CN112366676B - 一种基于可控电源的光伏直流直馈式发电方法及装置 - Google Patents

一种基于可控电源的光伏直流直馈式发电方法及装置 Download PDF

Info

Publication number
CN112366676B
CN112366676B CN202010965747.6A CN202010965747A CN112366676B CN 112366676 B CN112366676 B CN 112366676B CN 202010965747 A CN202010965747 A CN 202010965747A CN 112366676 B CN112366676 B CN 112366676B
Authority
CN
China
Prior art keywords
power supply
bus
controllable power
controllable
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010965747.6A
Other languages
English (en)
Other versions
CN112366676A (zh
Inventor
葛雪峰
袁宇波
袁栋
史明明
袁晓冬
周琦
杨景刚
陈烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Jiangsu Electric Power Co Ltd, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202010965747.6A priority Critical patent/CN112366676B/zh
Publication of CN112366676A publication Critical patent/CN112366676A/zh
Priority to US18/019,475 priority patent/US20230283070A1/en
Priority to PCT/CN2021/102568 priority patent/WO2022057363A1/zh
Application granted granted Critical
Publication of CN112366676B publication Critical patent/CN112366676B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

本发明公开了一种基于可控电源的光伏直流直馈式发电方法及装置,本发明中光伏电池直接接入直流微网,通过直流微网中的可控电源灵活调控直流母线电压进而实现光伏电池最大功率运行,因此省去了光伏电池接入直流母线时所需的直流接口变换器,降低了分布式光伏发电系统的成本和体积。

Description

一种基于可控电源的光伏直流直馈式发电方法及装置
技术领域
本发明涉及一种基于可控电源的光伏直流直馈式发电方法及装置,属于电力电子自动控制领域。
背景技术
随着化石能源的耗竭,光伏等可再生能源的广泛利用是解决能源危机的重要举措。过去几年,国家出台了光伏电价补贴等一系列强有效的措施,分布式光伏在配网中的接入比例呈爆发式增长。然而,随着光伏电价补贴红利的消失,分布式光伏增长的动力减弱。而影响新增分布式光伏接入的主要因素为设备的体积、成本和发电效率。分布式光伏的接口变换器体积较大,影响部分对体积因素敏感的用户选择安装分布式光伏;分布式光伏接口变换器安装成本、发电效率影响用户的成本回收,而伴随着电价补贴红利的消失,光伏接口变换器的成本和效率关系着了分布式光伏的增长形势。
发明内容
发明目的:本发明提出一种基于可控电源的光伏直流直馈式发电方法及装置,提升分布式光伏的转换效率。
技术方案:本发明采用的技术方案为一种基于可控电源的光伏直流直馈式发电方法,包括以下步骤:
1)测量可控电源的输出电压和输出电流,并计算可控电源的输出功率;
2)按照最大功率追踪控制模式控制发电装置;
3)将可控电源在最大功率追踪控制模式和电压控制模式之间循环切换。
所述步骤1)中按照下式计算k时刻可控电源的输出功率PCD(k):
PCD(k)=Vbus(k)Icd(k)
其中Vbus(k)和Icd(k)分别是k时刻可控电源的输出电压和输出电流。
所述步骤2)中首先判断下式是否成立
Figure GDA0003764441010000011
其中PCD(k+1)和PCD(k)分别为k+1时刻和k时刻可控电源输出功率,ΔV为直流母线电压变化量,RL为恒电阻负载;
若上式成立则进一步判断下式是否成立:
Vbus(k+1)>Vbus(k)
其中Vbus(k+1)和Vbus(k)分别为k+1时刻和k时刻可控电源输出电压,若该式成立则可控电源输出电压增加一个步长,反之若该式不成立则可控电源输出电压减少一个步长。
所述步骤2)中首先判断下式是否成立
Figure GDA0003764441010000021
其中PCD(k+1)和PCD(k)分别为k+1时刻和k时刻可控电源输出功率,ΔV为直流母线电压变化量,RL为恒电阻负载;
若上式不成立则进一步判断下式是否成立:
Vbus(k+1)>Vbus(k)
其中Vbus(k+1)和Vbus(k)分别为k+1时刻和k时刻可控电源输出电压,若该式成立则可控电源输出电压减少一个步长,反之若该式不成立则可控电源输出电压增加一个步长。
所述步骤3)中可控电源在最大功率追踪控制模式运行ΔT时间后切换至电压控制模式,接着在电压控制模式运行T时间后切换回最大功率追踪控制模式,如此循环。
一种基于可控电源的光伏直流直馈式发电装置,包括连接着直流负载的直流母线,光伏电池直接接入直流母线,可控电源通过接口变换器接入直流母线。
所述可控电源为输出有功功率连续可调的电源。
有益效果:本发明中光伏电池直接接入直流微网,通过直流微网中的可控电源灵活调控直流母线电压进而实现光伏电池最大功率运行,因此省去了光伏电池接入直流母线时所需的直流接口变换器,降低了分布式光伏发电系统的成本和体积。
附图说明
图1为本发明光伏直流直馈式发电系统;
图2为本发明可控电源电压控制模式图;
图3为本发明最大功率追踪算法流程图;
图4为本发明可控电源MPPT控制模式图。
具体实施方式
如图1所示本实施例的结构框图,其中光伏电池直接接入直流微网中的直流母线,直流微网保持离网运行,与传统交流电网不连接。除了光伏电池外,直流微网中包含容量较大的可控电源、直流负载。可控电源定义为输出有功功率连续可调的电源,如储能电源。本实施例提出的基于可控电源的光伏直流直馈式发电方法,正常情况下,可控电源通过DC/DC接口或AC/DC接口变换器与直流母线连接,可控电源工作模式为电压控制模式。
由于本实施例省去了光伏电池接入直流母线所需的直流接口变换器,所以需要利用可控电源来调整直流母线电压。可控电源的电压控制模式如图2所示,整体控制框图包括电压外环、电流内环两层控制;其中电压外环母线电压参考值VDCref与直流母线电压实测值VDC作差后,经PI调节器,产生可控电源输出电流参考值IDCref;进一步,电流参考值IDCref与实测电流IDC作差后经PI调节器输出AC/DC接口变换器的调制信号PWM。
直流微网中的直流负载包括恒功率负载和恒电阻负载,恒功率负载的输出功率PCP为恒定值,与直流母线电压无关。
而恒电阻负载输出功率PCR为:
Figure GDA0003764441010000031
直流微网负载总功率PTL为:
Figure GDA0003764441010000032
因此直流微网的功率平衡表达式为:
PTL=PTP+PCD (3)
上式中PCD为可控电源输出功率,PTP为光伏输出功率,光伏输出功率PTP还可以表达为
PTP=VPVIPV (4)
上式中VPV,IPV分别为光伏电池输出电压、电流。由于光伏电池是直接接入直流母线,因此光伏电池输出电压等于直流母线电压Vbus。光伏电池是一种受控电流源,当光照不变时,光伏电池输出电流IPV的大小与光伏电池输出电压VPV相关,也就是与直流母线电压Vbus相关。由此可见,通过可控电源控制直流母线电压Vbus,能够按照最大功率追踪控制模式(MPPT)实现光伏电池最大功率的追踪。
令k时刻光伏电池输出电压、电流分别为VPV(k)、IPV(k),则k时刻光伏输出功率PTP(k)为:
PTP(k)=VPV(k)IPV(k) (5)
可控电源的输出电压和输出电流分别为Vbus(k)、Icd(k),Vbus(k)和Icd(k)通过测量获得,k时刻可控电源输出功率PCD(k)为:
PCD(k)=Vbus(k)Icd(k) (6)
则k时刻系统功率平衡方程为:
PTL(k)=PTP(k)+PCD(k) (7)
若k+1时刻直流母线电压变化量为ΔV,即:
Vbus(k+1)=Vbus(k)+ΔV (8)
上式中Vbus(k+1)是k+1时刻可控电源的输出电压,则k+1时刻直流微网负载总功率PTL(k+1)为:
Figure GDA0003764441010000041
同理,k+1时刻系统的功率平衡方程为:
PTL(k+1)=PTP(k+1)+PCD(k+1) (10)
联立公式(7)-(9)可推导出:
Figure GDA0003764441010000042
若PTP(k+1)>PTP(k)则有:
Figure GDA0003764441010000043
基于可控电源的光伏直流直馈式系统的最大功率追踪控制法的算法流程如图3所示。若不等式(12)成立,则PTP(k+1)>PTP(k)。
进一步若Vbus(k+1)>Vbus(k)成立,则:
Vbus(k+2)=Vbus(k+1)+Vbc (13)
即在k+1时刻可控电源的输出电压Vbus(k+1)基础上增加一个固定步长Vbc后结束。
若Vbus(k+1)>Vbus(k)不成立,则
Vbus(k+2)=Vbus(k+1)-Vbc (14)
即在k+1时刻可控电源的输出电压Vbus(k+1)基础上减少一个固定步长Vbc后结束。
若不等式(12)不成立,则PTP(k+1)<PTP(k)。同样进一步判断Vbus(k+1)>Vbus(k)是否成立。
若Vbus(k+1)>Vbus(k)成立,则:
Vbus(k+2)=Vbus(k+1)-Vbc (15)
即在k+1时刻可控电源的输出电压Vbus(k+1)基础上减少一个固定步长Vbc后结束。
若Vbus(k+1)>Vbus(k)不成立,则
Vbus(k+2)=Vbus(k+1)+Vbc (16)
即在k+1时刻可控电源的输出电压Vbus(k+1)基础上增加一个固定步长Vbc后结束。
若可控电源一直运行在MPPT模式,则直流母线电压Vbus含有高频谐波分量。此时本实施例采用如图4所示的控制方法。在初始时刻T0可控电源运行在MPPT控制模式,并保持该运行模式ΔT时间后切换至电压控制模式。在电压控制模式下运行T时间后,再切换回MPPT控制模式,如此循环。

Claims (4)

1.一种基于可控电源的光伏直流直馈式发电方法,其特征在于,包括以下步骤:
1)测量可控电源的输出电压和输出电流,并计算可控电源的输出功率;
所述步骤1)中按照下式计算k时刻可控电源的输出功率PCD(k):
PCD(k)=Vbus(k)Icd(k)
其中Vbus(k)和Icd(k)分别是k时刻可控电源的输出电压和输出电流;
2)按照最大功率追踪控制模式控制发电装置;
所述步骤2)中首先判断下式是否成立
Figure FDA0003755100820000011
其中PCD(k+1)和PCD(k)分别为k+1时刻和k时刻可控电源输出功率,ΔV为直流母线电压变化量,RL为恒电阻负载;
Figure FDA0003755100820000012
成立则进一步判断下式是否成立:
Vbus(k+1)>Vbus(k)
其中Vbus(k+1)和Vbus(k)分别为k+1时刻和k时刻可控电源输出电压,若该式成立则可控电源输出电压增加一个步长,反之若该式不成立则可控电源输出电压减少一个步长;
Figure FDA0003755100820000013
不成立则进一步判断下式是否成立:
Vbus(k+1)>Vbus(k)
若该式成立则可控电源输出电压减少一个步长,反之若该式不成立则可控电源输出电压增加一个步长;
3)将可控电源在最大功率追踪控制模式和电压控制模式之间循环切换。
2.根据权利要求1所述的基于可控电源的光伏直流直馈式发电方法,其特征在于,所述步骤3)中可控电源在最大功率追踪控制模式运行ΔT时间后切换至电压控制模式,接着在电压控制模式运行T时间后切换回最大功率追踪控制模式,如此循环。
3.一种基于可控电源的光伏直流直馈式发电装置,包括连接着直流负载的直流母线,其特征在于,光伏电池直接接入直流母线,可控电源通过接口变换器接入直流母线。
4.根据权利要求3所述的基于可控电源的光伏直流直馈式发电装置,其特征在于,所述可控电源为输出有功功率连续可调的电源。
CN202010965747.6A 2020-09-15 2020-09-15 一种基于可控电源的光伏直流直馈式发电方法及装置 Active CN112366676B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010965747.6A CN112366676B (zh) 2020-09-15 2020-09-15 一种基于可控电源的光伏直流直馈式发电方法及装置
US18/019,475 US20230283070A1 (en) 2020-09-15 2021-06-26 Method and apparatus for photovoltaic dc direct-fed power generation based on controllable power supply
PCT/CN2021/102568 WO2022057363A1 (zh) 2020-09-15 2021-06-26 一种基于可控电源的光伏直流直馈式发电方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010965747.6A CN112366676B (zh) 2020-09-15 2020-09-15 一种基于可控电源的光伏直流直馈式发电方法及装置

Publications (2)

Publication Number Publication Date
CN112366676A CN112366676A (zh) 2021-02-12
CN112366676B true CN112366676B (zh) 2022-10-21

Family

ID=74516815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010965747.6A Active CN112366676B (zh) 2020-09-15 2020-09-15 一种基于可控电源的光伏直流直馈式发电方法及装置

Country Status (3)

Country Link
US (1) US20230283070A1 (zh)
CN (1) CN112366676B (zh)
WO (1) WO2022057363A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366676B (zh) * 2020-09-15 2022-10-21 国网江苏省电力有限公司电力科学研究院 一种基于可控电源的光伏直流直馈式发电方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103269068A (zh) * 2013-04-27 2013-08-28 嘉善明世电力科技有限公司 一种光电直流微网电源装置及控制方法
CN104579120A (zh) * 2015-01-04 2015-04-29 国家电网公司 一种光伏发电离网运行时的控制方法
CN109866643A (zh) * 2019-03-29 2019-06-11 清华大学 一种光储充直流微网控制方法
CN111049376A (zh) * 2019-12-02 2020-04-21 浙江大学 一种两级式串联光伏功率优化器系统无通讯母线调制方法
CN111342445A (zh) * 2020-04-03 2020-06-26 南京安贝旭电力科技有限公司 共享型光伏变换系统及最大功率点追踪方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427230B (zh) * 2011-12-19 2013-11-20 天津市电力公司 用于分布式微网孤岛运行风光储联合调度的方法及系统
CN103545907B (zh) * 2013-11-06 2015-08-12 山东大学 办公用光伏直流供电系统及控制方法
JP6369154B2 (ja) * 2014-06-11 2018-08-08 住友電気工業株式会社 電源装置
CN104348235A (zh) * 2014-11-24 2015-02-11 天津工业大学 光伏-蓄电池微电网为电动汽车无线充电系统
CN106786490A (zh) * 2017-01-18 2017-05-31 西南交通大学 分布式直流微电网能量控制方法
JP7071816B2 (ja) * 2017-10-31 2022-05-19 株式会社Gsユアサ インフラシステムズ 蓄電システム
CN112366676B (zh) * 2020-09-15 2022-10-21 国网江苏省电力有限公司电力科学研究院 一种基于可控电源的光伏直流直馈式发电方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103269068A (zh) * 2013-04-27 2013-08-28 嘉善明世电力科技有限公司 一种光电直流微网电源装置及控制方法
CN104579120A (zh) * 2015-01-04 2015-04-29 国家电网公司 一种光伏发电离网运行时的控制方法
CN109866643A (zh) * 2019-03-29 2019-06-11 清华大学 一种光储充直流微网控制方法
CN111049376A (zh) * 2019-12-02 2020-04-21 浙江大学 一种两级式串联光伏功率优化器系统无通讯母线调制方法
CN111342445A (zh) * 2020-04-03 2020-06-26 南京安贝旭电力科技有限公司 共享型光伏变换系统及最大功率点追踪方法

Also Published As

Publication number Publication date
CN112366676A (zh) 2021-02-12
US20230283070A1 (en) 2023-09-07
WO2022057363A1 (zh) 2022-03-24

Similar Documents

Publication Publication Date Title
KR101097266B1 (ko) 전력 저장 시스템 및 그 제어방법
US7834485B2 (en) Controlling apparatus of a power converter of single-phase current for photovoltaic generation system
WO2012026593A1 (ja) 太陽光発電システム、太陽光発電システムに用いる制御装置、並びに、制御方法およびそのプログラム
JP2014512170A (ja) 優先度別電気供給機能を備える制御されたコンバータアーキテクチャ
CN112751357B (zh) 一种光伏储能系统及其控制方法
CN112366676B (zh) 一种基于可控电源的光伏直流直馈式发电方法及装置
Gaga et al. Design and realization of an autonomous solar system
Chekira et al. An improved energy management control strategy for a standalone solar photovoltaic/battery system
CN110048396B (zh) 一种光储直流微网的控制系统及方法
KR102211067B1 (ko) 에너지 저장 시스템, 그리고 에너지 저장 시스템을 이용한 최대전력 추종 방법
Satapathy et al. A direct perturbation based sensor-free mppt with dc bus voltage control for a standalone dc microgrid
Kryukov et al. Increasing the efficiency of joint operation of a solar-power plant with an industrial alternating-current network
Tengfei et al. Bus voltage stability control of the distributed photovoltaic and energy storage DC microgrid based on ADRC
Zhao et al. Study on Variable Step Sliding-Mode Based MPPT for PV Array
EP3923112A1 (en) Electric power system and power conversion device
CN203103982U (zh) 一种两级式光伏并网逆变器的最大功率跟踪控制系统
Masenge et al. Modeling and control of solar PV with battery energy storage for rural electrification
Caracas et al. An optimized battery charging system based on a modified MPPT strategy for isolated PV energy generation
CN108268084A (zh) 最大功率点跟踪方法及实现mppt输出的光伏发电系统
Taymur et al. Designing of an On-Grid and Off-Grid PV System with Battery
POPESCU et al. Computer Based Model for an Off-Grid Photovoltaic System with no DC–DC Adapter
Wattenberg et al. Optimal power point tracking for PV-systems with retrofitted energy storage systems
Kumar et al. Two Stage Power Conversion For Grid Connected PV Using Current Control Technique
CN110504710B (zh) 一种光伏并网系统
Tang et al. The research of control strategy for Household Micro Power Grid inverter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant