CN112375279B - 一种高抗震桥梁支座用摩擦材料及其制备方法 - Google Patents
一种高抗震桥梁支座用摩擦材料及其制备方法 Download PDFInfo
- Publication number
- CN112375279B CN112375279B CN202011272840.5A CN202011272840A CN112375279B CN 112375279 B CN112375279 B CN 112375279B CN 202011272840 A CN202011272840 A CN 202011272840A CN 112375279 B CN112375279 B CN 112375279B
- Authority
- CN
- China
- Prior art keywords
- friction
- friction material
- molecular weight
- fiber
- weight polyethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/043—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/02—Moulding by agglomerating
- B29C67/04—Sintering
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/046—Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/10—Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2477/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
- C08J2477/10—Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/265—Calcium, strontium or barium carbonate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/16—Solid spheres
- C08K7/18—Solid spheres inorganic
- C08K7/20—Glass
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Lubricants (AREA)
Abstract
本发明提供了一种高抗震桥梁支座摩擦材料及其制备方法,是以超高分子量聚乙烯为基体,采用增强纤维和高摩阻填料为增强组分,在高温油加热烧结炉中,按特定温度程序和压力通过热压烧结成型。本发明使用高摩阻填料改性超高分子量聚乙烯以提升摩擦材料的摩擦系数,使之在1100 mm/s极大滑移速度下保持较高并且稳定的摩擦系数;通过超高分子量聚乙烯、增强纤维和高摩阻填料等组分设计、调配综合提升摩擦材料的力学性能;并通过油加热代替空气加热提升摩擦材料的均匀性,应用于桥梁支座具有较高的抗震能力、优异的摩擦磨损性能,可有效延长桥梁支座的使用寿命。
Description
技术领域
本发明涉及一种高分子摩擦材料,尤其涉及一种以改性超高分子量聚乙烯为基体的高分子摩擦材料及其制备方法,主要用于桥梁支座摩擦滑板的制备,属于交通建筑及减隔震材料领域。
背景技术
我国高速铁路事业的蓬勃发展及各地强烈地震频发,对桥梁减隔震支座的推广与应用提出了新的挑战。我国现役高铁桥梁支座设计为摩擦摆式支座,由高分子摩擦滑板和镜面不锈钢板配副构成,随桥梁位移或振动产生相对运动,通过高分子摩擦滑板摩擦耗能,从而实现减震功能。目前,桥梁支座用高分子滑移材料主要包括聚四氟乙烯、超高分子量聚乙烯及其改性复合材料。这些材料的主要问题是抗震能力不足。随地震烈度增加,摩擦材料瞬时滑移速度逐渐增大。现役摩擦材料执行铁路标准GB/T 37358-2019,其使役滑移速度上限为200 mm/s,相当于地震烈度6~7级;无法在8级以上地震烈度产生的1100 mm/s滑移速度下稳定运行。同时,摩擦摆支座的设计原理决定了其减震效果直接取决于摩擦材料的摩擦系数,摩擦系数越高,等效阻尼比越大,减震效果越好。现役摩擦滑板的摩擦系数多在0.03~0.07之间,减震性能仍不理想。因此,需要开发一种能够在极大滑动速度下保持较高摩擦系数的新型高分子摩擦材料。
发明内容
本发明的目的是针对现有技术中桥梁支座高分子摩擦材料抗震能力不足、减震效果不理想等问题,提供一种具有优异减震耗能性能、在极大滑动速度范围下具有稳定且较高摩擦系数的高抗震桥梁支座用高分子摩擦材料及其制备方法。
一、高分子摩擦材料的制备
本发明高分子摩擦材料的制备,是将超高分子量聚乙烯树脂与增强纤维、高摩阻填料干燥除去水分后分散混合均匀,然后均匀铺展于钢模具中,并置于高温油热烧结炉中,在压力8~12 MPa,温度200~210℃下保持80~100分钟;烧结完毕后冷却至50℃以下,脱模,即得高分子摩擦材料。
