CN112381051A - 基于改进支持向量机核函数的植物叶片分类方法及系统 - Google Patents

基于改进支持向量机核函数的植物叶片分类方法及系统 Download PDF

Info

Publication number
CN112381051A
CN112381051A CN202011383828.1A CN202011383828A CN112381051A CN 112381051 A CN112381051 A CN 112381051A CN 202011383828 A CN202011383828 A CN 202011383828A CN 112381051 A CN112381051 A CN 112381051A
Authority
CN
China
Prior art keywords
data
kernel function
classification
time series
data set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011383828.1A
Other languages
English (en)
Other versions
CN112381051B (zh
Inventor
李翔宇
曾燕清
李瑞兴
王�华
尹小俊
周原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minjiang Teachers College
Original Assignee
Minjiang Teachers College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang Teachers College filed Critical Minjiang Teachers College
Priority to CN202011383828.1A priority Critical patent/CN112381051B/zh
Publication of CN112381051A publication Critical patent/CN112381051A/zh
Application granted granted Critical
Publication of CN112381051B publication Critical patent/CN112381051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/188Vegetation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及一种基于改进支持向量机核函数的植物叶片分类方法及系统,该方法包括:1、获取叶片形状的时间序列数据集,并分为训练数据集、训练标签集、待分类数据集;2、将训练数据集中的样本与空间基数据两两计算样本之间的时间序列互相关距离,构建新特征空间中的训练样本数据;3、将待分类数据集中的样本与空间基数据两两计算样本之间的时间序列互相关距离,构建新特征空间中的待分类样本数据;4、计算改进的线性核函数,然后用其与训练标签集构建SVM分类模型;5、将待分类样本数据输入到构建的SVM分类模型中进行分类,获得数据分类结果。该方法及系统有利于快速、准确地对植物叶片进行分类,进而对植物物种进行识别。

Description

基于改进支持向量机核函数的植物叶片分类方法及系统
技术领域
本发明属于叶片分类技术领域,具体涉及一种基于改进支持向量机核函数的植物叶片分类方法及系统。
背景技术
叶片分类是植物自动检索中的一项关键技术,它根据叶片的形状、纹理、颜色等特征进行植物生物物种的自动标注。与颜色和纹理相比,植物叶片的形状更具有代表性,且容易转化为数学模型进行计算。
近年来,在基于植物叶片图像的植物分类等方面的研究不断取得进展,包括叶片图像的特征选取、算法性能和分类器设计等。很多学者对叶片分类课题进行了研究,例如,付波等人为解决由于植物叶片特征的相似性以及叶片旋转导致植物识别率较低的问题,提出一种基于降维局部二值模式(LBP)与叶片形状特征相结合的植物叶片识别方法。马娜等人首先对叶片图像预处理,提取6个特征值,然后再使用基于布谷鸟算法改进的支持向量机算法建立分类模型对植物叶片分类,从而识别植物物种。董红霞等人提出了一种基于形状与纹理特征的分类算法。在进行了去噪等预处理后,通过阈值分割和数学形态学方法获取叶片区域;在分割得到的二值区域图像上提取了形状特征,在灰度图像上提取了纹理特征;在所得特征的基础上,利用BP网络对叶片进行分类。
在叶片分类算法中,一般情况下将叶片图像进行预处理,然后对图形进行边缘检测,获得二值化图像并转化为一条n维的时间序列数据,最后根据时间序列数据建立相应的分类模型。支持向量机(SVM)是Vapnik等人提出了一种建立在统计学习理论的基础上的数据挖掘方法。在众多的机器学习算法中,支持向量机作为一种分类效果和稳定性较好的机器学习算法得到了广泛应用。许多学者将SVM算法运用时间序列数据的分类工作中,张坤华等人针对多变量时间序列定义了每个属性的局部密度和判别距离,根据决策图的分布来筛选属性,最终通过SVM对数据进行分类。张振国等人以子序列为单位,构建时序数据间的相似性向量,快速筛选出具有高分类能力的Shapelets集合,并使用SVM算法进行分类。传统的SVM算法一般应用于时间序列数据分类的最后阶段,即对降维或者转化操作后的时间序列数据进行分类。
