CN112381771A - 一种医学影像针对病灶区域分割方法 - Google Patents
一种医学影像针对病灶区域分割方法 Download PDFInfo
- Publication number
- CN112381771A CN112381771A CN202011216791.3A CN202011216791A CN112381771A CN 112381771 A CN112381771 A CN 112381771A CN 202011216791 A CN202011216791 A CN 202011216791A CN 112381771 A CN112381771 A CN 112381771A
- Authority
- CN
- China
- Prior art keywords
- image
- data
- training
- segmentation
- training data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000012549 training Methods 0.000 claims abstract description 27
- 230000011218 segmentation Effects 0.000 claims abstract description 23
- 201000010099 disease Diseases 0.000 claims abstract description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 10
- 238000013528 artificial neural network Methods 0.000 claims abstract description 6
- 238000012545 processing Methods 0.000 claims abstract description 6
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 4
- 230000002708 enhancing effect Effects 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 9
- 230000007246 mechanism Effects 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 claims description 6
- 230000003902 lesion Effects 0.000 claims description 4
- 230000008921 facial expression Effects 0.000 claims description 3
- 238000003062 neural network model Methods 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000013519 translation Methods 0.000 claims description 3
- 238000003745 diagnosis Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Software Systems (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Evolutionary Biology (AREA)
- Multimedia (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011216791.3A CN112381771B (zh) | 2020-11-04 | 2020-11-04 | 一种医学影像针对病灶区域分割方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011216791.3A CN112381771B (zh) | 2020-11-04 | 2020-11-04 | 一种医学影像针对病灶区域分割方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112381771A true CN112381771A (zh) | 2021-02-19 |
CN112381771B CN112381771B (zh) | 2022-08-05 |
Family
ID=74579640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011216791.3A Active CN112381771B (zh) | 2020-11-04 | 2020-11-04 | 一种医学影像针对病灶区域分割方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112381771B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108647684A (zh) * | 2018-05-02 | 2018-10-12 | 深圳市唯特视科技有限公司 | 一种基于引导注意力推理网络的弱监督语义分割方法 |
US20190102878A1 (en) * | 2017-09-30 | 2019-04-04 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method and apparatus for analyzing medical image |
US20190236782A1 (en) * | 2018-01-30 | 2019-08-01 | International Business Machines Corporation | Systems and methods for detecting an indication of malignancy in a sequence of anatomical images |
CN110675419A (zh) * | 2019-10-11 | 2020-01-10 | 上海海事大学 | 一种自适应注意门的多模态脑胶质瘤影像分割方法 |
CN110807788A (zh) * | 2019-10-21 | 2020-02-18 | 腾讯科技(深圳)有限公司 | 医学图像处理方法、装置、电子设备及计算机存储介质 |
CN111047608A (zh) * | 2019-12-26 | 2020-04-21 | 北京工业大学 | 一种基于Distance-AttU-Net的端到端的乳腺超声图像的分割方法 |
-
2020
- 2020-11-04 CN CN202011216791.3A patent/CN112381771B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190102878A1 (en) * | 2017-09-30 | 2019-04-04 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method and apparatus for analyzing medical image |
US20190236782A1 (en) * | 2018-01-30 | 2019-08-01 | International Business Machines Corporation | Systems and methods for detecting an indication of malignancy in a sequence of anatomical images |
CN108647684A (zh) * | 2018-05-02 | 2018-10-12 | 深圳市唯特视科技有限公司 | 一种基于引导注意力推理网络的弱监督语义分割方法 |
CN110675419A (zh) * | 2019-10-11 | 2020-01-10 | 上海海事大学 | 一种自适应注意门的多模态脑胶质瘤影像分割方法 |
CN110807788A (zh) * | 2019-10-21 | 2020-02-18 | 腾讯科技(深圳)有限公司 | 医学图像处理方法、装置、电子设备及计算机存储介质 |
CN111047608A (zh) * | 2019-12-26 | 2020-04-21 | 北京工业大学 | 一种基于Distance-AttU-Net的端到端的乳腺超声图像的分割方法 |
Non-Patent Citations (2)
Title |
---|
GUOTAI WANG等: "Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning", 《IEEE TRANSACTIONS ON MEDICAL IMAGING》 * |
程显毅等: "生成对抗网络GAN综述", 《计算机科学》 * |
Also Published As
Publication number | Publication date |
---|---|
CN112381771B (zh) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107730497B (zh) | 一种基于深度迁移学习的血管内斑块属性分析方法 | |
Tong et al. | 3D deeply-supervised U-net based whole heart segmentation | |
Guo et al. | Multi-level semantic adaptation for few-shot segmentation on cardiac image sequences | |
US20090154785A1 (en) | Method and system for dynamic pulmonary trunk modeling in computed tomography and magnetic resonance imaging | |
CN110070540A (zh) | 图像生成方法、装置、计算机设备及存储介质 | |
Song et al. | Automatic coronary artery segmentation of CCTA images with an efficient feature-fusion-and-rectification 3D-UNet | |
Trzupek et al. | Intelligent image content semantic description for cardiac 3D visualisations | |
Zhou et al. | On the analysis of data augmentation methods for spectral imaged based heart sound classification using convolutional neural networks | |
CN114171187B (zh) | 一种基于多模态深度学习的胃癌tnm分期预测系统 | |
CN117076655A (zh) | 一种手术规划方案生成方法、系统、装置和介质 | |
CN110400297A (zh) | 一种基于深度学习的肺癌分期预测方法 | |
KR20200131020A (ko) | 의료기계 학습 시스템 | |
Li et al. | Segmentation of human aorta using 3D nnU-net-oriented deep learning | |
Lefebvre et al. | Lassnet: A four steps deep neural network for left atrial segmentation and scar quantification | |
CN112381771B (zh) | 一种医学影像针对病灶区域分割方法 | |
Oniga et al. | Applications of ai and hpc in the health domain | |
Amini | Head circumference measurement with deep learning approach based on multi-scale ultrasound images | |
Huang et al. | LRFNet: A deep learning model for the assessment of liver reserve function based on Child‐Pugh score and CT image | |
Silva et al. | Artificial intelligence-based evaluation of patients with interstitial lung disease | |
Allgöwer et al. | Liver Tumor Segmentation Using Classical Algorithms & Deep Learning | |
Wang et al. | CT image liver segmentation based on improved Deeplabv3+ | |
Wei et al. | Lesion segmentation method based on deep learning CT image of pulmonary tuberculosis | |
CN118299006B (zh) | 一种基于qfr、ofr的多模态冠脉功能评估方法 | |
Trzupek et al. | Intelligent image content description and analysis for 3D visualizations of coronary vessels | |
Xu et al. | A Joint Representation Using Continuous and Discrete Features for Cardiovascular Diseases Risk Prediction on Chest CT Scans |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241001 Address after: Room 402-2, 4th Floor, Building 7, Xiangyu Cross Strait Trade Center, 1588 Chuangye Road, Kunshan Development Zone, Suzhou City, Jiangsu Province 215300 Patentee after: Suzhou Yibo Medical Biopharmaceutical Technology Co.,Ltd. Country or region after: China Address before: 130012 School of computer science and technology, Jilin University, 2699 Qianjin Street, Jilin, Changchun Patentee before: Jilin University Country or region before: China |