所述超高分子量聚乙烯的分子量大于9×106 g/mol,体积密度大于0.4 g/cm3。超高分子量聚乙烯在高分子摩擦材料中的质量分数为70~85%。
所述增强纤维采用玻璃纤维、碳纤维和芳纶纤维中的一种,且增强纤维的平均直径为7 μm,长径比为4~8;增强纤维在高分子摩擦材料中的质量分数为3~15%。
所述高摩阻填料采用滑石粉、玻璃微珠、碳酸钙和二氧化硅中的一种或几种,且高摩阻填料的平均尺寸为20~80μm;高摩阻填料在高分子摩擦材料中的质量分数为1~5%。
所述分散混合采用砂磨机进行混合,砂磨机砂轮转速为2000~4000 rpm。
二、高分子摩擦材料的性能
1、摩擦性能
将上述获得的高分子摩擦材料与镜面不锈钢配副,两板之间不涂抹硅脂,在45MPa正应力下预压1 h,随后在100吨压剪试验机下进行动摩擦系数相关性测试。试验温度为23±1℃,位移为50 mm,滑移速度分别为5,50,100,150,200,250,350,450,550,650,750,850,950,1100 mm/s,每个滑移速度下进行3次平行试验,取最后一圈滑移时水平力与正应力的比值作为滑动摩擦系数。
滑动摩擦系数随滑移速度的变化曲线如图1所示。测试结果表明,所制备滑移材料在不同滑移速度下的平均动摩擦系数为0.08~0.12,摩擦系数波动≤15%。其他性能指标见表1。
2、力学性能测试
最终获得的样品经机械加工成国标指定尺寸在万能试验机上进行力学性能测试,拉伸强度及断裂韧性测试试件为80mm×10mm×4 mm的哑铃型,压缩测试试件为φ25mm×8mm的圆柱形。试验测得滑移材料的各项性能指标见表1。由表1可见,本发明所制备的桥梁支座滑移材料,具有较高的承载性能,良好的耐磨性能、在较宽滑移速度范围内具有稳定的摩擦系数。
综上所述,本发明使用增强纤维和高摩阻改性超高分子量聚乙烯以提升摩擦材料的摩擦系数,具有更好的减震耗能效果;同时能够在5~1100 mm/s极宽滑移速度下保持较高且稳定的摩擦系数;通过油热烧结提升了摩擦材料大尺寸成型时的均匀性,保障了摩擦材料优异的综合性能。
附图说明
图1本发明所述高抗震桥梁支座用摩擦材料的滑动摩擦系数随滑移速度的变化曲线。
具体实施方式
下面通过具体实施例对本发明桥梁支座滑移材料的制备和性能做进一步说明。
实施例1
(1)高分子摩擦材料混合:将1700 g超高分子量聚乙烯(分子量大于9×106 g/mol,体积密度大于0.4 g/cm3)、200 g碳纤维和100 g滑石粉,在100℃下干燥2小时以除去水分,随后经分散砂磨在砂轮转速4000 rpm条件下混合均匀;
(2)高分子滑移材料的制备:取1128.2 g上述混合粉体在100℃下干燥24小时除去水分后在特制不锈钢模具中铺展均匀,放入1000吨热压机中烧结,升温速率为5℃/min,烧结温度为205℃,烧结压力为10 MPa。原料升温至205℃后在该温度下保温100 min,自然冷却至50℃脱去模具,获得尺寸为直径390 mm,厚度8 mm的高分子摩擦材料;
(3)高分子滑移材料的性能:所制备滑移材料在不同滑移速度下的平均动摩擦系数为0.09,摩擦系数波动为5%。初始静摩擦系数为0.10,初始动摩擦系数为0.12。所制备滑移材料拉伸强度为42 MPa,断裂伸长率为320%;压缩强度为42MPa;最大承载载荷为250MPa。
实施例2
(1)高分子摩擦材料混合:将1850 g超高分子量聚乙烯(分子量大于9×106 g/mol,体积密度大于0.4 g/cm3)、130 g玻璃纤维和20 g滑石粉,在100℃下干燥2小时以除去水分,随后经分散砂磨在砂轮转速4000 rpm条件下混合均匀;
(2)高分子滑移材料的制备:取1240.2 g上述混合粉体在100℃下干燥24小时除去水分后在特制不锈钢模具中铺展均匀,放入1000吨热压机中烧结,升温速率为5℃/min,烧结温度为205℃,烧结压力为10 MPa。原料升温至205℃后在该温度下保温100 min,自然冷却至50℃脱去模具,获得尺寸为直径390 mm,厚度8 mm的高分子摩擦材料;
(3)高分子滑移材料的性能:所制备滑移材料在不同滑移速度下的平均动摩擦系数为0.11,摩擦系数波动为8%。初始静摩擦系数为0.12,初始动摩擦系数为0.14。所制备滑移材料拉伸强度为38 MPa,断裂伸长率为310%;压缩强度为45MPa;最大承载载荷为270MPa。
实施例3
(1)高分子摩擦材料混合:将1800 g超高分子量聚乙烯(分子量大于9×106 g/mol,体积密度大于0.4 g/cm3)、100 g碳纤维、50 g 碳酸钙和50 g二氧化硅,在100℃下干燥2小时以除去水分,随后经分散砂磨在砂轮转速4000 rpm条件下混合均匀;
(2)高分子滑移材料的制备:取1311.4 g上述混合粉体在100℃下干燥24小时除去水分后在特制不锈钢模具中铺展均匀,放入1000吨热压机中烧结,升温速率为5℃/min,烧结温度为205℃,烧结压力为10 MPa。原料升温至205℃后在该温度下保温100 min,自然冷却至50℃脱去模具,获得尺寸为直径390 mm,厚度8 mm的高分子摩擦材料;
(3)高分子滑移材料的性能:所制备滑移材料在不同滑移速度下的平均动摩擦系数为0.12,摩擦系数波动为10%。初始静摩擦系数为0.15,初始动摩擦系数为0.13。所制备滑移材料拉伸强度为35 MPa,断裂伸长率为300%;压缩强度为47MPa;最大承载载荷为265MPa。
实施例4
(1)高分子摩擦材料混合:将17 kg超高分子量聚乙烯(分子量大于9×106 g/mol,体积密度大于0.4 g/cm3)、2 kg碳纤维和1 kg滑石粉,在100℃下干燥2小时以除去水分,随后经分散砂磨在砂轮转速2000 rpm条件下混合均匀;
(2)高分子滑移材料的制备:取16.7kg上述混合粉体在100℃下干燥24小时除去水分后在特制不锈钢模具中铺展均匀,放入3000吨热压机中烧结,升温速率为5℃/min,烧结温度为210℃,烧结压力为10 MPa。原料升温至210℃后在该温度下保温240 min,自然冷却至50℃脱去模具,获得尺寸为直径1500 mm,厚度8 mm的高分子摩擦材料;
(3)高分子滑移材料的性能:所制备滑移材料在不同滑移速度下的平均动摩擦系数为0.09,摩擦系数波动为12%。初始静摩擦系数为0.10,初始动摩擦系数为0.12。所制备滑移材料拉伸强度为40 MPa,断裂伸长率为305%;压缩强度为38MPa;最大承载载荷为240MPa。
上述各实施例中,增强纤维(玻璃纤维、碳纤维、芳纶纤维)的平均直径为7 μm,长径比为4~8。高摩阻填料(滑石粉、玻璃微珠、碳酸钙和二氧化硅)的平均粒径为20~80 μm。
模压烧结采用通过高温油循环进行加热,所述特制模具开有油回路槽。
Claims (2)
1.一种高抗震桥梁支座用摩擦材料的制备方法,是将超高分子量聚乙烯树脂与增强纤维、高摩阻填料干燥除去水分后分散混合均匀,然后均匀铺展于钢模具中,并置于高温油热烧结炉中,在压力8~12 MPa,温度200~210℃下保持80~100分钟;烧结完毕后冷却至50℃以下,脱模,即得高分子摩擦材料;
所述超高分子量聚乙烯的分子量大于9×106 g/mol,体积密度大于0.4 g/cm3;增强纤维采用玻璃纤维、碳纤维和芳纶纤维中的一种,增强纤维的平均直径为7 μm,长径比为4~8;高摩阻填料采用滑石粉、玻璃微珠、碳酸钙和二氧化硅中的一种或几种,高摩阻填料的平均尺寸为20~80μm;
超高分子量聚乙烯、增强纤维、高摩阻填料的质量百分数分别为:70~85%、3~15%、1~5%。
2.如权利要求1所述一种高抗震桥梁支座用摩擦材料的制备方法,其特征在于:所述分散混合采用砂磨机进行,砂磨机砂轮转速为2000~4000 rpm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011272840.5A CN112375279B (zh) | 2020-11-13 | 2020-11-13 | 一种高抗震桥梁支座用摩擦材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011272840.5A CN112375279B (zh) | 2020-11-13 | 2020-11-13 | 一种高抗震桥梁支座用摩擦材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112375279A CN112375279A (zh) | 2021-02-19 |
CN112375279B true CN112375279B (zh) | 2022-03-25 |
Family
ID=74583862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011272840.5A Active CN112375279B (zh) | 2020-11-13 | 2020-11-13 | 一种高抗震桥梁支座用摩擦材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112375279B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113278212A (zh) * | 2021-05-21 | 2021-08-20 | 华东理工大学 | 一种桥梁支座用高分子滑移材料及其制备方法 |
CN115286859B (zh) * | 2022-08-30 | 2023-08-08 | 中国科学院兰州化学物理研究所 | 一种高阻尼高耐磨隔震支座摩擦材料的制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100463940C (zh) * | 2006-05-30 | 2009-02-25 | 嘉兴中达自润轴承工业有限公司 | 桥梁支座滑移材料及其制备方法 |
CN105602064B (zh) * | 2016-02-01 | 2017-12-05 | 西申(上海)新材料科技有限公司 | 铁路桥梁球形支座用改性超高分子量聚乙烯及其加工方法 |
CN111187459A (zh) * | 2019-11-21 | 2020-05-22 | 衡水市橡胶总厂有限公司 | 一种桥梁支座用耐磨材料及其制备工艺 |
CN111303520B (zh) * | 2020-03-23 | 2021-09-14 | 中国科学院兰州化学物理研究所 | 一种桥梁支座用高分子滑移材料及其制备方法 |
-
2020
- 2020-11-13 CN CN202011272840.5A patent/CN112375279B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112375279A (zh) | 2021-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111303520B (zh) | 一种桥梁支座用高分子滑移材料及其制备方法 | |
CN112375279B (zh) | 一种高抗震桥梁支座用摩擦材料及其制备方法 | |
CN100463940C (zh) | 桥梁支座滑移材料及其制备方法 | |
Chen et al. | Hydroxy-terminated liquid nitrile rubber modified castor oil based polyurethane/epoxy IPN composites: Damping, thermal and mechanical properties | |
Vasconcelos et al. | Tribological behaviour of epoxy based composites for rapid tooling | |
CN105733506B (zh) | 高速低载中摩擦系数玄武岩纤维增强摩擦材料及制备方法 | |
CN103013090A (zh) | 一种聚芳醚酮复合材料及其在桥梁支座上的应用 | |
CN101839294B (zh) | 一种公交车用非金属陶瓷基鼓式刹车片的制备方法 | |
Li et al. | Comparison of friction and wear behavior between C/C, C/C-SiC and metallic composite materials | |
CN107189290A (zh) | 填充聚四氟乙烯板及其制备方法 | |
CN102719044A (zh) | 聚四氟乙烯复合材料及其制作方法 | |
CN104387069B (zh) | 一种用于飞机刹车盘的碳/碳化硅摩擦材料的制备方法 | |
Mathur et al. | Controlling the hardness and tribological behaviour of non-asbestos brake lining materials for automobiles | |
CN104493731A (zh) | 以硫酸钙晶须为结合剂的超硬材料磨具及其制备方法 | |
Liu et al. | Regulating the grinding performance of grindstones via using basalt fibers | |
Chandradass et al. | Development of Asbestos Free Aramid Fibre based Friction lining Material for Automotive Application | |
Ghosh et al. | Performance assessment of hybrid fibrous fillers on the tribological and thermo-mechanical behaviors of elastomer modified phenolic resin friction composite | |
RU2567958C2 (ru) | Композиционный материал с повышенными демпфирующими свойствами на основе сверхвысокомолекулярного полиэтилена (свмпэ) | |
CN110079036A (zh) | 一种耐压耐磨PTFE/Cu复合材料及其制备方法 | |
Cheng et al. | Friction and wear behavior of carbon fiber reinforced brake materials | |
CN108456395A (zh) | 一种玄武岩增强树脂基制动复合材料及其制备方法 | |
CN105864329A (zh) | 双捻机用差速器摩擦片及其加工方法 | |
CN115286859B (zh) | 一种高阻尼高耐磨隔震支座摩擦材料的制备方法 | |
Ghezzo et al. | On the damping properties of a polyurea elastomer | |
CN113337192A (zh) | 一种兼具耐磨和自修复功能的聚脲复合涂层的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |