CN112383075B - An energy management control device for a common DC bus multi-machine operation energy storage system - Google Patents

An energy management control device for a common DC bus multi-machine operation energy storage system Download PDF

Info

Publication number
CN112383075B
CN112383075B CN202011270303.7A CN202011270303A CN112383075B CN 112383075 B CN112383075 B CN 112383075B CN 202011270303 A CN202011270303 A CN 202011270303A CN 112383075 B CN112383075 B CN 112383075B
Authority
CN
China
Prior art keywords
module
voltage
analog
conversion circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011270303.7A
Other languages
Chinese (zh)
Other versions
CN112383075A (en
Inventor
张红娟
孙世镇
高妍
曹晋鹏
田卫东
靳宝全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202011270303.7A priority Critical patent/CN112383075B/en
Publication of CN112383075A publication Critical patent/CN112383075A/en
Application granted granted Critical
Publication of CN112383075B publication Critical patent/CN112383075B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more AC dynamo-electric motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

The invention discloses an energy management control device of a common direct current bus multi-machine operation energy storage system, which adopts common direct current bus energy storage control to acquire information such as voltage, current, power and the like of a bus side, a super capacitor module side and a motor side in real time by considering the problems of complex load operation condition and large energy consumption of a plurality of motor driving systems, carries out state identification and power tracking, and intensively controls and manages energy through a dynamic power feedforward compensation strategy, thereby not only completing self-consumption of energy between loads, but also realizing energy coordination distribution and stable operation of a motor in braking and electric states and improving the energy utilization rate of the system. The energy-saving control method is suitable for occasions of energy-saving control of multi-motor driving systems of textile, papermaking, steel rolling, stacking machines and the like.

Description

一种共直流母线多机运行储能系统能量管理控制装置An energy management control device for a common DC bus multi-machine operation energy storage system

技术领域technical field

本发明属于节能控制技术领域,具体涉及一种共直流母线多机运行储能系统能量管理控制装置。The invention belongs to the technical field of energy-saving control, and in particular relates to an energy management control device for a common DC bus multi-machine operation energy storage system.

背景技术Background technique

随着工业生产自动化程度的提高,多电机驱动系统广泛应用于纺织、造纸、轧钢、堆垛机等控制系统中。各个电机在驱动过程中存在电动、制动运行状态,制动运行产生的能量多以热量的形式消耗,造成能量损失较大。一种有效的手段就是采用共直流母线方式,将能量集中控制与管理,实现负载之间的能量自我消纳,可以大大提升系统的能量利用率。但这种方式仍然存在制动能量过大,系统内部无法自我消耗的情况,多余的制动能量仍然会使直流母线处的能量聚集,进而造成直流母线电压泵升。With the improvement of industrial production automation, multi-motor drive systems are widely used in control systems such as textiles, papermaking, steel rolling, and stackers. In the driving process of each motor, there are electric and braking operation states, and the energy generated by the braking operation is mostly consumed in the form of heat, resulting in a large energy loss. An effective method is to use a common DC bus to centrally control and manage energy to achieve self-consumption of energy between loads, which can greatly improve the energy utilization rate of the system. However, this method still has the situation that the braking energy is too large and the system cannot consume itself. The excess braking energy will still cause the energy at the DC bus to accumulate, thereby causing the DC bus voltage to pump up.

目前,现有的解决方案有,一是直流母线通过制动单元将直流母线多余的能量以热量的形式消耗,这样可以保证系统的安全正常运行,但存在制动单元配置不能实时满足系统负载变换的需求,能量损失较大。二是通过回馈单元把多余能量回馈于电网,实现节能,但这样会造成电网电压波动并增加了谐波含量,使电网质量下降。At present, the existing solutions are: first, the DC bus consumes the excess energy of the DC bus in the form of heat through the braking unit, which can ensure the safe and normal operation of the system, but the braking unit configuration cannot meet the system load change in real time. demand, the energy loss is relatively large. Second, the excess energy is fed back to the grid through the feedback unit to achieve energy saving, but this will cause grid voltage fluctuations and increase the harmonic content, which will reduce the quality of the grid.

发明内容SUMMARY OF THE INVENTION

本发明提供了一种共直流母线多机运行储能系统能量管理控制装置,其目的在于解决现有装置存在的弊端,从而公开一种制动能量直接回收再利用的共直流母线多机运行储能系统能量管理控制装置。适用于多电机驱动系统的节能控制。The invention provides an energy management and control device for a common DC bus multi-machine operation energy storage system, which aims to solve the drawbacks of the existing device, and discloses a common DC bus multi-machine operation storage system capable of directly recovering and reusing braking energy. Energy system energy management control device. Energy-saving control for multi-motor drive systems.

为解决上述技术问题,本发明提供了一种共直流母线多机运行储能系统能量管理控制装置,包括主电路单元、信号采集单元和控制单元,其中,所述主电路单元包括三相整流器、滤波电容、制动单元、第一逆变器、第一交流电机、第二逆变器、第二交流电机、双向DC/DC变换器、超级电容模组、直流母线正、直流母线负;所述信号采集单元包括第一电压传感器、第一模数转换电路、第一功率传感器、第二模数转换电路、第二功率传感器、第三模数转换电路、第二电压传感器、第四模数转换电路、电流传感器、第五模数转换电路;所述控制单元包括负载功率计算模块、负载状态判断模块、SOC计算模块、制动模式开关、电动模式开关、第一电压给定模块、第一电压调节器、第一加法器、第一电流调节器、第一PWM驱动模块、第一逻辑运算模块、第一动态功率前馈补偿模块、第二电压给定模块、第二电压调节器、第二加法器、第二电流调节器、第二PWM驱动模块、第二逻辑运算模块、第二动态功率前馈补偿模块、选择开关、数模转换电路、制动保护控制模块;In order to solve the above technical problems, the present invention provides an energy management and control device for a common DC bus multi-machine operation energy storage system, including a main circuit unit, a signal acquisition unit and a control unit, wherein the main circuit unit includes a three-phase rectifier, filter capacitor, braking unit, first inverter, first AC motor, second inverter, second AC motor, bidirectional DC/DC converter, super capacitor module, positive DC bus, negative DC bus; The signal acquisition unit includes a first voltage sensor, a first analog-to-digital conversion circuit, a first power sensor, a second analog-to-digital conversion circuit, a second power sensor, a third analog-to-digital conversion circuit, a second voltage sensor, and a fourth analog-to-digital conversion circuit. a conversion circuit, a current sensor, and a fifth analog-to-digital conversion circuit; the control unit includes a load power calculation module, a load state judgment module, an SOC calculation module, a braking mode switch, an electric mode switch, a first voltage given module, a first voltage regulator, first adder, first current regulator, first PWM drive module, first logic operation module, first dynamic power feedforward compensation module, second voltage given module, second voltage regulator, first Two adders, a second current regulator, a second PWM drive module, a second logic operation module, a second dynamic power feedforward compensation module, a selection switch, a digital-to-analog conversion circuit, and a brake protection control module;

U、V、W三相线对应连接至三相整流器的三相输入端,三相整流器的DC+输出端和DC-输出端通过直流母线正和直流母线负连接至第一逆变器直流侧和第二逆变器直流侧,直流母线正和直流母线负之间并联设置滤波电容、第一电压传感器和制动单元;第一逆变器交流侧经第一功率传感器连接至第一交流电机,第二逆变器交流侧经第二功率传感器连接至第二交流电机;双向DC/DC变换器的高压侧+端和-端分别连接直流母线正和直流母线负,双向DC/DC变换器的低压侧+端通过电流传感器与超级电容模组的+端相连,双向DC/DC变换器的低压侧-端直接与超级电容模组的-端相连,第二电压传感器并联在双向DC/DC变换器和超级电容模组之间;The U, V, W three-phase lines are correspondingly connected to the three-phase input terminals of the three-phase rectifier, and the DC+ output terminal and DC- output terminal of the three-phase rectifier are connected to the DC side of the first inverter and the first inverter through the DC bus positive and DC bus negative. On the DC side of the second inverter, a filter capacitor, a first voltage sensor and a braking unit are arranged in parallel between the positive DC bus and the negative DC bus; the AC side of the first inverter is connected to the first AC motor through the first power sensor, and the second The AC side of the inverter is connected to the second AC motor via the second power sensor; the + and - terminals of the high-voltage side of the bidirectional DC/DC converter are respectively connected to the positive and negative DC bus bars, and the low-voltage side of the bidirectional DC/DC converter + The terminal is connected to the + terminal of the supercapacitor module through a current sensor, the low-voltage side - terminal of the bidirectional DC/DC converter is directly connected to the - terminal of the supercapacitor module, and the second voltage sensor is connected in parallel with the bidirectional DC/DC converter and the supercapacitor module. between capacitor modules;

第二模数转换电路连接于第一功率传感器和负载功率计算模块之间,第三模数转换电路连接于第二功率传感器和负载功率计算模块之间,其中第一功率传感器、第二功率传感器分别采集第一交流电机、第二交流电机的功率瞬时值,经由第二模数转换电路、第三模数转换电路转换后输入到负载功率计算模块,负载功率计算模块计算后输出电机总功率值到负载状态判断模块,负载状态判断模块输出电平信号到选择开关端口A2;第一电压传感器采集母线电压实际值,经由第一模数转换电路输送至第一动态功率前馈补偿模块;第二电压传感器采集超级电容电压实际值,经由第四模数转换电路输送至第一动态功率前馈补偿模块;负载功率计算模块输出的电机总功率值输送至第一动态功率前馈补偿模块,第一动态功率前馈补偿模块接收三部分数据,经补偿运算后输出至第一加法器;第一电压调节器根据第一电压给定模块输出的超级电容电压参考值和第四模数转换电路输出的超级电容电压实际值进行调节后输出结果输送至第一加法器,第一加法器输出的信号和第五模数转换电路输出的超级电容电流实际值均输送至第一电流调节器,第一电流调节器输出信号经第一PWM驱动模块后生成PWM信号输送至第一逻辑运算模块;制动模式开关对来自SOC计算模块输出的超级电容SOC值和第四模数转换电路输出的超级电容电压实际值进行综合判断后结果输出至第一逻辑运算模块,第一逻辑运算模块通过对制动模式开关和第一PWM驱动模块输出信号进行与操作后送至选择开关端口A1;The second analog-to-digital conversion circuit is connected between the first power sensor and the load power calculation module, and the third analog-to-digital conversion circuit is connected between the second power sensor and the load power calculation module, wherein the first power sensor and the second power sensor Collect the instantaneous power values of the first AC motor and the second AC motor respectively, and input them to the load power calculation module after conversion by the second analog-to-digital conversion circuit and the third analog-to-digital conversion circuit, and the load power calculation module outputs the total power value of the motor after calculation. To the load state judgment module, the load state judgment module outputs a level signal to the selection switch port A2; the first voltage sensor collects the actual value of the bus voltage, and sends it to the first dynamic power feedforward compensation module through the first analog-to-digital conversion circuit; the second The voltage sensor collects the actual value of the supercapacitor voltage, and sends it to the first dynamic power feedforward compensation module through the fourth analog-to-digital conversion circuit; the total motor power value output by the load power calculation module is sent to the first dynamic power feedforward compensation module. The dynamic power feedforward compensation module receives three parts of data, and outputs it to the first adder after compensation operation; the first voltage regulator is based on the supercapacitor voltage reference value output by the first voltage given module and the output value of the fourth analog-to-digital conversion circuit. After the actual value of the supercapacitor voltage is adjusted, the output result is sent to the first adder. The signal output by the first adder and the actual value of the supercapacitor current output by the fifth analog-to-digital conversion circuit are both sent to the first current regulator. The first current The output signal of the regulator is generated by the first PWM drive module and then sent to the first logic operation module; the braking mode switch actually compares the SOC value of the super capacitor output from the SOC calculation module and the voltage of the super capacitor output by the fourth analog-to-digital conversion circuit. After comprehensive judgment of the value, the result is output to the first logic operation module, and the first logic operation module performs AND operation on the braking mode switch and the output signal of the first PWM drive module and then sends it to the selection switch port A1;

第二电压给定模块给定的母线电压参考值和第一模数转换电路输出的母线电压实际值均输送至第二电压调节器,第二电压调节器输出信号到第二加法器,第二动态功率前馈补偿模块对来自第一模数转换电路的母线电压实际值和负载功率计算模块的电机总功率值进行补偿运算后计算结果输出至第二加法器,第二加法器输出的信号和第五模数转换电路输出的超级电容电流实际值均输送至第二电流调节器,第二电流调节器的输出信号经第二PWM驱动模块生成PWM信号输入到第二逻辑运算模块;电动模式开关对来自SOC计算模块输出的SOC值和第四模数转换电路输出的超级电容电压实际值进行综合判断也输出至第二逻辑运算模块,第二逻辑运算模块通过对电动模式开关和第二PWM驱动模块输出信号进行与操作后送至选择开关端口A3,当选择开关端口A2为高电平信号时,选择开关接通端口A1,当选择开关端口A2为低电平信号时,选择开关接通端口A3,选择开关的输出经数模转换电路输送至双向DC/DC变换器;The bus voltage reference value given by the second voltage given module and the actual bus voltage output from the first analog-to-digital conversion circuit are both sent to the second voltage regulator, and the second voltage regulator outputs the signal to the second adder, the second The dynamic power feedforward compensation module performs a compensation operation on the actual value of the bus voltage from the first analog-to-digital conversion circuit and the total motor power value of the load power calculation module, and then the calculation result is output to the second adder, and the signal output by the second adder is sum. The actual value of the supercapacitor current output by the fifth analog-to-digital conversion circuit is sent to the second current regulator, and the output signal of the second current regulator is generated by the second PWM drive module. The PWM signal is input to the second logic operation module; the electric mode switch The comprehensive judgment of the SOC value output from the SOC calculation module and the actual value of the supercapacitor voltage output by the fourth analog-to-digital conversion circuit is also output to the second logic operation module. The second logic operation module drives the electric mode switch and the second PWM. The output signal of the module is sent to the selection switch port A3 after operation and operation. When the selection switch port A2 is a high-level signal, the selection switch is connected to the port A1. When the selection switch port A2 is a low-level signal, the selection switch is connected to the port. A3, the output of the selection switch is sent to the bidirectional DC/DC converter through the digital-to-analog conversion circuit;

其中制动模式开关输出的逻辑信号和第一模数转换电路输出的母线电压实际值均输送至制动保护控制模块,制动保护控制模块经过判断后输出逻辑信号到制动单元。The logic signal output by the braking mode switch and the actual value of the bus voltage output by the first analog-to-digital conversion circuit are sent to the braking protection control module, and the braking protection control module outputs the logic signal to the braking unit after judgment.

与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:

该多机运行储能系统能量管理控制装置将各个电机驱动系统的逆变器直流侧共接在一起,对所有电机的能量进行统一分配和管理,不仅可以实现多电机之间的能量消纳,而且可以通过直流母线综合回收再利用多电机运行过程中产生的制动能量,通过动态功率前馈补偿策略,实现电机在制动和电动状态下的能量协调分配和平稳运行,提高能量利用率。适用于纺织、造纸、轧钢、堆垛机等多电机驱动系统需要提高能量利用率的场合。The energy management control device of the multi-machine operation energy storage system connects the DC sides of the inverters of each motor drive system together, and uniformly distributes and manages the energy of all the motors, which can not only realize energy consumption between multiple motors, but also Moreover, the braking energy generated during the operation of multiple motors can be comprehensively recovered and reused through the DC bus, and through the dynamic power feedforward compensation strategy, the coordinated distribution and smooth operation of the energy of the motors in braking and electric states can be realized, and the energy utilization rate can be improved. It is suitable for occasions where multi-motor drive systems such as textile, papermaking, steel rolling, stacking cranes need to improve energy utilization.

附图说明Description of drawings

图1是本发明提供的一种共直流母线多机运行储能系统能量管理控制装置示意图。FIG. 1 is a schematic diagram of an energy management control device for a common DC bus multi-machine operation energy storage system provided by the present invention.

图中:1.三相整流器;2.滤波电容;3.制动单元;4.第一逆变器;5.第一交流电机;6.第二逆变器;7.第二交流电机;8.双向DC/DC变换器;9.超级电容模组;10.第一电压传感器;11.第一模数转换电路;12.第一功率传感器;13.第二模数转换电路;14.第二功率传感器;15.第三模数转换电路;16.第二电压传感器;17.第四模数转换电路;18.电流传感器;19.第五模数转换电路;20.负载功率计算模块;21.负载状态判断模块;22.SOC计算模块;23.制动模式开关;24.电动模式开关;25.第一电压给定模块;26.第一电压调节器;27.第一加法器;28.第一电流调节器;29.第一PWM驱动模块;30.第一逻辑运算模块;31.第一动态功率前馈补偿模块;32.第二电压给定模块;33.第二电压调节器;34.第二加法器;35.第二电流调节器;36.第二PWM驱动模块;37.第二逻辑运算模块;38.;第二动态功率前馈补偿模块;39.选择开关;40.数模转换电路;41.制动保护控制模块;42.直流母线正;43.直流母线负。In the figure: 1. Three-phase rectifier; 2. Filter capacitor; 3. Braking unit; 4. First inverter; 5. First AC motor; 6. Second inverter; 7. Second AC motor; 8. Bidirectional DC/DC converter; 9. Super capacitor module; 10. First voltage sensor; 11. First analog-to-digital conversion circuit; 12. First power sensor; 13. Second analog-to-digital conversion circuit; 14. 15. Third analog-to-digital conversion circuit; 16. Second voltage sensor; 17. Fourth analog-to-digital conversion circuit; 18. Current sensor; 19. Fifth analog-to-digital conversion circuit; 20. Load power calculation module 21. Load state judgment module; 22. SOC calculation module; 23. Brake mode switch; 24. Electric mode switch; 25. First voltage given module; 26. First voltage regulator; 27. First adder ; 28. The first current regulator; 29. The first PWM drive module; 30. The first logic operation module; 31. The first dynamic power feedforward compensation module; 32. The second voltage setting module; 33. The second voltage regulator; 34. second adder; 35. second current regulator; 36. second PWM drive module; 37. second logic operation module; 38.; second dynamic power feedforward compensation module; 39. selection switch ; 40. Digital-to-analog conversion circuit; 41. Brake protection control module; 42. DC bus positive; 43. DC bus negative.

具体实施方式Detailed ways

下面通过实施例来进一步说明本发明,但不局限于以下实施例。The present invention is further illustrated by the following examples, but is not limited to the following examples.

参阅图1,图1是本发明提供的一种共直流母线多机运行储能系统能量管理控制装置示意图。该装置包括:主电路单元、信号采集单元和控制单元,所述主电路单元包括三相整流器1、滤波电容2、制动单元3、第一逆变器4、第一交流电机5、第二逆变器6、第二交流电机7、双向DC/DC变换器8、超级电容模组9、直流母线正42、直流母线负43;所述信号采集单元包括第一电压传感器10、第一模数转换电路11、第一功率传感器12、第二模数转换电路13、第二功率传感器14、第三模数转换电路15、第二电压传感器16、第四模数转换电路17、电流传感器18、第五模数转换电路19;所述控制单元包括负载功率计算模块20、负载状态判断模块21、SOC计算模块22、制动模式开关23、电动模式开关24、第一电压给定模块25、第一电压调节器26、第一加法器27、第一电流调节器28、第一PWM驱动模块29、第一逻辑运算模块30、第一动态功率前馈补偿模块31、第二电压给定模块32、第二电压调节器33、第二加法器34、第二电流调节器35、第二PWM驱动模块36、第二逻辑运算模块37、第二动态功率前馈补偿模块38、选择开关39、数模转换电路40、制动保护控制模块41。Referring to FIG. 1, FIG. 1 is a schematic diagram of an energy management control device for a common DC bus multi-machine operation energy storage system provided by the present invention. The device includes: a main circuit unit, a signal acquisition unit and a control unit, the main circuit unit includes a three-phase rectifier 1, a filter capacitor 2, a braking unit 3, a first inverter 4, a first AC motor 5, a second Inverter 6, second AC motor 7, bidirectional DC/DC converter 8, super capacitor module 9, DC bus positive 42, DC bus negative 43; the signal acquisition unit includes a first voltage sensor 10, a first module Digital conversion circuit 11 , first power sensor 12 , second analog-to-digital conversion circuit 13 , second power sensor 14 , third analog-to-digital conversion circuit 15 , second voltage sensor 16 , fourth analog-to-digital conversion circuit 17 , current sensor 18 , the fifth analog-to-digital conversion circuit 19; the control unit includes a load power calculation module 20, a load state judgment module 21, an SOC calculation module 22, a braking mode switch 23, an electric mode switch 24, a first voltage given module 25, The first voltage regulator 26, the first adder 27, the first current regulator 28, the first PWM drive module 29, the first logic operation module 30, the first dynamic power feedforward compensation module 31, the second voltage given module 32. The second voltage regulator 33, the second adder 34, the second current regulator 35, the second PWM drive module 36, the second logic operation module 37, the second dynamic power feedforward compensation module 38, the selection switch 39, A digital-to-analog conversion circuit 40 , a brake protection control module 41 .

U、V、W三相线均连接至三相整流器1的输入端,三相整流器1的DC+输出端和DC-输出端分别通过直流母线正42和直流母线负43连接至第一逆变器4、第二逆变器6直流侧,直流母线正42和直流母线负43之间并联有滤波电容2、第一电压传感器10、制动单元3,第一逆变器4交流侧经第一功率传感器12连接至第一交流电机5,第二逆变器6交流侧经第二功率传感器14连接至第二交流电机7;双向DC/DC变换器8的高压侧+端和-端分别连接直流母线正42和直流母线负43,双向DC/DC变换器8的低压侧+端通过电流传感器18与超级电容模组9的+端相连,双向DC/DC变换器8的低压侧-端直接与超级电容模组9的-端相连,第二电压传感器16并联在双向DC/DC变换器8和超级电容模组9之间。The U, V, W three-phase lines are all connected to the input terminal of the three-phase rectifier 1, and the DC+ output terminal and the DC- output terminal of the three-phase rectifier 1 are respectively connected to the first inverter through the positive DC bus 42 and the negative DC bus 43. 4. On the DC side of the second inverter 6, the filter capacitor 2, the first voltage sensor 10, and the braking unit 3 are connected in parallel between the positive 42 of the DC bus and the negative 43 of the DC bus. The power sensor 12 is connected to the first AC motor 5, and the AC side of the second inverter 6 is connected to the second AC motor 7 via the second power sensor 14; The positive 42 of the DC bus and the negative 43 of the DC bus, the low-voltage side + end of the bidirectional DC/DC converter 8 is connected to the + end of the supercapacitor module 9 through the current sensor 18, and the low-voltage side - end of the bidirectional DC/DC converter 8 is directly connected. Connected to the - end of the supercapacitor module 9 , the second voltage sensor 16 is connected in parallel between the bidirectional DC/DC converter 8 and the supercapacitor module 9 .

其中第一功率传感器12、第二功率传感器14分别采集第一交流电机5、第二交流电机7的功率瞬时值经由第二模数转换电路13、第三模数转换电路15转换后输入到负载功率计算模块20,负载功率计算模块20计算后输出电机总功率值到负载状态判断模块21,负载状态判断模块21输出电平信号到选择开关39端口A2;第一电压传感器10采集母线电压实际值经由第一模数转换电路11、第二电压传感器16采集超级电容电压实际值经由第四模数转换电路17、负载功率计算模块20输出的电机总功率值均输送至第一动态功率前馈补偿模块31,第一动态功率前馈补偿模块31经补偿运算后输出至第一加法器27;第一电压调节器26根据第一电压给定模块25输出的超级电容电压参考值和第四模数转换电路17输出的超级电容电压实际值进行调节后也输送至第一加法器27,第一加法器27输出的信号和第五模数转换电路19输出的超级电容电流实际值均输送至第一电流调节器28,第一电流调节器28输出信号经第一PWM驱动模块29生成PWM信号输送至第一逻辑运算模块30;制动模式开关23对来自SOC计算模块22输出的超级电容SOC值和第四模数转换电路17输出的超级电容电压实际值进行综合判断后也输出至第一逻辑运算模块30,第一逻辑运算模块30通过对制动模式开关23和第一PWM驱动模块29输出信号进行与操作后送至选择开关39端口A1。The first power sensor 12 and the second power sensor 14 respectively collect the instantaneous power values of the first AC motor 5 and the second AC motor 7 and input them to the load after being converted by the second analog-to-digital conversion circuit 13 and the third analog-to-digital conversion circuit 15 . The power calculation module 20, the load power calculation module 20 calculates and outputs the total power value of the motor to the load state judgment module 21, and the load state judgment module 21 outputs the level signal to the port A2 of the selection switch 39; the first voltage sensor 10 collects the actual value of the bus voltage The actual value of the supercapacitor voltage is collected via the first analog-to-digital conversion circuit 11 and the second voltage sensor 16, and the total motor power value output by the fourth analog-to-digital conversion circuit 17 and the load power calculation module 20 is sent to the first dynamic power feedforward compensation Module 31, the first dynamic power feedforward compensation module 31 outputs to the first adder 27 after compensation operation; the first voltage regulator 26 gives the supercapacitor voltage reference value and the fourth modulus output by the first voltage given module 25 The actual value of the supercapacitor voltage output by the conversion circuit 17 is also sent to the first adder 27 after being adjusted. The current regulator 28, the output signal of the first current regulator 28 is generated by the first PWM drive module 29 and sent to the first logic operation module 30; The actual value of the super capacitor voltage output by the fourth analog-to-digital conversion circuit 17 is also output to the first logic operation module 30 after comprehensive judgment. The first logic operation module 30 outputs signals to the braking mode switch 23 and the first PWM drive module 29 After the AND operation is performed, it is sent to the port A1 of the selector switch 39.

其中第二电压给定模块32输出的母线电压参考值和第一模数转换电路11输出的母线电压实际值均输送至第二电压调节器33,第二电压调节器33输出信号到第二加法器34,第二动态功率前馈补偿模块38对来自第一模数转换电路11的母线电压实际值和负载功率计算模块20的电机总功率值进行补偿运算后也输出至第二加法器34,第二加法器34输出的信号和第五模数转换电路19输出的超级电容电流实际值均输送至第二电流调节器35,第二电流调节器35的输出信号经第二PWM驱动模块36生成PWM信号输入到第二逻辑运算模块37;电动模式开关24对来自SOC计算模块22输出的SOC值和第四模数转换电路17输出的超级电容电压实际值进行综合判断也输出至第二逻辑运算模块37,第二逻辑运算模块37通过对电动模式开关24和第二PWM驱动模块36输出信号进行与操作后送至选择开关39端口A3,当选择开关39端口A2为高电平信号时,选择开关39接通端口A1,当选择开关39端口A2为低电平信号时,选择开关39接通端口A3,选择开关39的输出经数模转换电路40输送至双向DC/DC变换器8;其中制动模式开关23输出的逻辑信号和第一模数转换电路11输出的母线电压实际值均输送至制动保护控制模块41,制动保护控制模块41经过判断后输出逻辑信号到制动单元3。The bus voltage reference value output by the second voltage setting module 32 and the bus voltage actual value output by the first analog-to-digital conversion circuit 11 are both sent to the second voltage regulator 33, and the second voltage regulator 33 outputs the signal to the second adder the second adder 34, the second dynamic power feedforward compensation module 38 performs a compensation operation on the actual value of the bus voltage from the first analog-to-digital conversion circuit 11 and the total motor power value of the load power calculation module 20, and also outputs it to the second adder 34, The signal output by the second adder 34 and the actual value of the supercapacitor current output by the fifth analog-to-digital conversion circuit 19 are both sent to the second current regulator 35 , and the output signal of the second current regulator 35 is generated by the second PWM driving module 36 The PWM signal is input to the second logic operation module 37; the electric mode switch 24 makes a comprehensive judgment on the SOC value output from the SOC calculation module 22 and the actual value of the super capacitor voltage output by the fourth analog-to-digital conversion circuit 17 and outputs it to the second logic operation. Module 37, the second logic operation module 37 performs AND operation on the output signal of the electric mode switch 24 and the second PWM drive module 36 and sends it to the port A3 of the selection switch 39. When the port A2 of the selection switch 39 is a high level signal, the selection The switch 39 turns on the port A1, when the port A2 of the selection switch 39 is a low-level signal, the selection switch 39 turns on the port A3, and the output of the selection switch 39 is sent to the bidirectional DC/DC converter 8 through the digital-to-analog conversion circuit 40; wherein The logic signal output by the braking mode switch 23 and the actual value of the bus voltage output by the first analog-to-digital conversion circuit 11 are sent to the braking protection control module 41 , and the braking protection control module 41 outputs the logic signal to the braking unit 3 after judgment. .

上述结构中,第一功率传感器12、第二功率传感器14分别采集第一交流电机5、第二交流电机7的瞬时功率值经由第二模数转换电路13、第三模数转换电路15转换后输入到负载功率计算模块20,负载功率计算模块20输出电机总功率值到负载状态判断模块21,电机总功率值计算如式(1)所示:In the above structure, the first power sensor 12 and the second power sensor 14 respectively collect the instantaneous power values of the first AC motor 5 and the second AC motor 7 after conversion by the second analog-to-digital conversion circuit 13 and the third analog-to-digital conversion circuit 15 . Input to the load power calculation module 20, the load power calculation module 20 outputs the total power value of the motor to the load state judgment module 21, and the calculation of the total motor power value is shown in formula (1):

Figure BDA0002777466870000071
Figure BDA0002777466870000071

其中PL(t)为t时刻多台电机总功率,Pn(t)为对应的第n台电机t时刻的功率,此公式也适用于n大于2的情形,当电机工作在制动状态时,Pn(t)<0,当电机工作在电动状态时,Pn(t)>0,因此多台电机存在四种工作状态,具体如下:Among them, P L (t) is the total power of multiple motors at time t, and P n (t) is the power of the corresponding nth motor at time t. This formula is also applicable to the case where n is greater than 2. When the motor is working in the braking state When , P n (t)<0, when the motor works in the electric state, P n (t)>0, so there are four working states for multiple motors, as follows:

状态1:第一交流电机5、第二交流电机7均工作在制动状态,此时负载状态判断模块21检测到PL(t)<0,输出高电平信号到选择开关39端口A2,选择开关39接通端口A1,将第一逻辑运算模块30输出的信号经数模转换电路40输送至双向DC/DC变换器8;第一电压传感器10采集母线电压实际值经由第一模数转换电路11、第二电压传感器16采集超级电容电压实际值经由第四模数转换电路17以及负载功率计算模块20输出的电机总功率值均输送至第一动态功率前馈补偿模块31,第一动态功率前馈补偿模块31经公式(2)运算后输出第一电流补偿值到第一加法器27;其中公式(2)表达式为:State 1: Both the first AC motor 5 and the second AC motor 7 are working in the braking state. At this time, the load state judgment module 21 detects that PL (t)<0, and outputs a high-level signal to the port A2 of the selection switch 39, The selection switch 39 is connected to the port A1, and the signal output by the first logic operation module 30 is sent to the bidirectional DC/DC converter 8 through the digital-to-analog conversion circuit 40; the first voltage sensor 10 collects the actual value of the bus voltage through the first analog-to-digital conversion. The circuit 11 and the second voltage sensor 16 collect the actual value of the supercapacitor voltage, and the total motor power value output by the fourth analog-to-digital conversion circuit 17 and the load power calculation module 20 is sent to the first dynamic power feedforward compensation module 31. The power feedforward compensation module 31 outputs the first current compensation value to the first adder 27 after the calculation of the formula (2); wherein the expression of the formula (2) is:

Figure BDA0002777466870000081
Figure BDA0002777466870000081

其中ic1(t)为t时刻第一电流补偿值,△P1为第一功率前馈补偿值,Usc(t)为超级电容模组9在t时刻的电压值,Cdc为滤波电容2的电容值,Ud(t)为t时刻母线电压值,isc(t)为超级电容模组9在t时刻的电流值,K为采样周期数,△T为采样周期值。where i c1 (t) is the first current compensation value at time t, ΔP 1 is the first power feedforward compensation value, U sc (t) is the voltage value of the supercapacitor module 9 at time t, and C dc is the filter capacitor 2, U d (t) is the bus voltage value at time t, isc (t) is the current value of the supercapacitor module 9 at time t, K is the number of sampling cycles, and ΔT is the sampling cycle value.

第一电压给定模块25输出的超级电容电压参考值和第四模数转换电路17输出的超级电容电压实际值均输送至第一电压调节器26,第一电压调节器26经调节后输出至第一加法器27,第一加法器27输出的信号和第五模数转换电路19输出的超级电容电流实际值均输送至第一电流调节器28,第一电流调节器28的输出信号经第一PWM驱动模块29生成PWM信号输入到第一逻辑运算模块30。The reference value of the supercapacitor voltage output by the first voltage setting module 25 and the actual value of the supercapacitor voltage output by the fourth analog-to-digital conversion circuit 17 are both sent to the first voltage regulator 26, and the first voltage regulator 26 is adjusted and then output to The first adder 27, the signal output by the first adder 27 and the actual value of the supercapacitor current output by the fifth analog-to-digital conversion circuit 19 are sent to the first current regulator 28, and the output signal of the first current regulator 28 is passed through the first adder 28. A PWM driving module 29 generates a PWM signal and inputs it to the first logic operation module 30 .

第四模数转换电路17输出超级电容电压实际值到SOC计算模块22,超级电容模组9的SOC值计算如式(3):The fourth analog-to-digital conversion circuit 17 outputs the actual value of the supercapacitor voltage to the SOC calculation module 22, and the SOC value of the supercapacitor module 9 is calculated as formula (3):

Figure BDA0002777466870000082
Figure BDA0002777466870000082

其中SOC(t)为超级电容模组9在t时刻的电荷状态值,SOC(t0)为超级电容模组9起始t0时刻的电荷状态值,Q0是超级电容模组9的额定电荷容量,C为超级电容模组9的电容值,R是超级电容模组9的并联等效电阻,Usc(t0)为超级电容模组9的起始t0时刻的电压,Uscmin为超级电容模组9最小工作电压,Uscmax为超级电容模组9最大工作电压。Among them, SOC(t) is the state of charge value of the supercapacitor module 9 at time t, SOC(t 0 ) is the state of charge value of the supercapacitor module 9 at the initial time t 0 , and Q 0 is the rated value of the supercapacitor module 9 Charge capacity, C is the capacitance value of the super capacitor module 9, R is the parallel equivalent resistance of the super capacitor module 9, U sc (t 0 ) is the voltage at the initial time t 0 of the super capacitor module 9, U scmin is the minimum working voltage of the supercapacitor module 9 , and U scmax is the maximum working voltage of the supercapacitor module 9 .

SOC计算模块22输出的SOC值和第四模数转换电路17输出的超级电容电压实际值均输送至制动模式开关23,当SOC<SOCmax&Usc<Uscmax时,其中SOCmax为超级电容SOC上限值,制动模式开关23输出逻辑1信号到第一逻辑运算模块30,第一逻辑运算模块30将制动模式开关23的逻辑1信号和第一PWM驱动模块29产生的PWM信号相与后输出PWM信号到选择开关39端口A1,选择开关39输出的PWM信号经数模转换电路40输入到双向DC/DC变换器8,双向DC/DC变换器8开始工作在降压模式,对超级电容模组9充电;当SOC>SOCmax或Usc>Uscmax时,制动模式开关23输出逻辑0信号到第一逻辑运算模块30,第一逻辑运算模块30将制动模式开关23的逻辑0信号和第一PWM驱动模块29产生的PWM信号相与后输出逻辑0信号到选择开关39端口A1,选择开关39输出的逻辑0信号经数模转换电路40将双向DC/DC变换器8闭锁,超级电容模组9不工作;此时,制动模式开关23输出的逻辑信号和第一模数转换电路11输出的母线电压均输送至制动保护控制模块41,当制动保护控制模块41检测到母线电压值Ud>600V和制动模式开关23输入的逻辑0信号时,制动保护控制模块41输出逻辑1信号到制动单元3启动制动电阻,避免系统电压升高,造成系统危险运行。The SOC value output by the SOC calculation module 22 and the actual value of the super capacitor voltage output by the fourth analog-to-digital conversion circuit 17 are both sent to the braking mode switch 23. When SOC<SOC max &U sc <U scmax , where SOC max is the super capacitor SOC upper limit value, the braking mode switch 23 outputs a logic 1 signal to the first logic operation module 30, and the first logic operation module 30 matches the logic 1 signal of the braking mode switch 23 with the PWM signal generated by the first PWM driving module 29. After that, the PWM signal is output to the port A1 of the selection switch 39, and the PWM signal output by the selection switch 39 is input to the bidirectional DC/DC converter 8 through the digital-to-analog conversion circuit 40, and the bidirectional DC/DC converter 8 starts to work in the step-down mode. The super capacitor module 9 is charged; when SOC>SOC max or U sc >U scmax , the braking mode switch 23 outputs a logic 0 signal to the first logic operation module 30, and the first logic operation module 30 converts the braking mode switch 23 The logic 0 signal and the PWM signal generated by the first PWM drive module 29 are phased together and output a logic 0 signal to the port A1 of the selection switch 39. The logic 0 signal output by the selection switch 39 is converted to the bidirectional DC/DC converter 8 through the digital-to-analog conversion circuit 40. Locked, the super capacitor module 9 does not work; at this time, the logic signal output by the braking mode switch 23 and the bus voltage output by the first analog-to-digital conversion circuit 11 are both sent to the braking protection control module 41. When the braking protection control module 41 When it detects the bus voltage value U d >600V and the logic 0 signal input by the braking mode switch 23, the braking protection control module 41 outputs the logic 1 signal to the braking unit 3 to start the braking resistor, so as to avoid the system voltage rising and causing The system is operating dangerously.

状态2:如第一交流电机5工作在制动状态、第二交流电机7工作在电动状态,且制动功率大于电动功率,此时,第二交流电机7所需的电动功率完全由第一交流电机5的制动功率提供,剩余的制动功率再由储能装置回收,负载状态判断模块21检测到PL(t)<0,输出高电平信号到选择开关39端口A2,选择开关39接通端口A1,将第一逻辑运算模块30输出的信号经数模转换电路40输送至双向DC/DC变换器8,此工作过程与状态1相同,在此不赘述。State 2: If the first AC motor 5 works in the braking state, the second AC motor 7 works in the electric state, and the braking power is greater than the electric power, at this time, the electric power required by the second AC motor 7 is completely determined by the first AC motor. The braking power of the AC motor 5 is provided, and the remaining braking power is recovered by the energy storage device. The load state judgment module 21 detects that PL (t)<0, and outputs a high-level signal to the port A2 of the selection switch 39, and the selection switch 39 Turns on the port A1, and transmits the signal output from the first logic operation module 30 to the bidirectional DC/DC converter 8 through the digital-to-analog conversion circuit 40. The working process is the same as that of the state 1, and is not repeated here.

状态3:第一交流电机5、第二交流电机7均工作在电动状态,此时负载状态判断模块21检测到PL(t)>0,输出低电平信号到选择开关39端口A2,选择开关39接通端口A3,第二逻辑运算模块37输出的信号经数模转换电路40输入到双向DC/DC变换器8;第一电压传感器10采集母线电压实际值经由第一模数转换电路11和负载功率计算模块20输出的电机总功率值均输送至第二动态功率前馈补偿模块38,第二动态功率前馈补偿模块38经公式(4)计算后输出第二电流补偿值至第二加法器34;其中公式(4)的表达式为:State 3: The first AC motor 5 and the second AC motor 7 are both working in the electric state. At this time, the load state judgment module 21 detects that PL (t)>0, and outputs a low-level signal to the port A2 of the selection switch 39 to select The switch 39 turns on port A3, and the signal output by the second logic operation module 37 is input to the bidirectional DC/DC converter 8 through the digital-to-analog conversion circuit 40; the first voltage sensor 10 collects the actual value of the bus voltage through the first analog-to-digital conversion circuit 11 and the total motor power value output by the load power calculation module 20 are sent to the second dynamic power feedforward compensation module 38, and the second dynamic power feedforward compensation module 38 outputs the second current compensation value to the second Adder 34; wherein the expression of formula (4) is:

Figure BDA0002777466870000101
Figure BDA0002777466870000101

其ic2(t)为t时刻第二电流补偿值,△P2为第二功率前馈补偿值。Its i c2 (t) is the second current compensation value at time t, and ΔP 2 is the second power feedforward compensation value.

第二电压给定模块32输出的母线电压参考值和第一模数转换电路11输出的母线电压实际值均输送至第二电压调节器33,第二电压调节器33经调节后输出至第二加法器34,第二加法器34输出的信号和第五模数转换电路19输出的超级电容电流实际值均输送至第二电流调节器35,第二电流调节器35的输出信号经第二PWM驱动模块36生成PWM信号输入到第二逻辑运算模块37。The bus voltage reference value output by the second voltage setting module 32 and the bus voltage actual value output by the first analog-to-digital conversion circuit 11 are both sent to the second voltage regulator 33, and the second voltage regulator 33 outputs to the second voltage regulator 33 after adjustment. The adder 34, the signal output by the second adder 34 and the actual value of the supercapacitor current output by the fifth analog-to-digital conversion circuit 19 are all sent to the second current regulator 35, and the output signal of the second current regulator 35 is processed by the second PWM. The driving module 36 generates a PWM signal and inputs it to the second logic operation module 37 .