发明内容
本发明的目的在于提供一种基于改进支持向量机核函数的植物叶片分类方法及系统,该方法及系统有利于快速、准确地对植物叶片进行分类,进而对植物物种进行识别。
为实现上述目的,本发明采用的技术方案是:一种基于改进支持向量机核函数的植物叶片分类方法,包括以下步骤:
步骤1:对多个植物叶片图片进行处理,获取叶片形状的时间序列数据集,然后将获得的时间序列数据集分为训练数据集Dtr(m×v)、训练标签集Ltr(m×1)、待分类数据集Dte(n×v),其中m为训练集中样本个数,n为待分类数据集中样本个数,v为数据的维数;
步骤2:将训练数据集Dtr中的样本与空间基数据Dtr两两计算样本之间的时间序列互相关距离,构建m×m的新特征空间中的训练样本数据Dist(Dtr,Dtr);
步骤3:将待分类数据集Dte中的样本与空间基数据Dtr两两计算样本之间的时间序列互相关距离,构建n×m的新特征空间中的待分类样本数据;
步骤4:利用新的特征空间数据Dist(Dtr,Dtr)计算改进的线性核函数,然后使用改进的线性核函数与训练标签集Ltr构建SVM分类模型;
步骤5:将n×m的新特征空间中的待分类样本数据输入到构建的SVM分类模型中进行分类,获得数据分类结果。
进一步地,所述步骤1中,获取叶片形状的时间序列数据集的具体方法为:
对植物叶片图片进行图像预处理,即对图像进行灰度化、去噪、二值化和边缘提取,然后通过求取叶片形状的中心位置,获得叶片形状边缘到达中心位置的距离,按照一定的时间间隔Δt采集叶片形状边缘到中心点之间的距离数据,最终获得一条维度为v的时间序列数据,所述时间序列数据是一个有序的信息集合,表示为X={x1,x2,…,xv},其中,时间序列数据的采样间隔为Δt=t(xi)-t(xi-1);
对多个植物叶片图片进行处理,相应得到多条时间序列数据,进而得到叶片形状的时间序列数据集。
进一步地,所述步骤2中,计算样本之间的时间序列互相关距离的具体方法为:
让一个时间序列保持静止,另一个序列在静止序列上滑动,通过平移找到互相关的最大值,即为两个时间序列的相似性;对于时间序列数据x=(x1,x2,…,xm)与时间序列数据y=(y1,y2,…,ym),序列x位移w个位置后与静止序列y的互相关函数如公式(1)所示:
Figure BDA0002808647570000021
其中,w∈{-m,-m+1,…,0,…,m-1,m},w≥0时,表示x序列向右移动w个位置,w<0时,表示x序列向左移动w个位置,移动后空余的位置由0替代;
找到一个最优的位移w,使得C(x,y,w)的值最大,也就找到了x相对于y最好的位移;
时间序列互相关距离,即时间序列x与序列y的互相关距离如公式(2)所示:
Figure BDA0002808647570000031
两个时间序列之间的互相关数值范围限定到[0,2]之间,数值越大,越不相似,数值越小,越相似。
进一步地,利用公式(2)计算训练数据集Dtr与空间基数据Dtr中两两样本之间的时间序列互相关距离dist(xi,yj),构建得到m×m的新特征空间中的训练样本数据,即新的特征空间数据Dist(Dtr,Dtr)如下:
Figure BDA0002808647570000032
进一步地,将线性核函数与新的特征空间数据结合,计算改进的线性核函数K(X,X)如下:
K(X,X)=Dist(Dtr,Dtr)·Dist(Dtr,Dtr)。
本发明还提供了一种基于改进支持向量机核函数的植物叶片分类系统,包括存储器、处理器以及存储于存储器上并能够在处理器上运行的计算机程序,当处理器运行该计算机程序时,实现如权利要求1-5任一项所述的方法步骤。
相较于现有技术,本发明具有以下有益效果:提供了一种基于改进支持向量机核函数的植物叶片分类方法及系统,首先将植物叶片图片进行处理并获取叶片形状的时间序列数据,然后计算叶片形状的时间序列数据样本与空间基数据的时间序列互相关距离,将样本数据映射到新的特征空间中,并根据新特征空间的训练样本数据改进线性核函数,然后根据改进的线性核函数计算SVM分类模型,最后通过分类模型对新特征空间的待分类数据进行分类,获得叶片形状分类结果,从而实现了快速、准确地对植物叶片进行分类,进而确定叶片所属的植物种类。
附图说明
图1是本发明的方法实现流程图。
图2是本发明方法与4种核函数下的SVM算法分类准确率的对比图。
图3是本发明方法与采用不同方法改进支持向量机核函数的算法的对比图。
图4是本发明方法与1-NN算法的对比图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步的详细说明。
如图1所示,本发明提供了一种基于改进支持向量机核函数的植物叶片分类方法,包括以下步骤:
步骤1:对多个植物叶片图片进行处理,获取叶片形状的时间序列数据集,然后将获得的时间序列数据集分为训练数据集Dtr(m×v)、训练标签集Ltr(m×1)、待分类数据集Dte(n×v),其中m为训练集中样本个数,n为待分类数据集中样本个数,v为数据的维数。标签集是相对应数据的类别,训练数据集Dtr(m×v)由m条v维数据构成,m条数据就有m个类别,每条数据只有1个类别标签,从而得到m个类别标签。以训练数据集作为空间基数据,以在后面的步骤中将样本数据映射到新的特征空间中。
步骤2:将训练数据集Dtr中的样本与空间基数据Dtr两两计算样本之间的时间序列互相关距离,构建m×m的新特征空间中的训练样本数据Dist(Dtr,Dtr)。
步骤3:将待分类数据集Dte中的样本与空间基数据Dtr两两计算样本之间的时间序列互相关距离,构建n×m的新特征空间中的待分类样本数据。
步骤4:利用新的特征空间数据Dist(Dtr,Dtr)计算改进的线性核函数,然后使用改进的线性核函数与训练标签集Ltr采用matlab的libsvm工具包构建SVM分类模型;
步骤5:将n×m的新特征空间中的待分类样本数据输入到构建的SVM分类模型中进行分类,获得数据分类结果。
下面对本发明涉及的相关技术内容作进一步说明。
1、植物叶片形状数据
所述步骤1中,获取叶片形状的时间序列数据集的具体方法为:
对植物叶片图片进行图像预处理,即对图像进行灰度化、去噪、二值化和边缘提取,然后通过求取叶片形状的中心位置,获得叶片形状边缘到达中心位置的距离,按照一定的时间间隔Δt采集叶片形状边缘到中心点之间的距离数据,最终获得一条维度为n的时间序列数据。
定义时间序列数据:时间序列数据是一个有序的信息集合,时间序列X={x1,x2,…,xv}是一个长度为n的数据序列,其中,时间序列数据的采样间隔为Δt=t(xi)-t(xi-1)。
定义空间基数据:空间基数据是时间序列数据,主要应用于时间序列数据的特征空间转换。本实施例中,以训练数据集中数据为空间基数据,以对时间序列数据进行特征空间转换。
对多个植物叶片图片进行处理,相应得到多条时间序列数据,进而得到叶片形状的时间序列数据集。
2、时间序列互相关距离
所述步骤2中,计算样本之间的时间序列互相关距离的具体方法为:
在信号处理的流程中,常常用互相关函数来计算两个不同的波的相似性,本发明将其应用于时间序列数据之间的相似性度量。
让一个时间序列保持静止,另一个序列在静止序列上滑动,通过平移找到互相关的最大值,即为两个时间序列的相似性;对于时间序列数据x=(x1,x2,…,xm)与时间序列数据y=(y1,y2,…,ym),序列x位移w个位置后与静止序列y的互相关函数如公式(1)所示:
Figure BDA0002808647570000051
其中,w∈{-m,-m+1,…,0,…,m-1,m},w≥0时,表示x序列向右移动w个位置,w<0时,表示x序列向左移动w个位置,移动后空余的位置由0替代。
找到一个最优的位移w,使得C(x,y,w)的值最大,也就找到了x相对于y最好的位移。
为了衡量两个时间序列数据在形态上的一致性,计算时间序列互相关距离,即时间序列x与序列y的互相关距离如公式(2)所示:
Figure BDA0002808647570000052
两个时间序列之间的互相关数值范围限定到[0,2]之间,数值越大,越不相似,数值越小,越相似。
3、支持向量机(SVM)
支持向量机是基于统计学习理论(SLT)的新型机器学习方法[12]。它是为了解决二分类识别问题而提出了方法,通过寻找一个最优的超平面,不仅能将训练样本正确分开,而且能使两类样本的分类间隔最大。
给定仅有两个类别的训练数据集Train={(x1,y1),(x2,y2),…,(xn,yn)}(yi∈{-1,1}),为了得到超平面w·x+b=0,可以通过求
Figure BDA0002808647570000053
的极小值获得两类数据之间间隔最大的最优超平面,其约束条件如下:yi[(w·xi)+b]≥1i=1,2,…,l,可以将构造最优超平面的问题转化成求公式(3):
Figure BDA0002808647570000054
引入Lagrange函数来解决以上优化问题,如公式(4):
Figure BDA0002808647570000061
其中λ≥0为拉格朗日乘子,通过对w和b求偏导,设置偏导为0,即可求解最优权值向量w*和最优偏置b*,分别如公式(5)和公式(6)所示:
Figure BDA0002808647570000062
b*=yi-∑yjλj(xj·xi) (6)
由此可以获得最优的决策函数如公式(7):
Figure BDA0002808647570000063
对于实际上难以线性分类的问题,可以将待分类数据射到某个高维的特征空间,并在该特征空间中构造最优分类面,从而转化成线性可分类问题。以高维空间的样本Φ(x)代替原样本数据x,则可以得到最优分类函数如公式(8)所示:
Figure BDA0002808647570000071
在高维特征空间构造最优超平面时,仅使用特征空间中的内积实现。可以通过一个核函数K(X,Xp),如公式(9)所示:
Figure BDA0002808647570000072
则在特高维征空间建立超平面时无需考虑变换Φ的形式,简化映射空间中的内积运算。SVM的常用核函数有:Linear(线性)核函数、Polynomial(多项式)核函数、RBF(径向基)核函数和Sigmoid型核函数。
4、改进的线性核函数
SVM引入核函数的目的是将高维特征空间中大量的内积计算转换成低维空间简单的运算实现模型构建。不同的核函数蕴藏的几何度量特征各异,选择不同的核函数导致SVM泛化能力存在差异。针对时间序列数据的分类,需要符合其特征的核函数对数据进行空间转换。
线性核函数作为SVM中的最简单的核函数,它并未对原始的数据元素进行空间转换。数据X=(x1,x2,…,xm)在线性核函数的公式中计算如公式(10)所示:
Figure BDA0002808647570000073
由于线性核函数中的几何度量特征不能有效的衡量时间序列数据的关系。为此,引入时间序列互相关距离,将时间序列数据映射到新的特征空间中,消除原始特征空间中数据的时间序列特性。通过空间基数据T=(t1,t2,…,tm),对原始时间序列数据进行转换,得到新的特征空间数据。
利用公式(2)计算训练数据集Dtr与空间基数据Dtr中两两样本之间的时间序列互相关距离dist(xi,yj),构建得到m×m的新特征空间中的训练样本数据,即新的特征空间数据Dist(Dtr,Dtr)如公式(11)所示:
Figure BDA0002808647570000081
新的特征空间的数据不再具有原始时间序列特性,因此可使用线性核函数获得较好的SVM分类效果。将线性核函数与新的特征空间数据结合,计算改进的线性核函数K(X,X)如公式(12)所示:
K(X,X)=Dist(Dtr,Dtr)·Dist(Dtr,Dtr) (12)
本发明还提供了一种基于改进支持向量机核函数的植物叶片分类系统,包括存储器、处理器以及存储于存储器上并能够在处理器上运行的计算机程序,当处理器运行该计算机程序时,实现上述方法步骤。
下面以具体的实验对本发明的性能进行比较验证。
实验采用编程语言为Python3.7,实验程序代码基于LibSVM软件包基础上完成的。实验采用25组UCR数据集验证算法的有效性,UCR数据集是目前时间序列分类研究中普遍使用的数据集。
从表1可以看出,实验数据类型多样。类别从2类到60类,数据维度也是大小不一,最小60维,最长2000维;训练数据与测试数据的样本数量的差异也较大,因此可以更全面的衡量本发明的性能。为了便于测试,实验数据集采用默认的训练数据和测试数据划分,以准确率作为分类结果评价指标。准确率定义如下:
准确率=正确分类的样本数/总样本数
表1 25组UCR数据集
Figure BDA0002808647570000082
Figure BDA0002808647570000091
1、本发明方法与传统SVM算法比较
实验中的对比算法采用基于Linear核函数、Polynomial核函数、RBF核函数、Sigmoid型核函数下的SVM算法,实验中它们的简写分别为SVM_L、SVM_P、SVM_R和SVM_S。以上4种核函数的参数设置均采用libsvm中的默认参数,基于这些核函数的SVM算法分别对训练数据进行构建分类模型,最后通过构建的分类模型分别对测试数据分类,计算不同核函数下的准确率。本发明方法(SVM_IK)对训练数据集构建分类模型,通过测试数据与训练数据的时间序列互相关距离构建的测试数据进行分类,计算最终的分类准确率。本发明方法与4种不同核函数下的传统SVM算法的实验对比如图2和表2所示。
表2与4种核函数下的SVM算法平均分类准确率对比
Figure BDA0002808647570000092
由图2可知,基于RBF核函数、Sigmoid型核函数的传统SVM算法对时间序列数据的分类效果较差,基于Linear核函数、Polynomial核函数的SVM算法则效果相当。本发明方法仅8组数据的分类效果略低于这四种算法,其他17组数据的分类效果持平或者高于4种核函数下的SVM算法。
从表2中可以发现,本发明方法的平均准确率均高于4种核函数下的SVM算法。由于传统的SVM算法采用的几何距离来衡量样本与超平面之间的距离,本发明方法考虑到时间序列的形状上的相似度。
2、本发明方法与采用不同方法改进支持向量机核函数的算法对比
本发明方法采用时间序列互相关距离与采用DTW距离和欧氏距离改进支持向量机核函数的分类效果,实验中采用简写为SVM_IK(R)、SVM_IK(ED)和SVM_IK(DTW),它们的分类结果图3和表3所示。
表3与采用不同方法改进支持向量机核函数的算法平均分类准确率对比
Figure BDA0002808647570000101
从图3中可以发现,采用时间序列互相关距离时,18组数据的分类效果均好于其他两种方法,7组数据的分类效果略低于或持平于其他两种方法。同时表3中也可以发现采用时间序列互相关距离时,对于25组数据的平均分类准确率优于其他两种方法。也说明了本发明方法采用的时间序列互相关距离在分类过程中起到了积极的效果。
3、本发明方法与1-NN算法对比
本实验对比本发明方法(SVM_IK)与1-NN算法的分类结果,采用欧式距离度量的1-NN(ED)和采用DTW距离的1-NN(DTW),对比结果如图4和表4所示。
表4与1-NN算法平均分类准确率对比
Figure BDA0002808647570000102
从图4中可以发现,与两种度量方式下的1-NN算法相比,本发明方法有9组数据的分类效果略低于这他们两者,有2组数据的分类效果与其中一者持平,有14组数据的分类效果都高于这两者。通过表4可以发现本发明方法的平均值均高于这两种度量下的1-NN算法。因此,本发明方法对时间序列数据分类能够有较好的分类准确率。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (6)

1.一种基于改进支持向量机核函数的植物叶片分类方法,其特征在于,包括以下步骤:
步骤1:对多个植物叶片图片进行处理,获取叶片形状的时间序列数据集,然后将获得的时间序列数据集分为训练数据集Dtr(m×v)、训练标签集Ltr(m×1)、待分类数据集Dte(n×v),其中m为训练集中样本个数,n为待分类数据集中样本个数,v为数据的维数;
步骤2:将训练数据集Dtr中的样本与空间基数据Dtr两两计算样本之间的时间序列互相关距离,构建m×m的新特征空间中的训练样本数据Dist(Dtr,Dtr);
步骤3:将待分类数据集Dte中的样本与空间基数据Dtr两两计算样本之间的时间序列互相关距离,构建n×m的新特征空间中的待分类样本数据;
步骤4:利用新的特征空间数据Dist(Dtr,Dtr)计算改进的线性核函数,然后使用改进的线性核函数与训练标签集Ltr构建SVM分类模型;
步骤5:将n×m的新特征空间中的待分类样本数据输入到构建的SVM分类模型中进行分类,获得数据分类结果。
2.根据权利要求1所述的基于改进支持向量机核函数的植物叶片分类方法,其特征在于,所述步骤1中,获取叶片形状的时间序列数据集的具体方法为:
对植物叶片图片进行图像预处理,即对图像进行灰度化、去噪、二值化和边缘提取,然后通过求取叶片形状的中心位置,获得叶片形状边缘到达中心位置的距离,按照一定的时间间隔Δt采集叶片形状边缘到中心点之间的距离数据,最终获得一条维度为v的时间序列数据,所述时间序列数据是一个有序的信息集合,表示为X={x1,x2,…,xv},其中,时间序列数据的采样间隔为Δt=t(xi)-t(xi-1);
对多个植物叶片图片进行处理,相应得到多条时间序列数据,进而得到叶片形状的时间序列数据集。
3.根据权利要求1所述的基于改进支持向量机核函数的植物叶片分类方法,其特征在于,所述步骤2中,计算样本之间的时间序列互相关距离的具体方法为:
让一个时间序列保持静止,另一个序列在静止序列上滑动,通过平移找到互相关的最大值,即为两个时间序列的相似性;对于时间序列数据x=(x1,x2,…,xm)与时间序列数据y=(y1,y2,…,ym),序列x位移w个位置后与静止序列y的互相关函数如公式(1)所示:
Figure FDA0002808647560000021
其中,w∈{-m,-m+1,…,0,…,m-1,m},w≥0时,表示x序列向右移动w个位置,w<0时,表示x序列向左移动w个位置,移动后空余的位置由0替代;
找到一个最优的位移w,使得C(x,y,w)的值最大,也就找到了x相对于y最好的位移;
时间序列互相关距离,即时间序列x与序列y的互相关距离如公式(2)所示:
Figure FDA0002808647560000022
两个时间序列之间的互相关数值范围限定到[0,2]之间,数值越大,越不相似,数值越小,越相似。
4.根据权利要求3所述的基于改进支持向量机核函数的植物叶片分类方法,其特征在于,利用公式(2)计算训练数据集Dtr与空间基数据Dtr中两两样本之间的时间序列互相关距离dist(xi,yj),构建得到m×m的新特征空间中的训练样本数据,即新的特征空间数据Dist(Dtr,Dtr)如下:
Figure FDA0002808647560000023
5.根据权利要求4所述的基于改进支持向量机核函数的植物叶片分类方法,其特征在于,将线性核函数与新的特征空间数据结合,计算改进的线性核函数K(X,X)如下:
K(X,X)=Dist(Dtr,Dtr)·Dist(Dtr,Dtr)。
6.一种基于改进支持向量机核函数的植物叶片分类系统,其特征在于,包括存储器、处理器以及存储于存储器上并能够在处理器上运行的计算机程序,当处理器运行该计算机程序时,实现如权利要求1-5任一项所述的方法步骤。
CN202011383828.1A 2020-11-30 2020-11-30 基于改进支持向量机核函数的植物叶片分类方法及系统 Active CN112381051B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011383828.1A CN112381051B (zh) 2020-11-30 2020-11-30 基于改进支持向量机核函数的植物叶片分类方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011383828.1A CN112381051B (zh) 2020-11-30 2020-11-30 基于改进支持向量机核函数的植物叶片分类方法及系统

Publications (2)

Publication Number Publication Date
CN112381051A true CN112381051A (zh) 2021-02-19
CN112381051B CN112381051B (zh) 2023-12-19

Family

ID=74589153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011383828.1A Active CN112381051B (zh) 2020-11-30 2020-11-30 基于改进支持向量机核函数的植物叶片分类方法及系统

Country Status (1)

Country Link
CN (1) CN112381051B (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295362A (zh) * 2007-04-28 2008-10-29 中国科学院国家天文台 结合支持向量机以及近邻法的模式分类方法
CN101807254A (zh) * 2009-02-13 2010-08-18 烟台海岸带可持续发展研究所 面向数据特点的合成核支持向量机的实现方法
CN103048041A (zh) * 2012-12-20 2013-04-17 北京信息科技大学 基于局部切空间和支持向量机的机电系统故障诊断方法
CN106096557A (zh) * 2016-06-15 2016-11-09 浙江大学 一种基于模糊训练样本的半监督学习人脸表情识别方法
CN106295711A (zh) * 2016-08-19 2017-01-04 苏州大学 一种时间序列分类方法及系统
CN106529576A (zh) * 2016-10-20 2017-03-22 天津大学 基于测度学习改进支持向量机的钢琴乐谱难度识别算法
CN107292339A (zh) * 2017-06-16 2017-10-24 重庆大学 基于特征融合的无人机低空遥感影像高分地貌分类方法
US20180204111A1 (en) * 2013-02-28 2018-07-19 Z Advanced Computing, Inc. System and Method for Extremely Efficient Image and Pattern Recognition and Artificial Intelligence Platform
CN108364030A (zh) * 2018-03-20 2018-08-03 东北大学 一种基于三层动态粒子群算法的多分类器模型构建方法
CN109034179A (zh) * 2018-05-30 2018-12-18 河南理工大学 一种基于马氏距离idtw的岩层分类方法
WO2019009420A1 (ja) * 2017-07-07 2019-01-10 国立大学法人大阪大学 トレンド分析を利用した痛みの判別、機械学習、経済的判別モデルおよびIoTを応用した医療装置、テイラーメイド機械学習、および新規疼痛判別用脳波特徴量
CN109492315A (zh) * 2018-11-19 2019-03-19 西安交通大学 一种基于Copula函数的时空相关风光序列模拟方法
WO2019089432A1 (en) * 2017-10-30 2019-05-09 The Research Foundation For The State University Of New York System and method associated with user authentication based on an acoustic-based echo-signature
CN110189767A (zh) * 2019-04-30 2019-08-30 上海大学 一种基于双声道音频的录制移动设备检测方法
EP3539464A1 (en) * 2018-03-16 2019-09-18 Tata Consultancy Services Limited System and method for classification of coronary artery disease based on metadata and cardiovascular signals
CN110598902A (zh) * 2019-08-02 2019-12-20 浙江工业大学 一种基于支持向量机与knn相结合的水质预测方法
CN110705794A (zh) * 2019-10-09 2020-01-17 苏州卡泰里环保能源有限公司 一种基于支持向量机算法预测窗户状态的方法
US20200184278A1 (en) * 2014-03-18 2020-06-11 Z Advanced Computing, Inc. System and Method for Extremely Efficient Image and Pattern Recognition and Artificial Intelligence Platform
US20200286001A1 (en) * 2019-03-05 2020-09-10 Booz Allen Hamilton Inc. System And Method For Heterogeneous Relational Kernel Learning
CN111751714A (zh) * 2020-06-11 2020-10-09 西安电子科技大学 一种基于svm和hmm的射频模拟电路故障诊断方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295362A (zh) * 2007-04-28 2008-10-29 中国科学院国家天文台 结合支持向量机以及近邻法的模式分类方法
CN101807254A (zh) * 2009-02-13 2010-08-18 烟台海岸带可持续发展研究所 面向数据特点的合成核支持向量机的实现方法
CN103048041A (zh) * 2012-12-20 2013-04-17 北京信息科技大学 基于局部切空间和支持向量机的机电系统故障诊断方法
US20180204111A1 (en) * 2013-02-28 2018-07-19 Z Advanced Computing, Inc. System and Method for Extremely Efficient Image and Pattern Recognition and Artificial Intelligence Platform
US20200184278A1 (en) * 2014-03-18 2020-06-11 Z Advanced Computing, Inc. System and Method for Extremely Efficient Image and Pattern Recognition and Artificial Intelligence Platform
CN106096557A (zh) * 2016-06-15 2016-11-09 浙江大学 一种基于模糊训练样本的半监督学习人脸表情识别方法
CN106295711A (zh) * 2016-08-19 2017-01-04 苏州大学 一种时间序列分类方法及系统
CN106529576A (zh) * 2016-10-20 2017-03-22 天津大学 基于测度学习改进支持向量机的钢琴乐谱难度识别算法
CN107292339A (zh) * 2017-06-16 2017-10-24 重庆大学 基于特征融合的无人机低空遥感影像高分地貌分类方法
WO2019009420A1 (ja) * 2017-07-07 2019-01-10 国立大学法人大阪大学 トレンド分析を利用した痛みの判別、機械学習、経済的判別モデルおよびIoTを応用した医療装置、テイラーメイド機械学習、および新規疼痛判別用脳波特徴量
WO2019089432A1 (en) * 2017-10-30 2019-05-09 The Research Foundation For The State University Of New York System and method associated with user authentication based on an acoustic-based echo-signature
CN111492373A (zh) * 2017-10-30 2020-08-04 纽约州州立大学研究基金会 与基于声学的回声签名的用户认证相关联的系统和方法
EP3539464A1 (en) * 2018-03-16 2019-09-18 Tata Consultancy Services Limited System and method for classification of coronary artery disease based on metadata and cardiovascular signals
CN108364030A (zh) * 2018-03-20 2018-08-03 东北大学 一种基于三层动态粒子群算法的多分类器模型构建方法
CN109034179A (zh) * 2018-05-30 2018-12-18 河南理工大学 一种基于马氏距离idtw的岩层分类方法
CN109492315A (zh) * 2018-11-19 2019-03-19 西安交通大学 一种基于Copula函数的时空相关风光序列模拟方法
US20200286001A1 (en) * 2019-03-05 2020-09-10 Booz Allen Hamilton Inc. System And Method For Heterogeneous Relational Kernel Learning
CN110189767A (zh) * 2019-04-30 2019-08-30 上海大学 一种基于双声道音频的录制移动设备检测方法
CN110598902A (zh) * 2019-08-02 2019-12-20 浙江工业大学 一种基于支持向量机与knn相结合的水质预测方法
CN110705794A (zh) * 2019-10-09 2020-01-17 苏州卡泰里环保能源有限公司 一种基于支持向量机算法预测窗户状态的方法
CN111751714A (zh) * 2020-06-11 2020-10-09 西安电子科技大学 一种基于svm和hmm的射频模拟电路故障诊断方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GIUSTI等: "Improved time series classification with representation diversity and svm", 《IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS》, pages 1 - 6 *
常恰时: "轨道动检数据的时序预测模型研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》, no. 1, pages 033 - 124 *

Also Published As

Publication number Publication date
CN112381051B (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
Kim et al. Texture-based approach for text detection in images using support vector machines and continuously adaptive mean shift algorithm
Pękalska et al. Prototype selection for dissimilarity-based classifiers
Ferreira et al. Behavior knowledge space-based fusion for copy–move forgery detection
Alsmadi et al. Fish recognition based on robust features extraction from size and shape measurements using neural network
Schomaker et al. Using codebooks of fragmented connected-component contours in forensic and historic writer identification
Neuhaus et al. Edit distance-based kernel functions for structural pattern classification
Bai et al. A graph-based classification method for hyperspectral images
Li et al. A novel approach to hyperspectral band selection based on spectral shape similarity analysis and fast branch and bound search
Burrow Arabic handwriting recognition
Cao et al. Similarity based leaf image retrieval using multiscale R-angle description
CN101140623A (zh) 一种基于支持向量机的视频对象识别方法及系统
CN107992800A (zh) 一种基于svm和随机森林的指纹图像质量判断方法
Sridhar et al. Content-based image retrieval of digitized histopathology in boosted spectrally embedded spaces
Thilagavathi et al. Application of image processing in diagnosing guava leaf diseases
Mzoughi et al. Semantic-based automatic structuring of leaf images for advanced plant species identification
Jia et al. A multiscale superpixel-level group clustering framework for hyperspectral band selection
Lei et al. Orthogonal locally discriminant spline embedding for plant leaf recognition
Gattal et al. Improving isolated digit recognition using a combination of multiple features
Dinu et al. Local patch dissimilarity for images
Elsayed et al. Hand gesture recognition based on dimensionality reduction of histogram of oriented gradients
Litifu et al. Writer identification using redundant writing patterns and dual-factor analysis of variance
Mehri et al. A pixel labeling approach for historical digitized books
Houtinezhad et al. Off-line signature verification system using features linear mapping in the candidate points
Prabha et al. Three dimensional object detection and classification methods: a study
CN112381051B (zh) 基于改进支持向量机核函数的植物叶片分类方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant