ctcacttaag tgattttttt cattaatccc 75420
ctacaactga atcactataa tacccgatgt tttctccata catcataagt gccagcagct 75480
gtttagccaa tacttttcgg tttggccaat tctattattt cgcataactt tcacaagaga 75540
atttaaagtt ttttgtgtaa ccataggctt tacagtagaa tctgctatag aacctatcat 75600
gagggataca tttctaatca gtgcctcttt tacttcaaac tatggaaaaa agacctaaca 75660
aatgatgccc tgctagaaga gtgaaggcct cctggcaatg ttctctttag cccatgatgt 75720
ggcttaagag gaatgaatca atgttctgtt tctgactgac tatgaggcaa tatatgaacc 75780
cttaaaattt ctcacctgca ttgggccttc atcttttatc catcaaagta taacattatc 75840
catgtataag gctggctgca aaatccttca caaataaaca tataccccat aatacacaca 75900
taacagaccc ccttttcact tctattgttc atagaggcat aagcaagaaa aaaaatattc 75960
aaagttaaga gtctcatgat agtagagaag tcttaatcca tgattttagg ataagctgtt 76020
cacattaagg acgctgtctt cttgggagaa gctgtcctgg ttagctttac cttaagggtt 76080
ccgatgggtg tggagggacc ctcctcagtt gtgagattat gaaagttgtg ggatctctga 76140
aaccaaaagt tcaaggtccc aaagttttgc tgtagtgtgg atggcaagga cagtctttct 76200
ctaatgttct cagaagattc attctttggg ttctagattg tgaaggggtt gattgtcctc 76260
agtgaaccat aaacagcttt ttttaactat gtaaaaatgt actgcagcat aataatctac 76320
tattataaca tcagtcttct tgcatgggaa agctttcata caaccagaaa acatgcattg 76380
aaagtgacaa ttgaatgaaa tcccttataa atatttaaat gtccaatcag gtagccaaat 76440
gtacctgaag ctttgattgt tttcccagga atatgggttt gacaagccaa atattgttta 76500
taactatttt agtagtttat aagtcaccac acaaacatat ttaatttgga tcattttatc 76560
ttttccatta caagtcgtaa aatgcagaac ttttaataat gaaagcctta aggactctgg 76620
aaggataagg tggctgtctt ggttctccac gagtccatgc ttaaaaatgg acttatgtcc 76680
tcttgaatac cagttgtttc tccaatttag gtgcatagca ctgataactg atgggttatc 76740
ataggtaatt tggcttagat catggagttt attcaaattg tatatctaaa caattttagt 76800
attggctgat ttagcatgcg gatttctctt tttttttctt atactgtaag ttctgggata 76860
catgtgcaga acatgcaggt tcgttacata ggtatacatg tgccatggtg gtttgctgca 76920
cccatcaacc cgtcatctac attaggaatt tctcctaatg ctatccctcc cccagcctcc 76980
taccccttga caggccccaa tgtgtgatgt tcccctcctt gtgtccgtgt gttctcattg 77040
ttcagctccc acttatgagt gagaacatgt ggtgtttggt tttctgttct tgtgttagtt 77100
tgctgagaat gacggtttcc agattcatcc atgtccctgc aaaggacatg aactcatcct 77160
tttttatggc tgcatagtat tcaatgatgt atgtgtgcca cattttcttt atccaatcta 77220
tctttgatgt gcatttgggt tggttccaaa tctttgctat tgtgaacagt gctgcaataa 77280
acatacatgt gcatgtgtct ttatagtaga atgatttata atcctttggg tatataccca 77340
gcaatgggat tgctgggtca aatggtattt ctgatcctag atccttgagg aattgccaca 77400
ctgtcttcca caatggttga actcatttac actcccacca acagtgtaaa agcattccta 77460
tttctccaca gccttgccag cgtctcttgt ttcctgactt tttaatgatc tccattctaa 77520
ctggcatgag atggtatctc attgtggttt tgatttgcat ttctctaatg actagtgatg 77580
acgagctttt tttcatatgt ttgttggccg cataaatgtc ttcttttgag aagtgtctgt 77640
tcatatcctt cacccacttt ttgatgggtt ggtttgtttg ttttcttgta aatttgttta 77700
agttccttgt agattctgga tattagccct ttgtcagatg ggtagattgc aaaaattttc 77760
tcccatactc taggttgcct gttcactttg atgatagttt cttttgctgt gcagaagctc 77820
tttagtttaa ttagatccca tttgtcaatt ttggcttttg ttgccattgt ttttagtgtt 77880
ttcatcatga actctttgcc catgcctatg tcctgaatgg tattatctag gtattcttct 77940
aggtttttta tggttattag gtcttatgtt taagtattga atccatcttg agttaatttt 78000
tgtataaggt gcaaggaagg gatccagttt cagccttatg catatggcta gccagtttcc 78060
caacacaatt tattaaatag ggaatccttt ccctattgct cgtttttgtc aggtttgtca 78120
aagatcagat ggttgtagat gtgtggtgtt atttctgagg tctctgttct gttccattgg 78180
tctatatatc tgttttggta ccagtatcct gctgtttttg ttactgtaac cttgtagtat 78240
agtttgaagt cagatagcgt gatgcctcca ggtttgttct ttttgcttag aattgtcttg 78300
gctatgtggg ctcttttttg attccatatg aaatttaaag tagttttttc caattctgtg 78360
aagaaagtca atggtagctt gatggggata gcattgaatc tataaattac tttgggcaat 78420
atggccattt tcatgatatt gattcttcct acccatgagc atggaatgtt tttccatttg 78480
tttgtgtcct ctcttatttc cttgagcagt ggtttgtagt tctttttgaa gaggtctttc 78540
acatcccttg taagttgtat tcctagttat tttattctct ttgtagcaat tgtgaatggg 78600
agttcactca tgatttggct cactgtttgc ctgttattgg cgtataggaa tgcttctgat 78660
ttttgcacat taattttgta tcctgagagt ttgctgaagt tgcttatcag tgtgaggagt 78720
ttttgggctg agatgatggg gttttctaaa tatacagtca tgtcatctgc agagacaatt 78780
tgacatcctc ttttcctaat tgaataccct ttatttcttt ctcttgcctg attgccctgg 78840
ccagaacttc caatactatg ttgaatagga gtgcggagag acagcatcct tgtcttgtgc 78900
tggttttcaa agggaatgct tccagttttt gtccattcag tatgatattg tctgtgggtt 78960
tgtcataaat agttcttatt attttgagat acattccatc aatacctagt tcattgagag 79020
tttttagcat gaagggctgt tgaattttgt caaaggcctt ttctgcatct attcaggtta 79080
tcatgtggtt ttcatcatta gttctgttta tgtgatggat tacgtttatt catttgccta 79140
tgttgaacca gccttgcatc ccaggaataa agccagcttg attgtggtgg ataagctttt 79200
tgatgtgctg ctggattccg tttgccagta ttttattgag gattttcaca tcgatgttta 79260
tcagggatat tggcctaaaa ttttcttttt tttgttgtgt ctctgccagg ttttggtatc 79320
agaatgatgc tggcctcata aaatgagtta gggagtattc cctctttttc tactgtttgg 79380
aacagtttca gaaggaatgg taccagctcc tctttgtacc tctggtagaa tgtggctgtg 79440
aatccgtctg gtcctggact ttttttgatt ggtaggctat taattactgc ctcaatttca 79500
gaactggttt ttggtctatt cagggatttc acttcttcct ggtttagtgt tgggaaggtg 79560
tatgtgtcca ggaatttatc catttcttct agattttcta gtttatttgc acagaggtat 79620
ttatagtatt ctctgatgat agtttatatt tctgtgggat tggtggtgat atctccttta 79680
tcatttttta ttgcatctat ttgattcttc tctcttttct tctttattag tctggctagc 79740
agtctatcta ttttgttgat cttttcaaaa aaccagctcc tggattcatt gatttttttg 79800
aagagttttt catgtctctg tctccttcag tgcttctctg atcttagtta cttcttgtct 79860
tctgctagct tttgaatttg tttgctcttg cttctctaat tcttttaatt gtgatgttag 79920
ggtgtcaatt ttagatcttt ccagctttgt gatgtgggca tttagtgcta taaatttcct 79980
tctacacact gctataaatg tgtcccagag attctggtac attgtgtgtt ttttctcatt 80040
ggtttcaaag aacatcttta tttctgcctt cattttgtta tttacccagt agtcactcag 80100
gagcagattg ttcagtttcc atgtagttgt gcagttttga gtgagtttct taatcctgag 80160
ttctaatttg atttcactgt ggtctgagag acagtttgtt atgatttcca ttcttttgca 80220
tttgctgagg agtgttttac ttacaattat gtgatcaatt ttagagtatg tgtgatgtag 80280
tcctgagaag aatgtatatt ctgttgattt ggggtggaca gttctgtaga tgtctatagg 80340
tcccacttgg tccagagctg agttcaagtc ctggatatcc ttgttaattt tctgtctcgc 80400
tgatctgtct aatattgaca gtggggtgtt aaagtctccc actattattg tgtgggagtc 80460
taagtctctt tgtaggtctc taagaactga ctttataaat ctggatgctt ctgtattggg 80520
tgcatatata tttaggatag ttagctcttc ttgttgcatt tatcctttta tcattatgta 80580
atgcccttct ttgtctcttt tgatctttgt tggtttaaag tctgttttat cagagactag 80640
gattgcaacc cctgcttttt tttttctttc cattttcttg gtaaatcttc cttcatccct 80700
ttattttgtg tgtgtttttg cacatgagat gggtctcctg aatacagcac tactgatggg 80760
tcttattctt tatccaattt gccagtctgt gtcttttaat tggggcattt agcccattta 80820
cttttttttt ttttttgaga tggagtttca cttttgttgc ccagactgga gtgcaatggc 80880
acgatcttgg ctccctgcaa cctctgcctc ccaggtgcaa gggattctcc tgcctcagcc 80940
tccctagtag ctgggattac aggcatgtgc caccatgcct ggctaatttt gtatttttag 81000
tagagatgga gtttctccat gttggtcagg taggtctcaa actcctgacc tcaggtgatc 81060
cgcccacctt ggcctcccaa agtgctggga ttacaggcat gagccaccgt gcccagccta 81120
gtccatttac atttaaggtt aatattgtta tctgtgagtt tgatcttgtc attatgatgt 81180
tagctggtta ttttgcccat tagttgatgc ggtttcttca tagtgttaat ggtctttaca 81240
atttggtatg tttttgcagt ggctggtact ggttcctttc catgtttagt gcttccttca 81300
ggagctcttg taaggcaggc ctggtggtga cagaatctct cagcatttgc ttgtctggaa 81360
aggattttat ttctccttcg cttatgaagc ttagtttggc tggatatgaa attctaggtt 81420
gaaaattctt tcctttaaga atgttgaaca ttgaccccca ctgtcttctg gcttgtgggg 81480
tttctgctga gacatctgct tttagtctga tgggcttccc tttgtaggta accagacctt 81540
tttctctggc tgcccttaac attttttcct tcatttcaac gtcggtgtat ctgatgagtt 81600
gtgtcttagg gttcctgttc tccaggaata tctttgtggt gttctctata tttcctgaat 81660
ttaaagtttg gcctgttttg ctaggttggg gaagttctcc tggataatat cctgaaatgt 81720
gttttacaac ttggttccat tcttcttgtc acttttaggt acaccgttca aacatagatt 81780
tggtcttttc acatattccc atatttcttg gaggctttgt ttgattcttt tcattctttt 81840
ttctctgatc ttgtcttctt gctttatttc attgagttaa tcttcaatct ctggtattct 81900
ttcttccact tgattgactc agctattgat acttgtgtat gcttcacgaa gttcttgtgc 81960
tgtgtttttc agcaccatca ggtcatttat gttcttctct accctggtta ttctagttag 82020
caattcgtct ttttttcaag gttcttagct tccttgcatt gggttagaac atgctgcttt 82080
aactcagagg agtttgttat tacccacctt ctaaagtcta cttctgtcaa ttcatcaaac 82140
tcattctcca tccagttttg ttcccttgct ggcgaggagt tgtgatcctt tggaggggaa 82200
gaggcattct ggtttttgga aatttcagct tttttgtgct ggtttctccc aatcaagcca 82260
gtggatctta gcttgctggg ctctgtgggg gtgggaccca ctgagccagg caccggaggg 82320
aatctcctga tctgctggtt gtgaagaccg tggggaaagc acagtatctg ggccagagta 82380
tactgttcct ccccgtacag tctgtcatgg cttcttttga ctaggaaagg gaaatccccc 82440
agccccttgt gcttcctggg tgagacgatg ccccaccctg cttcagcccc ccctccatga 82500
gctgtaccca ctatccaacc agtcccaatg ggatgaactt ggtacctcag atggaaatgc 82560
agaaataacc cgccttctgc gttgatctct ctgggagctg cagaccagac ctgttcctat 82620
tcagccacct tgccagctct ccagcatgct gatttttcac gctgatttag catgaaaatc 82680
tggcatagta ttttcttggt atttaattaa tttttgttct actttggtta gcagtcttat 82740
aaaccagtta gtctttttat taaagtttta gggattctta ccgagtctaa atgatacgaa 82800
tttaaagtta ttagaaacct gtattcaaga gtgcttttta gcatcctttt tatcctttca 82860
tgaactttct aaaagatacc atattctagg attttccgtg tttgtgaagt tttcagaaat 82920
tgcattagca ttaagtaatt aacttaatgt aatgacttta aacagtgata tttaaaaaca 82980
caattcacaa ggaaatgtgg ttatctctgt ggtctgtgat aaattaacat aataacctta 83040
attatgattg aaaggatata ctcagacatt agaattttag aaatcctata caattttgga 83100
acatatatta atattattta acctgaagaa gattaaacat tgtttttatt ttgacaatcc 83160
catgtaacta aacatgtcag ataatcctat ttacctctcc tttggatgct ccaagggccc 83220
tctgtagcat ccaaaatttg ggggttagaa agacaatttt gaagctgaaa tttcattttg 83280
ggaagcctat aaaatatgtt aaaggtttaa aatacttgat ataatgctta accagtttga 83340
ccatgaggtg aaattcttgt aaacattttg taacccttta caaatttttg ttaaaaagca 83400
gatcagtgct ctaagaaaaa catgttgtgc ttttatttca attttaattt atagaaaaac 83460
ttagcaatac ccctttatct ttagccaatg tccacacaga atttcttttt ataagattaa 83520
cttttcataa accttccaca atgtattcaa gcctttagct ttattttaat ctaatttaaa 83580
acaatatttt aaccctctaa cctagacaaa aatttacatt cctgtgcctt cttataacct 83640
tttagtaaaa acgcatttta gtttcctgac acaccttgca tgtaaatcta ttttcagtag 83700
tctggattac atgttgtaat ggtaactgtt agcaactttt aattttggtg cctaaatttc 83760
ctttcatgta tcctttcatg acttatgcag accatctatg acatgcttag actttctgac 83820
ttgtcctaat catccctctt tttaagcaac cagttatttt actttaggac aagaatttac 83880
catacaactt tctttcttat ataaaatcta ttttctttat aatctttttt gcatagctag 83940
gggagcatgg ctaattccac atgtccccag gccttattga gaatctaatg cctccaagat 84000
aggtaaattg aacaattttc aaaagtcaaa gcagtttatg acctgaaagc attagtaaac 84060
ctaatatctg acctgtctaa tttagacaaa atgtctttat tttaccaata atcgttaaag 84120
ccatttttat ttcccaaaga ttactaaagt tacttgaact aagacattac agtttttatt 84180
ttttcttcca aaagtgtttt atctaagcac ttatttttct ttaagccaat tacttagagt 84240
tcttttatat gaacatcaca cacacaacac atatataact acacagagaa caagatccag 84300
tagttgtagg atttttcatt tgccagtttc ttcattggat tactgacctt ggggtggagc 84360
ccatcaagaa atggctagga aaacatgcag tttctggggt ctaataagca ggcacagctg 84420
gaaggcaaaa tggatttcga gagagatcta tttgctttta attcttgagg ttccatgagg 84480
aaaacagagg gttttttcca aaacaggatc agtggcacct tctttatttt tcccaaggag 84540
tcctaggcta tcagaagtta tcttagggcc tctcatgtgt gccttaagag tggcaagaca 84600
aaatggagaa aaataattca gtcgactgag aagaaaaaac ctttttcagc aaaacaagat 84660
ccacaaaaag gaaagacata aatgtggcca ggcgcagtgg ctcatgcctg taattccagc 84720
actttgggag gccgagctag gcagatcacg aggtcagcag atcgagacca tcctggctaa 84780
cacggtgaaa ccccgtctct actaaaaata caacaaatta gccaggtgtg gtggcaggca 84840
cctgtagtcc cagctacttg ggaggctgag gcaggagaat ggtgtgaacc caggaggtgg 84900
agcttgcagt gagctgagat catgccactg cactccagcc tgggtgacag agcgagactc 84960
tgtctcaaaa aaaaaaaaaa aggaaaagac ataaaggcct tttaaatata cctatagctt 85020
ggatatccac ttttaattaa gctgactctt aactatagtg ctctttaaaa aatcctttta 85080
aatctcttgt tacccaactt tagccatgcc aagtggcctg tatttctggc ttttgaactt 85140
tacctcccag gtgctcagag aaaggaaaat tcaagacaat tcatggaagg gaagagaatc 85200
agcaaatgat aaagttccca caggtatcaa accagaaagg actcattcct taacccagga 85260
attgaaccca ggccaccact gtgaaagtaa aaaactttag ctactgagct acagtactgg 85320
gtagtctcca ttgtgcttcc cagaagggct ctaaagtact taattttgag cttgcaaaag 85380
cttttaacta ctcaacttaa tttttagagc taactgtgac atgaacccta aaattcctgt 85440
tcccttgaag gcagagacca agaaaaagta ccaccacgtg gttacaaagt caagctccca 85500
agaatgtaaa acaagatgga gacctcatcc agtttttttt taatgcactt cagtgtgttg 85560
ttgttcattt ggaatgttcc attgtaagtt atctttagta aaattttgct atttctgtaa 85620
gactttgctg cctcccaagc ctaatgtata aactggaagg aactctgctt ttcagaaatt 85680
aaggatctca tttttaccta aaatattggc tttgctttca ggttcccttg atgaacttag 85740
ccaatgattt ttcctaccta agtgtgcaag aaaaatgaaa caaaggtgta gaaaaccaaa 85800
aatccctgtg aatttccaaa tgccaaattt tacaacccct gcaatactac catttactac 85860
cagtttcttt ctgacctagt caaatctaag aggcctctaa ttggatccta gcctgttaat 85920
tactgatcaa atccaatcct ggacccagtc cagtttctgt tgtgacttct gaacccagtt 85980
tggaacagga atttgctcaa agaaacttgg agagttcaaa acacaaatct gtggagctct 86040
gaaatccaaa agagaacttg ccatgatccc cagccactct gagagatcaa aggacacaag 86100
taggtccaac aggttccttg cttgttcact cagtgctcct gggggtcgtt agaaggtcta 86160
attcatatcc cgcttctgac accatctagt aaaagaaaaa cttcagccaa tttaaaggag 86220
tttaattgag caatgaacaa tttgggaatt tggcagcaga atcacagcag attcagagaa 86280
actctaggga tgccttgtgg tcagaacaaa tttatagaca aaaaaaaaaa aaaagagaga 86340
agtgacatac agaaattggc agtgatgtac agaaacagct ggttggttac aggttggcat 86400
ttgtcttatt tgaacacagt ttgaacattt agcagtctat gagtggttga agtatggtcc 86460
actgggattg gccaagactc agttactgtt acaggcacat actcctaagt caggttttca 86520
ctcttgtctg cctgttaagt taggttacag ttcatccaca gggattcaaa tatagaggta 86580
tgaagtcctt ctcaggccat atttagtttg ctttaacact tgaattccac ccaaacaaat 86640
cagcttgaat cagtgtgaag ggaagtgtga caatttttaa atttgtcaat tccttaccaa 86700
ttgttttagt gttttagcat tcagccccaa agtcccttac tcttggcccc cttcagtttt 86760
ttccctcctg tgatggtatt agtaaagatc tatggttagt tatttaaaat gagactttga 86820
gaaaagcaag acccttggat ttctaaattt tactgatgca ttgagtattt ctaagctgct 86880
cgatagatta gagttgtttg gtgtggcagt tccccagtgt gtccagttgc tcacaaattt 86940
tgacttgaat gttctttgcc gaattggcac tgagtttctc cttcttgcca tcatttgctt 87000
catgaaataa tctttctttc gtttacattt ataatcaagt gcagtagaaa gattttaaat 87060
gagctattat aaagtctact aatgatttct tatctacata ggttttttgc tcagaactta 87120
atatttcaaa atttaaatta cacattaata aacatattcc taataccctt gtaaggaagg 87180
caaactaata cggaatttta tttgaggctg ttttaaaata tacttgatta tgaagtccct 87240
tgaaatattt taatgttcaa attaataccc cataaaaaaa tcaatatttg tgttattatt 87300
taaacatgcc ctagtgtaaa agtttaagta acactaagtt cataactaag aatagcctaa 87360
aaactaattt tcagttcata acaaggaatt agggcaattc tttgctcatt taattattta 87420
aataagtact ctttttaaaa agataaaaca agacataatt ccaatatatt tattttacat 87480
ttgaacagat acttttattt aatacaacta ttcattatct ataaaagcct tagttctgaa 87540
acagaagtga gcaacagaaa gcaaaatatt ttatttattt atttatttat tattattttt 87600
tgagacagag tctcgctcta tcatccatac tggagtgcag tggtgcaatc tcggctcact 87660
gcaacctcca tctcctgggt tcaagtgatt ctcatgcctc agcctcccaa gtagctagga 87720
atacaggcac acaccaccat ttccaactaa tttttatatt tttggtggag acgggatttc 87780
accatgttgg ccaggctgct cttgagctct tggcctcaag tgatctgcct gtctttgcct 87840
cccaaagtgt tgggattaca ggtgtgagcc aacatgcccg gcccaaaaca ttttaaatat 87900
aataaaacca aaagtgggta aatatatata catatatata tatatattct cactgtatca 87960
gtgtactgta taaaaacttt actccaatag cctgaattta ctaatttggt ctaattttaa 88020
atacagaaga gagtgtgaat tagtaaacaa aacaacaaca aaaaaaatgg aatcataaaa 88080
cattgtataa agatgagtaa agaaataata tttaccctaa agtccaaggt caaattgggc 88140
tagcaaagtt cactcagcca ttttggttgt tatttagtac aggtcctttg agaaccaatt 88200
taaacaaata agtctgatcc gttgctaaca ggatccattg ttaatatgta aaaaggtgtc 88260
tgagatcagt ttagtctctt ctaagttctt ggtacaacct ttctgcccaa accaatttgt 88320
actgtcaatg cagagagtgt ttttaaacac aatggcagtg ctaatagata gcttggggga 88380
aaaagtggga tgtttatgac ttctaccttt tctttccaaa gccccacccc actgatcctt 88440
aaaataagca catggtctag gtagaaacca gttctcacta tgccacacaa ctgcaagaca 88500
tgttccccag cctccttctc catccgcatc aagaaagttt ggagctgtca ccatcattac 88560
aaccctattt gaaataatta caaaatctag actcagaaca gcctaaattt tagggcttta 88620
ttatataaca ttctcttttt aaatatgcgg tagttacggt caccttggaa agttctacaa 88680
aatatccctt aagttttttg aactttccca catgggaatc ttctggttat gagagtttgc 88740
tctatttaat atgtgtacgg tttcactgct agggtggttc tcccacttat cttgaatcta 88800
gtgtgagtgt tttgaaatgt ttctgctcat tgaaaagaag cagagcaata gagatgagag 88860
gaaaatctga aaagataatg acacaatttc ccacttaatt ttcattaagt aagagatgaa 88920
aactttagcc tcggcatcag gaagtttgat ttctttaatt aatttttttt ttgagtcagg 88980
gtctcactct gttgcccaga gtgagtgcag tggcatggtc acagctcact acagccttga 89040
cctcccaggc tcaagcgatc tttccacctc agcctcccaa gtagctggga ccacaggcat 89100
gcaccaccac acccagctaa ttttttaata ttctgtagag acagggtctt gctatgttgc 89160
ccaggctggt ctcgaactcc tggactcaag caatcctccc acctcagcct cccaaagtgc 89220
tgggattaca ggcatgagcc actgtgcccg acctaggaaa tttgattttt aatatacatt 89280
ttattctagt tgacttccta atctcctata tgattgcctg cttcttctaa cgtgtcattt 89340
ttgtttttta ggattaaaag aaggatctta ttgttaatac caaagtggct ttatgaagat 89400
attcctaata tgaaaaacag caatgttgtg aaaatgctac aggtaaccta acatcatcca 89460
acaaaaactg agtggcaatt gagaccaaga gtgcagtcta ataattagaa tagaatttcc 89520
attcaaataa ataaatgtgc acacatatta acataattat atagacatgt gtaaagacaa 89580
aactgtacct gtttcaaatc atacttaaaa gagatgagac aatagagttg ggggaaagaa 89640
aacagagaag aaataaagaa acaaacctgt tcaaaagaga aaagtgaagt ggaagattgt 89700
gggccttgtg cacgagtcac ctggtgacca aacaatggta gatgtcttca ggaacaaagg 89760
gagtagggaa gaaaagctca atgaaatgag cctcaaagat tcaaagggct tctgtttcac 89820
atgagatgga gagccaggtg gagcccaaga agggcatcat tttactcttt aaacccagtg 89880
gaatttgaga aaagcaatgt gagagaactg tgaacaatag tgtcacaggg gtgggctagg 89940
tttccattct ggcaaagaga aggccacaca ccaggaagcc cctgagggta cagggacatt 90000
actgattata aaggagggaa ggaacaagct atgtgtgttc ctgataaccc ctggccctcg 90060
ggattggctg tcaaggggct caaaacccag tccaagggac aaacacatca tccaagcctt 90120
gcaatgcagt gatgtaagtg caatgataga aatgagccca aacatgtgat gggagtggaa 90180
aggaaacact gaaaggagag gagctgctca ggagaagcag ggagaattca aagtcagggg 90240
gacccctggg ggttagaact gcatgttggg taagaagatg aggtgtttgt aaaacaaata 90300
gaagtggctc tgtttcaagc tctggtaagc ctattagcta actctttccc caacctcatg 90360
tcatctgaac aaagggtttc taggctaaaa ataaaatact ttttaaaagt tcaaaaacaa 90420
ctggtcaaca gaatagagtc tgagttctgt aacacaagac ttctgtgatc tgatccactc 90480
accattccag ctttactcca gccactcctc acgtcaagat ttttgatgaa gcaataccca 90540
atgtgctgtt cttacccaaa cctggcaagc tccctaagga ggctggggct gaagaaaatt 90600
ggaatgacac ttcatgtctg tttattcaag atctccttct ttgctaaact cctttcctat 90660
tctgggctcc tggaattaga ggcaaacctt agggcttccc tcagataagg ttttgttttc 90720
tgcccgagag actaaggaat gcttagtcgg cttgggtggc ttaaacaaca aacatttatt 90780
tgtcacagtg ctggaggctg ggaagtccat gatcaaggag ccagtcaatt cacttgctag 90840
tgagggctgt cttgtggaca gctgccttct cacatggcag aggaagagat catctctttc 90900
ctgtctcttc ttcactaatc ccattcatga aggctccgcc ctcatgacct aattaccacc 90960
caaagtctcc actttcaaat aacatcacat tggcttcaat gtgagggggg ctggggagag 91020
ggcacacaaa cgtttagtcc gtaacagggg gctataatat tataattgtg ttgggtgaca 91080
gtttgcccag gaaggccagc catctgttgg aaggcctcca gtccatttat tgcccagaaa 91140
agtcatcagg ctaaaacctt cacccaccct ccttatcatc acaaacatgt ctgaattgtg 91200
agtagcttta tttatttatt tgttgttttt tgttttgaga cagagtcttg ctctgtcacc 91260
caggctagag tgcagtggca tgatctcagc tcactgcaac ctccgcctcc cgggctcaag 91320
caattctcct gtctcagcct cctgagtagc tgggattaca ggcttgcgct actacgcctg 91380
gctgattttt gtatttttag tagagacagg gtttcaccat gttggccagg ctggtcttga 91440
actcctgatc tcaagtgatc tgcctgcctt ggcctcaaag tgctgggatt acaggcctta 91500
tccaccttta gaacctcggc atcaagcatt tgtcacacac tcattctcgg tatgtgagca 91560
aaataggatt ctccccaacc tttttttatt taagcaacaa agtattttct tgtaacaaga 91620
aatattaata ttaatattct tgcctcagaa gaccaacttt taaaaggccc taaaattaag 91680
taataagtaa taagttaata tataagactc aacttttctc tttaaaactt ttaaaccaag 91740
aaatgtgctt aagaagtgga ttatttttac tattcctttt cttcagtctt ctcatgcaaa 91800
tttaataaag atttggaagc aagcaggata acaaaagaca aaaggaggaa atcatatggg 91860
aagataaaca atatgagaaa atggagggag aaaggaaagt tgaaagaaag caaaattcct 91920
atcctcattc aattatccag ttggttcttt taaatgtctt ttgcaaaata aaatgatgtc 91980
tttttttcct aggaaaatag tgaacttatg aataataatt ccagtgagca ggtcctatat 92040
gttgatccca tgattacaga gataaaagaa atcttcatcc cagaacacaa gcctacagac 92100
tacaagaagg agaatacagg acccctggag acaagagact acccgcaaaa ctcgctattc 92160
gacaatacta cagttgtata tattcctgat ctcaacactg gatataaacc ccaaatttca 92220
aattttctgc ctgagggaag ccatctcagc aataataatg aaattacttc cttaacactt 92280
aaaccaccag ttgattcctt agactcagga aataatccca ggttacaaaa gcatcctaat 92340
tttgcttttt ctgtttcaag tgtgaattca ctaagcaaca caatatttct tggagaatta 92400
agcctcatat taaatcaagg agaatgcagt tctcctgaca tacaaaactc agtagaggag 92460
gaaaccacca tgcttttgga aaatgattca cccagtgaaa ctattccaga acagaccctg 92520
cttcctgatg aatttgtctc ctgtttgggg atcgtgaatg aggagttgcc atctattaat 92580
acttattttc cacaaaatat tttggaaagc cacttcaata ggatttcact cttggaaaag 92640
tagagctgtg tggtcaaaat caatatgaga aagctgcctt gcaatctgaa cttgggtttt 92700
ccctgcaata gaaattgaat tctgcctctt tttgaaaaaa atgtattcac atacaaatct 92760
tcacatggac acatgttttc atttcccttg gataaatacc taggtagggg attgctgggc 92820
catatgataa gcatatgttt cagttctacc aatcttgttt ccagagtagt gacatttctg 92880
tgctcctacc atcaccatgt aagaattccc gggagctcca tgccttttta attttagcca 92940
ttcttctgcc tcatttctta aaattagaga attaaggtcc cgaaggtgga acatgcttca 93000
tggtcacaca tacaggcaca aaaacagcat tatgtggacg cctcatgtat tttttataga 93060
gtcaactatt tcctctttat tttccctcat tgaaagatgc aaaacagctc tctattgtgt 93120
acagaaaggg taaataatgc aaaatacctg gtagtaaaat aaatgctgaa aattttcctt 93180
taaaatagaa tcattaggcc aggcgtggtg gctcatgctt gtaatcccag cactttggta 93240
ggctgaggta ggtggatcac ctgaggtcag gagttcgagt ccagcctggc caatatgctg 93300
aaaccctgtc tctactaaaa ttacaaaaat tagccggcca tggtggcagg tgcttgtaat 93360
cccagctact tgggaggctg aggcaggaga atcacttgaa ccaggaaggc agaggttgca 93420
ctgagctgag attgtgccac tgcactccag cctgggcaac aagagcaaaa ctctgtctgg 93480
aaaaaaaaaa aaaa 93494
<210> 3
<211> 20
<212> DNA
<213> mouse (Mus musculus)
<400> 3
atagaacaac agctcggatt 20
<210> 4
<211> 20
<212> DNA
<213> mouse (Mus musculus)
<400> 4
acaacaacta cacgtccatc 20
<210> 5
<211> 20
<212> DNA
<213> mouse (Mus musculus)
<400> 5
cccttaagca ctgccgacca 20
<210> 6
<211> 20
<212> DNA
<213> mouse (Mus musculus)
<400> 6
tgtgtcattt atgaatactc 20
<210> 7
<211> 20
<212> DNA
<213> mouse (Mus musculus)
<400> 7
accatctgaa gagcacataa 20
<210> 8
<211> 20
<212> DNA
<213> mouse (Mus musculus)
<400> 8
atctccactg actcactgca 20
<210> 9
<211> 20
<212> RNA
<213> mouse (Mus musculus)
<400> 9
auagaacaac agcucggauu 20
<210> 10
<211> 20
<212> RNA
<213> mouse (Mus musculus)
<400> 10
acaacaacua cacguccauc 20
<210> 11
<211> 20
<212> RNA
<213> mouse (Mus musculus)
<400> 11
cccuuaagca cugccgacca 20
<210> 12
<211> 20
<212> RNA
<213> mouse (Mus musculus)
<400> 12
ugugucauuu augaauacuc 20
<210> 13
<211> 20
<212> RNA
<213> mouse (Mus musculus)
<400> 13
accaucugaa gagcacauaa 20
<210> 14
<211> 20
<212> RNA
<213> mouse (Mus musculus)
<400> 14
aucuccacug acucacugca 20
<210> 15
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 15
gtgcagtaca tagaagcatg 20
<210> 16
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 16
acaacaacta cacgtccatc 20
<210> 17
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 17
ctacatagac acaaaatacg 20
<210> 18
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 18
accagctgaa gagtatgtaa 20
<210> 19
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 19
ccctttacat actcttcagc 20
<210> 20
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 20
acttcatcag gaatatctgg 20
<210> 21
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 21
gugcaguaca uagaagcaug 20
<210> 22
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 22
acaacaacua cacguccauc 20
<210> 23
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 23
cuacauagac acaaaauacg 20
<210> 24
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 24
accagcugaa gaguauguaa 20
<210> 25
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 25
cccuuuacau acucuucagc 20
<210> 26
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 26
acuucaucag gaauaucugg 20
<210> 27
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 27
tgtcaattct ttctttgatt 20
<210> 28
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 28
tttaacagat cattccgaac 20
<210> 29
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 29
ttaacagatc attccgaact 20
<210> 30
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 30
cagatcattc cgaactgggt 20
<210> 31
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 31
ctgcaaaaac ctacccagtt 20
<210> 32
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 32
ugucaauucu uucuuugauu 20
<210> 33
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 33
uuuaacagau cauuccgaac 20
<210> 34
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 34
uuaacagauc auuccgaacu 20
<210> 35
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 35
cagaucauuc cgaacugggu 20
<210> 36
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 36
cugcaaaaac cuacccaguu 20
<210> 37
<211> 178
<212> PRT
<213> human (Homo sapiens)
<400> 37
Met His Ser Ser Ala Leu Leu Cys Cys Leu Val Leu Leu Thr Gly Val
1 5 10 15
Arg Ala Ser Pro Gly Gln Gly Thr Gln Ser Glu Asn Ser Cys Thr His
20 25 30
Phe Pro Gly Asn Leu Pro Asn Met Leu Arg Asp Leu Arg Asp Ala Phe
35 40 45
Ser Arg Val Lys Thr Phe Phe Gln Met Lys Asp Gln Leu Asp Asn Leu
50 55 60
Leu Leu Lys Glu Ser Leu Leu Glu Asp Phe Lys Gly Tyr Leu Gly Cys
65 70 75 80
Gln Ala Leu Ser Glu Met Ile Gln Phe Tyr Leu Glu Glu Val Met Pro
85 90 95
Gln Ala Glu Asn Gln Asp Pro Asp Ile Lys Ala His Val Asn Ser Leu
100 105 110
Gly Glu Asn Leu Lys Thr Leu Arg Leu Arg Leu Arg Arg Cys His Arg
115 120 125
Phe Leu Pro Cys Glu Asn Lys Ser Lys Ala Val Glu Gln Val Lys Asn
130 135 140
Ala Phe Asn Lys Leu Gln Glu Lys Gly Ile Tyr Lys Ala Met Ser Glu
145 150 155 160
Phe Asp Ile Phe Ile Asn Tyr Ile Glu Ala Tyr Met Thr Met Lys Ile
165 170 175
Arg Asn
<210> 38
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 38
gaaccaagac ccagacatca 20
<210> 39
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 39
caaggcgcat gtgaactccc 20
<210> 40
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 40
aaggcgcatg tgaactccct 20
<210> 41
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 41
aggcgcatgt gaactccctg 20
<210> 42
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 42
ggcgcatgtg aactccctgg 20
<210> 43
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 43
gggagaacct gaagaccctc 20
<210> 44
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 44
gcctcagcct gagggtcttc 20
<210> 45
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 45
gggtcttcag gttctccccc 20
<210> 46
<211> 20
<212> DNA
<213> human (Homo sapiens)
<400> 46
ggtcttcagg ttctccccca 20
<210> 47
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 47
gaaccaagac ccagacauca 20
<210> 48
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 48
caaggcgcau gugaacuccc 20
<210> 49
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 49
aaggcgcaug ugaacucccu 20
<210> 50
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 50
aggcgcaugu gaacucccug 20
<210> 51
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 51
ggcgcaugug aacucccugg 20
<210> 52
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 52
gggagaaccu gaagacccuc 20
<210> 53
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 53
gccucagccu gagggucuuc 20
<210> 54
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 54
gggucuucag guucuccccc 20
<210> 55
<211> 20
<212> RNA
<213> human (Homo sapiens)
<400> 55
ggucuucagg uucuccccca 20

Claims (30)

1. A method of treating a subject having an autoimmune disorder, the method comprising
(a) Reducing the amount of one or more genetic variants associated with susceptibility to the autoimmune disorder ("one or more susceptibility genetic variants") in one or more cells of the subject; and/or
(b) Increasing the amount of one or more genetic variants ("one or more protective genetic variants") that protect the autoimmune disorder in one or more cells of the subject.
2. The method of claim 1, comprising reducing the amount of susceptibility genetic variants in one or more immune cells and/or one or more hematopoietic stem cells of the subject and increasing the amount of protective genetic variants in one or more immune cells and/or one or more hematopoietic stem cells of the subject.
3. A method of treating a subject having an autoimmune disorder, the method comprising
(a) Reducing the number of cells in the subject having one or more genetic variants associated with susceptibility to the autoimmune disorder; and/or
(b) Increasing the number of cells in the subject that have one or more genetic variants that protect against the autoimmune disorder.
4. The method of claim 3, wherein the cells are immune cells and/or hematopoietic stem cells.
5. The method of claim 2 or 4, wherein the immune cells comprise one or more of leukocytes, phagocytes, macrophages, neutrophils, dendritic cells, innate lymphoid cells, eosinophils, basophils, natural killer cells, B cells, and T cells.
6. The method of any one of claims 1-5, comprising administering to the subject
Immune cells and/or hematopoietic stem cells comprising the protective genetic variant; and/or
Immune cells and/or hematopoietic stem cells containing the protective genetic variant and not containing the susceptibility genetic variant.
7. The method of any one of claims 1-6, wherein the proportion of protective protein variant to susceptible protein variant in the subject is increased.
8. The method of any one of claims 1-7, further comprising obtaining immune cells and/or hematopoietic stem cells from a first subject,
altering the obtained immune cells and/or hematopoietic stem cells to reduce the amount of the susceptibility genetic variant and/or to increase the amount of the protective genetic variant, and
administering the altered immune cells and/or hematopoietic stem cells to a subject in need of treatment.
9. The method of claim 8, wherein the immune cells and/or hematopoietic stem cells are obtained from the blood or bone marrow of the subject.
10. The method of claim 8 or 9, wherein the first subject is a subject in need of treatment.
11. The method of claim 9 or 10, wherein the altered immune cells and/or hematopoietic stem cells are administered intravenously or via bone marrow transplantation.
12. The method of claim 11, further comprising depleting at least a portion of hematopoietic stem cells in the subject prior to administering the immune cells and/or hematopoietic stem cells.
13. The method of claim 12, wherein the ablating comprises administering chemotherapy or radiation to the subject; administering an anti-c-Kit monoclonal antibody to the subject; and/or administering a CD47 blocker to the subject.
14. The method of any one of claims 1-13, comprising administering a genetic modifier to the subject, wherein the genetic modifier (a) reduces the amount of the susceptibility genetic variant in one or more cells in the subject, and/or (b) increases the amount of the protective genetic variant in one or more cells in the subject.
15. The method of claim 14, wherein the genetic modification agent comprises a nuclease.
16. The method of claim 15, wherein the nuclease is (1) a class 2 regularly interspaced clustered short palindromic repeats (CRISPR) -associated nuclease, (2) a Zinc Finger Nuclease (ZFN), (3) a transcription activator-like effector nuclease (TALEN), or (4) a meganuclease.
17. The method of claim 16, wherein the nuclease comprises Casl, CaslB, Cas, CaslO, Cpf, Cyl, Csy, Csel, Cse, Ccll, Csc, Csa, Csn, Csm, Cmrl, Cmr, Cbl, Csb, Csxl, Csfl, Csf, or Csf.
18. The method of claim 16, wherein the nuclease comprises Cas9 or Cpf 1.
19. A method of treating a subject having an autoimmune disorder, the method comprising editing DNA in immune cells and/or hematopoietic stem cells in the subject to:
(a) reducing the amount of one or more genetic variants associated with: (i) resistance to a particular drug used to treat the autoimmune disorder or (ii) a bacterial distribution in the gut of the subject that is associated with increased susceptibility to the autoimmune disorder; and/or
(b) Increasing the amount of one or more genetic variants associated with: (i) increased sensitivity to a particular drug used to treat the autoimmune disorder or (ii) bacterial distribution in the gut of a subject that protects against the autoimmune disorder.
20. The method of any one of claims 1-19, wherein the genetic variant is an IL23 variant, CARD variant, NOD/2 variant, PTPN variant, NADPH oxidase complex gene variant, TTC7 variant, XIAP variant, IL-10RA variant, IL-10RB variant, RPL variant, CPAMD variant, PRG variant, hetr variant, ATG16L variant, TNFsf variant, MHCII variant, ELF variant, HLA-DB 01:03 variant, HLA-BTNL variant, ARPC variant, IL12 variant, STAT variant, IRGM variant, IRF variant, TYK variant, STAT variant, IFNGR variant, ringr variant, RIPK variant, LRRK variant, C13orf variant, ECM variant, NKX-3 variant, TNF JAK variant, tpt variant, NUDT variant, LOC 44mt variant, prlgm variant, clgi variant, CLCA variant, cldm variant, RPL variant, and/hci variant, 2q24.1 variant, LY75 variant, or a combination thereof.
21. The method of any one of claims 1-20, wherein the autoimmune disorder comprises inflammatory bowel disease, wherein the protective genetic variant encodes one or more of a R381Q mutation, a G149R mutation, and a V362I mutation in IL23R protein.
22. The method of claim 21, wherein the protective genetic variant comprises a G to a mutation at rs 11209026.
23. The method of any one of claims 1-22, wherein the susceptibility genetic variant and the protective genetic variant are determined based on one or more of:
(a) a phenotype of one or more family members, sequencing of a set of genes in one or more family members, sequencing of a full exome in one or more family members, and/or sequencing of a full genome of one or more family members;
(b) computer modeling of cellular signaling and/or immune system responses;
(c) machine modeling of mutations affecting phenotype, such as using linear and/or non-linear regression models, neural networks;
(d) data describing gene expression and/or gene signaling; and
(e) animal models (e.g., pigs).
24. An isolated immune cell or hematopoietic stem cell in which cellular DNA has been modified by gene editing to (a) reduce the amount of one or more genetic variants associated with susceptibility to an autoimmune disorder; and/or (b) increasing the amount of one or more genetic variants that protect against the autoimmune disorder.
25. A population of immune cells or hematopoietic stem cells, wherein at least about 10% of the cells in the population have been modified by gene editing to (a) reduce the amount of one or more genetic variants associated with susceptibility to an autoimmune disorder; and (b) increasing the amount of one or more genetic variants that protect against the autoimmune disorder.
26. A composition comprising (i) a nucleic acid encoding a CRISPR/Cas nuclease, (ii) a guide RNA or a nucleic acid encoding the guide RNA that hybridizes to a target sequence within the genomic DNA of a cell that encodes a genetic variant associated with susceptibility to an autoimmune disorder, and (iii) a DNA repair template that encodes a genetic variant that is unrelated to susceptibility to an autoimmune disorder.
27. A composition comprising (i) a nucleic acid encoding a CRISPR/Cas nuclease, (ii) a guide RNA or a nucleic acid encoding the guide RNA that hybridizes to a target sequence within the genomic DNA of a cell that encodes a genetic variant that does not protect against an autoimmune disorder, and (iii) a DNA repair template that encodes the genetic variant that protects against an autoimmune disorder at the location of the target sequence.
28. A composition, comprising:
(a) (ii) a guide RNA or nucleic acid encoding the guide RNA that hybridizes to a target sequence within the genomic DNA of a cell that encodes a genetic variant associated with susceptibility to an autoimmune disorder, and (iii) a DNA repair template that encodes a genetic variant not associated with susceptibility to an autoimmune disorder; and
(b) (ii) a guide RNA or a nucleic acid encoding the guide RNA that hybridizes to a target sequence within the genomic DNA of a cell, the target sequence encoding a genetic variant that does not protect against an autoimmune disorder, and (iii) a DNA repair template encoding the genetic variant that protects against an autoimmune disorder at the location of the target sequence.
29. The composition of any one of claims 26-28, comprising two or more guide RNAs, wherein the guide RNAs collectively hybridize to more than one target sequence.
30. The composition of any one of claims 26-29, wherein the genetic variant is an IL23 variant, CARD variant, NOD/2 variant, PTPN variant, NADPH oxidase complex gene variant, TTC7 variant, XIAP variant, IL-10RA variant, IL-10RB variant, RPL variant, CPAMD variant, PRG variant, hetr variant, ATG16L variant, TNFsf variant, MHCII variant, ELF variant, HLA-DB 01:03 variant, HLA-BTNL variant, ARPC variant, IL12 variant, STAT variant, IRGM variant, IRF variant, TYK variant, STAT variant, IFNGR variant, ringr variant, RIPK variant, LRRK variant, C13orf variant, ECM variant, NKX-3 variant, TNF JAK variant, tpt variant, NUDT variant, LOC 44mt variant, prlgm variant, clgi variant, CLCA variant, cldm variant, RPL variant, and/hca variant, 2q24.1 variant, or LY75 variant, or a combination thereof.
CN201980045883.9A 2018-05-14 2019-05-14 Gene editing for autoimmune disorders Pending CN112384230A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862762708P 2018-05-14 2018-05-14
US62/762,708 2018-05-14
PCT/US2019/032214 WO2019222212A1 (en) 2018-05-14 2019-05-14 Gene editing for autoimmune disorders

Publications (1)

Publication Number Publication Date
CN112384230A true CN112384230A (en) 2021-02-19

Family

ID=68540991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980045883.9A Pending CN112384230A (en) 2018-05-14 2019-05-14 Gene editing for autoimmune disorders

Country Status (4)

Country Link
EP (1) EP3820487A4 (en)
JP (1) JP2021523943A (en)
CN (1) CN112384230A (en)
WO (1) WO2019222212A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021046363A1 (en) * 2019-09-07 2021-03-11 Themba Inc. Gene editing for viral infections
WO2021202732A1 (en) * 2020-03-31 2021-10-07 Themba Inc. Genetic model validation methods
WO2022175674A1 (en) * 2021-02-19 2022-08-25 Oxford University Innovation Limited Modified human cells and uses thereof in the treatment of immune-mediated diseases

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049251A1 (en) * 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling mutations in leukocytes
WO2017156484A1 (en) * 2016-03-11 2017-09-14 Bluebird Bio, Inc. Genome edited immune effector cells
WO2018035388A1 (en) * 2016-08-17 2018-02-22 The Broad Institute, Inc. Novel crispr enzymes and systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190264267A1 (en) * 2016-07-25 2019-08-29 Wave Life Sciences Ltd. Phasing
WO2018064208A1 (en) * 2016-09-28 2018-04-05 The Broad Institute, Inc. Systematic screening and mapping of regulatory elements in non-coding genomic regions, methods, compositions, and applications thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049251A1 (en) * 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling mutations in leukocytes
WO2017156484A1 (en) * 2016-03-11 2017-09-14 Bluebird Bio, Inc. Genome edited immune effector cells
WO2018035388A1 (en) * 2016-08-17 2018-02-22 The Broad Institute, Inc. Novel crispr enzymes and systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DURGA SIVANESAN ET AL.: "IL23R (Interleukin 23 Receptor) Variants Protective against Inflammatory Bowel Diseases (IBD) Display Loss of Function due to Impaired Protein Stability and Intracellular Trafficking", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 291, no. 16, XP055883125, DOI: 10.1074/jbc.M116.715870 *

Also Published As

Publication number Publication date
JP2021523943A (en) 2021-09-09
EP3820487A1 (en) 2021-05-19
EP3820487A4 (en) 2022-03-09
WO2019222212A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
AU2016234914B2 (en) Selective reduction of allelic variants
KR102604132B1 (en) Antisense oligomers for the treatment of autosomal dominant mental retardation 5 and Dravet syndrome
KR102279458B1 (en) Modulation of huntingtin expression
AU2018203564A1 (en) Antisense modulation of gccr expression
CN107250373A (en) The gene editing realized is delivered by microfluid
KR20160002977A (en) Compositions and methods
KR102585973B1 (en) Oligonucleotides to regulate tau expression
CN101641451A (en) Cancer susceptibility variants on the chr8q24.21
CN109072237B (en) Compositions and methods for reducing TAU expression
RU2766360C2 (en) Nucleic acid molecules for reducing papd5 or papd7 mrna levels for treating infectious hepatitis b
KR20150092739A (en) Use of masitinib for treatment of cancer in patient subpopulations identified using predictor factors
AU2016381174A1 (en) Methods for reducing Ataxin-2 expression
CN112384230A (en) Gene editing for autoimmune disorders
KR20130123357A (en) Methods and kits for diagnosing conditions related to hypoxia
CN111405901A (en) Pharmaceutical composition containing miRNA for treating cancer
KR20090087486A (en) Genetic susceptibility variants of type 2 diabetes mellitus
CN101631876A (en) Genetic susceptibility variants of Type 2 diabetes mellitus
CN111032093A (en) Methods and compositions for controlling myocardial fibrosis and remodeling
CN108770360B (en) Means and methods for staging, typing and treating cancerous diseases
KR102647919B1 (en) APP mutant cell and use thereof
CN115362255A (en) Treatment of ophthalmic disorders with a Sedum kikunmakii 2 (SOS 2) inhibitor
CN113825839A (en) Treatment of elevated lipid levels with sterol regulatory element binding protein cleavage activator protein (SCAP) inhibitors
CN111556894A (en) Oligonucleotides for modulating GSK3B expression

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40045688

Country of ref document: HK