SOC计算模块22输出的SOC值和第四模数转换电路17输出的超级电容电压实际值均输送至电动模式开关24,当SOC>SOCmin&Usc>Uscmin时,其中SOCmin为超级电容SOC下限值,电动模式开关24输出逻辑1信号到第二逻辑运算模块37,第二逻辑运算模块37将电动模式开关23的逻辑1信号和第二PWM驱动模块36产生的PWM信号相与后输出PWM信号到选择开关39端口A3,选择开关39输出的PWM信号经数模转换电路40输入到双向DC/DC变换器8,双向DC/DC变换器8开始工作在升压模式,对超级电容模组9放电;当SOC<SOCmin或Usc<Uscmin时,电动模式开关24输出逻辑0信号到第二逻辑运算模块37,第二逻辑运算模块37将电动模式开关24的逻辑0信号和第二PWM驱动模块36产生的PWM信号相与后输出逻辑0信号到选择开关39端口A3,选择开关39输出的逻辑0信号经数模转换电路40将双向DC/DC变换器8闭锁,超级电容模组9不工作,此时完全由电网提供电机负载所需功率,储能系统不再参与工作。The SOC value output by the SOC calculation module 22 and the actual value of the super capacitor voltage output by the fourth analog-to-digital conversion circuit 17 are both sent to the electric mode switch 24. When SOC>SOC min &U sc >U scmin , where SOC min is the super capacitor SOC The lower limit value, the electric mode switch 24 outputs a logic 1 signal to the second logic operation module 37, and the second logic operation module 37 sums the logic 1 signal of the electric mode switch 23 and the PWM signal generated by the second PWM drive module 36 and outputs the result The PWM signal is sent to port A3 of the selection switch 39, and the PWM signal output by the selection switch 39 is input to the bidirectional DC/DC converter 8 through the digital-to-analog conversion circuit 40, and the bidirectional DC/DC converter 8 starts to work in the boost mode, and the super capacitor mode is Group 9 is discharged; when SOC < SOC min or U sc < U scmin , the electric mode switch 24 outputs a logic 0 signal to the second logic operation module 37, and the second logic operation module 37 combines the logic 0 signal of the electric mode switch 24 with the first The PWM signals generated by the two PWM drive modules 36 are phased and output a logic 0 signal to the port A3 of the selection switch 39. The logic 0 signal output by the selection switch 39 blocks the bidirectional DC/DC converter 8 through the digital-to-analog conversion circuit 40, and the super capacitor analog Group 9 does not work. At this time, the power required by the motor load is completely provided by the power grid, and the energy storage system no longer participates in the work.

状态4:如第一交流电机5工作在制动状态、第二交流电机7工作在电动状态,且电动功率多于制动功率,此时第一交流电机5产生的制动功率全部提供给第二交流电机7,第二交流电机7所需剩余的电动功率由储能装置或电网提供,负载状态判断模块21检测到PL(t)>0,输出低电平信号到选择开关39端口A2,选择开关39接通端口A3,第二逻辑运算模块37输出信号经数模转换电路40输送至双向DC/DC变换器8,此工作过程与状态3相同,在此不赘述。State 4: If the first AC motor 5 works in the braking state, the second AC motor 7 works in the electric state, and the electric power is more than the braking power, at this time, the braking power generated by the first AC motor 5 is all provided to the first AC motor 5. Two AC motors 7, the remaining electric power required by the second AC motor 7 is provided by the energy storage device or the power grid, and the load state judgment module 21 detects that PL (t)>0, and outputs a low-level signal to the port A2 of the selection switch 39 , the selection switch 39 turns on the port A3, and the output signal of the second logic operation module 37 is sent to the bidirectional DC/DC converter 8 through the digital-to-analog conversion circuit 40.

以上实施方式在双电机拖动系统进行了阐述,当在三个及以上电机系统中该实施方式同样适用,在此不进行详细说明。The above embodiment has been described in the dual-motor drive system, and the embodiment is also applicable in three or more motor systems, and will not be described in detail here.

以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only the embodiments of the present invention, and are not intended to limit the scope of the patent of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied in other related technical fields, All are similarly included in the scope of patent protection of the present invention.

Claims (1)

1. The energy management control device of the common direct current bus multi-machine operation energy storage system is characterized by comprising a main circuit unit, a signal acquisition unit and a control unit, wherein the main circuit unit comprises a three-phase rectifier (1), a filter capacitor (2), a brake unit (3), a first inverter (4), a first alternating current motor (5), a second inverter (6), a second alternating current motor (7), a bidirectional DC/DC converter (8), a super capacitor module (9), a direct current bus positive (42) and a direct current bus negative (43); the signal acquisition unit comprises a first voltage sensor (10), a first analog-to-digital conversion circuit (11), a first power sensor (12), a second analog-to-digital conversion circuit (13), a second power sensor (14), a third analog-to-digital conversion circuit (15), a second voltage sensor (16), a fourth analog-to-digital conversion circuit (17), a current sensor (18) and a fifth analog-to-digital conversion circuit (19); the control unit comprises a load power calculation module (20), a load state judgment module (21), an SOC calculation module (22), a brake mode switch (23), an electric mode switch (24), a first voltage setting module (25), a first voltage regulator (26), a first adder (27), a first current regulator (28), a first PWM driving module (29), a first logic operation module (30), a first dynamic power feedforward compensation module (31), a second voltage setting module (32), a second voltage regulator (33), a second adder (34), a second current regulator (35), a second PWM driving module (36), a second logic operation module (37), a second dynamic power feedforward compensation module (38), a selection switch (39), a digital-to-analog conversion circuit (40) and a brake protection control module (41);
u, V, W three phase lines are correspondingly connected to the three-phase input end of the three-phase rectifier (1), the DC + output end and the DC-output end of the three-phase rectifier (1) are connected to the DC side of the first inverter (4) and the DC side of the second inverter (6) through the positive (42) and the negative (43) of the DC bus, and a filter capacitor (2), a first voltage sensor (10) and a brake unit (3) are arranged in parallel between the positive (42) and the negative (43) of the DC bus; the alternating current side of the first inverter (4) is connected to the first alternating current motor (5) through a first power sensor (12), and the alternating current side of the second inverter (6) is connected to the second alternating current motor (7) through a second power sensor (14); the high-voltage side + end and the high-voltage side-end of the bidirectional DC/DC converter (8) are respectively connected with a direct-current bus positive (42) and a direct-current bus negative (43), the low-voltage side + end of the bidirectional DC/DC converter (8) is connected with the + end of the super capacitor module (9) through a current sensor (18), the low-voltage side-end of the bidirectional DC/DC converter (8) is directly connected with the-end of the super capacitor module (9), and a second voltage sensor (16) is connected between the bidirectional DC/DC converter (8) and the super capacitor module (9) in parallel;
the second analog-to-digital conversion circuit (13) is connected between the first power sensor (12) and the load power calculation module (20), the third analog-to-digital conversion circuit (15) is connected between the second power sensor (14) and the load power calculation module (20), wherein the first power sensor (12) and the second power sensor (14) respectively collect power instantaneous values of the first alternating current motor (5) and the second alternating current motor (7), the power instantaneous values are converted by the second analog-to-digital conversion circuit (13) and the third analog-to-digital conversion circuit (15) and then input into the load power calculation module (20), the load power calculation module (20) outputs a total power value of the motors to the load state judgment module (21) after calculation, and the load state judgment module (21) outputs a level signal to a port A2 of the selector switch (39); the method comprises the following steps that a first voltage sensor (10) collects a bus voltage actual value and transmits the bus voltage actual value to a first dynamic power feedforward compensation module (31) through a first analog-to-digital conversion circuit (11); a second voltage sensor (16) collects the actual voltage value of the super capacitor and transmits the actual voltage value to a first dynamic power feedforward compensation module (31) through a fourth analog-to-digital conversion circuit (17); the total power value of the motor output by the load power calculation module (20) is transmitted to a first dynamic power feedforward compensation module (31), and the first dynamic power feedforward compensation module (31) receives the three parts of data and outputs the data to a first adder (27) after compensation operation; the first voltage regulator (26) regulates according to a super capacitor voltage reference value output by the first voltage setting module (25) and a super capacitor voltage actual value output by the fourth analog-to-digital conversion circuit (17), then outputs a result to the first adder (27), signals output by the first adder (27) and the super capacitor current actual value output by the fifth analog-to-digital conversion circuit (19) are both transmitted to the first current regulator (28), and signals output by the first current regulator (28) are transmitted to the first logic operation module (30) through the first PWM driving module (29) to generate PWM signals; the braking mode switch (23) carries out comprehensive judgment on the SOC value of the super capacitor output from the SOC calculation module (22) and the actual value of the voltage of the super capacitor output from the fourth analog-to-digital conversion circuit (17), and then the result is output to the first logic operation module (30), and the first logic operation module (30) carries out AND operation on the output signals of the braking mode switch (23) and the first PWM driving module (29) and then sends the output signals to a port A1 of the selector switch (39);
the bus voltage reference value given by the second voltage given module (32) and the bus voltage actual value output by the first analog-digital conversion circuit (11) are both transmitted to a second voltage regulator (33), a second voltage regulator (33) outputs a signal to a second adder (34), a second dynamic power feedforward compensation module (38) performs compensation operation on the actual value of the bus voltage from the first analog-to-digital conversion circuit (11) and the total power value of the motor of the load power calculation module (20) and outputs a calculation result to the second adder (34), the signal output by the second adder (34) and the actual value of the super capacitor current output by the fifth analog-to-digital conversion circuit (19) are both transmitted to a second current regulator (35), and the output signal of the second current regulator (35) generates a PWM signal through a second PWM driving module (36) and inputs the PWM signal to a second logic operation module (37); the electric mode switch (24) comprehensively judges the SOC value output by the SOC calculation module (22) and the actual value of the super capacitor voltage output by the fourth analog-to-digital conversion circuit (17) and outputs the SOC value and the actual value of the super capacitor voltage to the second logic operation module (37), the second logic operation module (37) performs AND operation on output signals of the electric mode switch (24) and the second PWM driving module (36) and then sends the output signals to a port A3 of a selector switch (39), the selector switch (39) turns on a port A1 when the port A2 of the selector switch (39) is a high-level signal, the selector switch (39) turns on a port A3 when the port A2 of the selector switch (39) is a low-level signal, and the output of the selector switch (39) is sent to the bidirectional DC/DC converter (8) through a digital-to-analog conversion circuit (40);
logic signals output by the brake mode switch (23) and actual bus voltage values output by the first analog-to-digital conversion circuit (11) are both transmitted to the brake protection control module (41), and the brake protection control module (41) outputs logic signals to the brake unit (3) after judgment.
CN202011270303.7A 2020-11-13 2020-11-13 An energy management control device for a common DC bus multi-machine operation energy storage system Active CN112383075B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011270303.7A CN112383075B (en) 2020-11-13 2020-11-13 An energy management control device for a common DC bus multi-machine operation energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011270303.7A CN112383075B (en) 2020-11-13 2020-11-13 An energy management control device for a common DC bus multi-machine operation energy storage system

Publications (2)

Publication Number Publication Date
CN112383075A CN112383075A (en) 2021-02-19
CN112383075B true CN112383075B (en) 2022-06-03

Family

ID=74582209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011270303.7A Active CN112383075B (en) 2020-11-13 2020-11-13 An energy management control device for a common DC bus multi-machine operation energy storage system

Country Status (1)

Country Link
CN (1) CN112383075B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123342B (en) * 2021-12-06 2023-05-12 四川虹美智能科技有限公司 Shared drum washing machine system and energy-saving control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732893A (en) * 2017-10-27 2018-02-23 许继电气股份有限公司 A kind of straight-flow system dynamic electric voltage recovery device based on energy storage
CN109980666A (en) * 2018-11-12 2019-07-05 上海电力学院 A kind of adaptive disturbance compensation passive control method of microgrid mixed energy storage system
CN110649640A (en) * 2019-09-12 2020-01-03 太原理工大学 Super capacitor energy storage control device for network side energy suppression
CN110797959A (en) * 2019-10-23 2020-02-14 中国电力科学研究院有限公司 Control method and device for storage battery-super capacitor hybrid energy storage converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836332A1 (en) * 2016-04-01 2021-06-16 Raytheon Company Hybrid energy storage modules for pulsed power effectors with medium voltage direct current (mvdc) power distribution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732893A (en) * 2017-10-27 2018-02-23 许继电气股份有限公司 A kind of straight-flow system dynamic electric voltage recovery device based on energy storage
CN109980666A (en) * 2018-11-12 2019-07-05 上海电力学院 A kind of adaptive disturbance compensation passive control method of microgrid mixed energy storage system
CN110649640A (en) * 2019-09-12 2020-01-03 太原理工大学 Super capacitor energy storage control device for network side energy suppression
CN110797959A (en) * 2019-10-23 2020-02-14 中国电力科学研究院有限公司 Control method and device for storage battery-super capacitor hybrid energy storage converter

Also Published As

Publication number Publication date
CN112383075A (en) 2021-02-19

Similar Documents

Publication Publication Date Title
CN101917020B (en) Lift energy feedback, reactive compensation and switched-off emergency running method and system
CN101976879B (en) Mobile emergency power supply based on system converter
CN101425756B (en) DC lateral voltage controllable 4 quadrant frequency transformer and method thereof
CN103280836B (en) A kind of flywheel energy storage system grid-connected control method and energy-storage system thereof
CN201737550U (en) Elevator energy feedback, reactive compensation and outage emergency operation system
CN105553065B (en) The Energy Management System and method of composite energy storage unit peculiar to vessel
CN108599603B (en) Modular multilevel converter and capacitor voltage ripple suppression method thereof
CN106385101A (en) Method and device for realizing power supply for automatic rescue device of high-power type elevator
CN107346948A (en) A kind of efficiently two-way mixing three-phase voltage type rectifier control method
CN109450286A (en) High-power thyristor type traction rectifier brakes inversion Bidirectional variable-flow system and control method
CN104836463B (en) Mixing transformation system based on three-phase PWM rectification Yu multiple-unit uncontrollable rectifier
CN201113907Y (en) Hoisting machine variable-frequency speed-regulating device
CN112383075B (en) An energy management control device for a common DC bus multi-machine operation energy storage system
CN102427299B (en) Multifunctional High Power Power Electronic Converter
CN101247073B (en) Energy feedback and harmonic reactive-load compensation system suitable for multi-group commutating device
CN111049201B (en) A coordinated control method for hybrid high-power interface converters in AC and DC power grids
CN118367545A (en) In-phase power supply system, control method, control device and storage medium based on adaptive impedance
CN103715914A (en) Controllable rectifier/inverter control method with power feed-forward, controllable rectifier/inverter control device with power feed-forward and high-voltage frequency converter
CN117543746A (en) Elevator energy recovery system and method
CN113708359A (en) Bidirectional DCDC converter control method, system and related components
CN202364132U (en) Multifunctional high-power power-electronic converter
CN115954857A (en) Crane off-grid type direct current micro-grid system for capturing and utilizing various types of new energy and control method
CN222191898U (en) Energy storage and saving system
CN218586894U (en) Frequency modulation system based on concentrated rectifying device
CN114362521B (en) Control method of buck-boost hybrid circuit with wide-range multi-mode output

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant