CN112350555A - 抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法 - Google Patents

抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法 Download PDF

Info

Publication number
CN112350555A
CN112350555A CN202110015601.XA CN202110015601A CN112350555A CN 112350555 A CN112350555 A CN 112350555A CN 202110015601 A CN202110015601 A CN 202110015601A CN 112350555 A CN112350555 A CN 112350555A
Authority
CN
China
Prior art keywords
vector
voltage
phase
matrix
vectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110015601.XA
Other languages
English (en)
Other versions
CN112350555B (zh
Inventor
宋文胜
郭永琪
黄立
余彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202110015601.XA priority Critical patent/CN112350555B/zh
Publication of CN112350555A publication Critical patent/CN112350555A/zh
Application granted granted Critical
Publication of CN112350555B publication Critical patent/CN112350555B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • H02M1/0845Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system digitally controlled (or with digital control)
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法,该方法包括对奇数相两电平逆变器,选择设定个数的相邻大矢量合成虚拟电压矢量;利用合成的虚拟电压矢量将基波子空间均匀划分为多个扇区,根据参考电压矢量所在的扇区,选择扇区两侧的虚拟电压矢量与零矢量合成参考电压矢量;选择方向相反的两个大矢量等占空比合成虚拟零矢量。本发明采用大矢量合成虚拟电压矢量,将CMV抑制到最小;提出的SVPWM方法通用性强,适用于任意奇数相两电平电压源型逆变器;矢量作用时间的计算过程简单,且与相数无关,大大简化了运算复杂度,在数字控制器中实现更加容易。

Description

抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法
技术领域
本发明涉及电力电子与电力传动领域中多相逆变器控制系统设计与制造技术领域,具体涉及一种抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法。
背景技术
随着交流传动控制理论的发展,电机摆脱了相数的限制,多相驱动系统在大功率、高可靠性工业应用中得到了广泛研究,相比传统三相驱动系统,多相驱动系统有着以下优点:1)相同的电压电流应力下可以达到更大功率;2)相数冗余增强了控制系统的容错能力;3)转矩脉动小且密度高。
空间矢量脉宽调制(space vector pulse width modulation,SVPWM)以其电压利用率高,便于数字化实现等特点得到广泛应用。三相SVPWM中参考电压矢量由两个相邻的矢量和一个零矢量合成,其计算简单,易于在数字控制器中实现。随着多相驱动系统的出现,三相SVPWM拓展到了多相SVPWM,但随着相数增大,空间电压矢量的数量呈指数上升,多相SVPWM变得愈加复杂。此外,多相系统还需考虑对低次谐波电流的控制,计算过程更加复杂,增加了实现难度。因此,计算复杂度的简化仍是多相SVPWM关注的主要问题之一。
共模电压(common-mode voltage,CMV)抑制是当前电机驱动系统的研究热点。在共模电压作用下,电机轴上会逐渐积累电荷,当达到一定程度会击穿绝缘的润滑剂,产生轴电流和漏电流,形成共模电磁干扰,影响到系统其它用电设备正常工作;此外共模电压过大会使电机轴电压和轴电流过大,引起电机发热,降低电机寿命。目前降低CMV的方案主要分为两种:一种为基于硬件的方法,采用无源滤波器和特殊电路拓扑来抑制CMV,具有体积大、成本高和可移植性差等缺点;另一种为基于软件的方法,通过设计合适的调制和控制算法达到抑制CMV的目的,无需额外硬件,且应用更加灵活,得到更为广泛的关注和研究。
发明内容
针对现有技术中的上述不足,本发明提供了一种抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法。
为了达到上述发明目的,本发明采用的技术方案为:
一种抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法,包括以下步骤:
S1、对奇数相两电平逆变器,选择设定个数的相邻大矢量合成虚拟电压矢量;
S2、利用步骤S1合成的虚拟电压矢量将基波子空间均匀划分为多个扇区,根据参考电压矢量所在的扇区,选择扇区两侧的虚拟电压矢量与零矢量合成参考电压矢量;
S3、选择方向相反的两个大矢量等占空比合成虚拟零矢量。
本方案的有益效果是:本发明采用大矢量合成虚拟电压矢量,将CMV抑制到最小;提出的SVPWM方法通用性强,适用于任意奇数相两电平电压源型逆变器;矢量作用时间的计算过程简单,且与相数无关,大大简化了运算复杂度,在数字控制器中实现更加容易。
进一步地,所述步骤S1具体包括以下分步骤:
S11、对奇数N相两电平逆变器,根据矢量分布规律,将合成矢量各谐波子空间电压分量表示为:
Figure 833201DEST_PATH_IMAGE001
其中,AN-2行n列的系数矩阵,θ=π/NX为占空比矩阵,λ k 为第k个大矢量占空比,k=1,2, … ,nB为谐波分量矩阵,
Figure 375041DEST_PATH_IMAGE002
为谐波映射到x 2l+1- y 2l+1子空间的电压分量,l=1,2, … ,(N-3)/2;
S12、根据系数矩阵A和占空比矩阵X构建非齐次线性方程组表示为
Figure 749522DEST_PATH_IMAGE003
其中,b=[0 0 0 … 0 1]T
当非齐次线性方程组具有唯一解时,系数矩阵A与增广矩阵C=A|b的秩满足R(A)=R(C)=n,矩阵AC的秩表示为
Figure 111233DEST_PATH_IMAGE004
则有
Figure 353996DEST_PATH_IMAGE005
求解得到
Figure 625708DEST_PATH_IMAGE006
S13、根据系数矩阵A将占空比矩阵X表示为
Figure 295724DEST_PATH_IMAGE007
则在x 1-y 1子空间合成的虚拟电压矢量V v表示为:
Figure 285677DEST_PATH_IMAGE008
其中,V c为合成虚拟电压矢量选择的N-2个相邻大矢量。
该进一步方案的有益效果是:对于任意奇数N相两电平逆变器,选择N-2个相邻大矢量便可合成无谐波电压分量的虚拟电压矢量。
进一步地,所述步骤S2中相邻虚拟电压矢量V v1V v2作用时间计算式为:
Figure 800972DEST_PATH_IMAGE009
其中,V v1| x1V v1| y1V v2| x1V v2| y1V v1V v2x 1y 1轴的分量;V ref| x1V ref| y1为参考电压矢量V refx 1y 1轴的分量;T 1T 2V v1V v2的作用时间;T s为开关周期。
该进一步方案的有益效果是:将复杂的多相逆变器矢量作用时间计算公式简化为二阶矩阵与向量的乘法。
进一步地,所述步骤S3中每个开关周期由N+1个大矢量共同作用,并且采用对称的开关序列,N+1个大矢量作用时间计算式为:
Figure 691305DEST_PATH_IMAGE010
其中,t 1,t 2,…t N+1N+1个大矢量作用时间。
该进一步方案的有益效果是:通过方向相反的大矢量合成虚拟零矢量,进一步将CMV抑制到最小。
附图说明
图1为本发明的抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法流程示意图;
图2为本发明实施例中多相两电平逆变器拓扑图;
图3(a)为本发明实施例中五相两电平逆变器x 1-y 1基波子空间的电压矢量分布图;图3(b)为本发明实施例中五相两电平逆变器x 3-y 3谐波空间的电压矢量分布图;
图4(a)为本发明实施例中七相两电平逆变器x 1-y 1基波子空间的电压矢量分布图;图4(b)为本发明实施例中七相两电平逆变器x 3-y 3谐波空间的电压矢量分布图;图4(c)为本发明实施例中七相两电平逆变器x 5-y 5谐波空间的电压矢量分布图;
图5(a)为本发明实施例中五相两电平逆变器虚拟电压矢量V v1x 1-y 1基波子空间的合成示意图;图5(b)为本发明实施例中五相两电平逆变器虚拟电压矢量V v1x 3-y 3谐波子空间的合成示意图;
图6为本发明实施例中五相两电平逆变器大电压矢量与虚拟电压矢量在基波子空间的分布图;
图7为本发明实施例中参考电压矢量合成示意图;
图8(a)为本发明实施例中五相两电平逆变器对应的对称开关序列示意图;图8(b)为本发明实施例中七相两电平逆变器对应的对称开关序列示意图;
图9为传统五相SVPWM方法的相电流、相电压、共模电压波形和相电流FFT分析图;
图10为本发明方法对五相两电平逆变器的相电流、相电压、共模电压波形和相电流FFT分析图;
图11为传统七相SVPWM方法的相电流、相电压、共模电压波形和相电流FFT分析图;
图12为本发明方法对七相两电平逆变器的相电流、相电压、共模电压波形和相电流FFT分析图。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
如图1所示,本发明实施例提供了一种抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法,包括以下步骤S1至S3:
S1、对奇数相两电平逆变器,选择设定个数的相邻大矢量合成虚拟电压矢量;
在本实施例中,本发明针对的对象为任意N相(N为奇数)两电平电压源型逆变器,参考图2。定义开关函数为S k (k=1,2, … ,N),其中S k =1代表上桥臂开关管导通;S k =0代表下桥臂开关管导通,且上桥臂与下桥臂不能同时导通。星形连接的N相系统对应N-1维空间,可分解为1个二维基波子空间与(N-3)/2个二维谐波子空间,其中基波和(2Nk±1)次谐波映射到x 1-y 1子空间,(2Nk±(2l+1))次谐波映射到x 2l+1- y 2l+1子空间(k=1,2, …;l=1,2, … ,(N-3)/2))。以五相和七相逆变器为例,基波子空间和谐波子空间的电压矢量分布如图3、图4所示。
基波与谐波电压表达式为:
Figure 532222DEST_PATH_IMAGE011
其中,V dc为直流母线电压;u x(N-2)y(N-2)x (N-2)-y (N-2)子空间的谐波电压值;δ=e 2π/Nδ (N-2)(N-1)δ的(N-2)*(N-1)次方。
多相逆变器的CMV定义为负载中点与直流母线中点间的电压,表示为:
Figure 9471DEST_PATH_IMAGE012
其中,S j 为第j相的开关函数。
定义mN相上桥臂开关管开通的个数,则根据m的不同可将电压矢量分为N+1类,共模电压的表达式可改写为:
Figure 328457DEST_PATH_IMAGE013
N相逆变器可产生N+1个不同的CMV值,其中m=im=N-i(i=1,2, … ,N)对应的CMV幅值相同,正负相反;m=0和m=N对应的CMV幅值最大,为V dc/2;m=(N-1)/2和m=(N+1)/2对应的CMV幅值最小,为V dc/2N
在多相调制方法中,构造虚拟电压矢量消除谐波子空间电压,将其作为调制候选电压矢量,可获得较为满意的电流性能;若选择m=(N-1)/2和m=(N+1)/2对应的大电压矢量合成虚拟电压矢量,可将CMV抑制到V dc/2N且获得较大的直流母线电压利用率。表1和表2列出了五相和七相逆变器中的大矢量及其对应开关状态。
表1 五相逆变器中的大矢量
Figure 699395DEST_PATH_IMAGE014
表2 七相逆变器中的大矢量
Figure 586580DEST_PATH_IMAGE015
本发明的步骤S1具体包括以下分步骤:
S11、对任意N相(N为奇数)两电平逆变器,假设选择n个相邻的大矢量合成虚拟电压矢量。根据矢量分布规律,将合成矢量各谐波子空间电压分量表示为:
Figure 410179DEST_PATH_IMAGE016
其中,AN-2行n列的系数矩阵,θ=π/NX为占空比矩阵,λ k (k=1,2, … ,n)为第k个大矢量占空比;B为谐波分量矩阵,
Figure 673801DEST_PATH_IMAGE017
(l=1,2, … ,(N-3)/2)为谐波映射到x 2l+1- y 2l+1子空间的电压分量;
S12、为了消除谐波子空间的电压分量,根据系数矩阵A和占空比矩阵X构建非齐次线性方程组表示为
Figure 633667DEST_PATH_IMAGE018
其中,b=[0 0 0 … 0 1]T
当非齐次线性方程组具有唯一解时,系数矩阵A与增广矩阵C=A|b的秩满足R(A)=R(C)=n,矩阵AC的秩表示为
Figure 190288DEST_PATH_IMAGE019
则有
Figure 32342DEST_PATH_IMAGE020
求解得到
Figure 568497DEST_PATH_IMAGE021
因此对于N相两电平逆变器,选择N-2个相邻大矢量合成虚拟电压矢量可以实现消除谐波分量;
S13、若n=N-2,则系数矩阵A为满秩的N-2阶矩阵,其行列式|A|≠0,为可逆矩阵,则根据系数矩阵A将占空比矩阵X表示为
Figure 648448DEST_PATH_IMAGE022
则在x 1-y 1子空间合成的虚拟电压矢量V v表示为:
Figure 143015DEST_PATH_IMAGE023
其中,V c为合成虚拟电压矢量选择的N-2个相邻大矢量,V c=[V c1 V c2V c(N-2)]。
以五相逆变器为例,选择相邻三个大矢量合成虚拟电压矢量,即选择V 17V 25V 24合成V v1,如图5所示。V v1x 1-y 1基波子空间的幅值为0.5527V dc,在x 3-y 3谐波子空间的幅值为0,以相同的方式可合成10个虚拟电压矢量,如图6所示。
S2、利用步骤S1合成的虚拟电压矢量将基波子空间均匀划分为多个扇区,根据参考电压矢量所在的扇区,选择扇区两侧的虚拟电压矢量与零矢量合成参考电压矢量;
在本实施例中,N相逆变器共可构造2N个虚拟电压矢量,这些矢量在x 1-y 1基波子空间均匀分布,并将空间划分为2N个扇区。根据参考电压矢量所在的扇区,选择扇区两侧的虚拟电压矢量与零矢量合成参考电压矢量,合成方式与传统三相SVPWM相同,计算过程简单,且与相数无关,易于在数字控制器中实现。
以参考电压矢量位于S1扇区为例,选择V v1V v2合成参考电压矢量V ref,如图7所示。V v1V v2的作用时间计算式为:
Figure 675627DEST_PATH_IMAGE024
其中,V v1| x1V v1| y1V v2| x1V v2| y1V v1V v2x 1y 1轴的分量;V ref| x1V ref| y1为参考电压矢量V refx 1y 1轴的分量;T 1T 2V v1V v2的作用时间;T s为开关周期。
S3、选择方向相反的两个大矢量等占空比合成虚拟零矢量。
在本实施例中,为保证共模电压抑制效果,选择方向相反的两个大矢量等占空比合成虚拟零矢量,不同扇区选择不同的虚拟零矢量组合方式,从而保证每个时刻仅有一相桥臂发生开关动作;每个开关周期由N+1个大矢量共同作用,并且采用对称的开关序列,N+1个大矢量作用时间计算式为:
Figure 405686DEST_PATH_IMAGE025
其中,t 1,t 2,…t N+1N+1个大矢量作用时间。
以五相逆变器和七相逆变器的S1扇区为例,其开关序列如图8所示。
图9和图10示出了以五相两电平逆变器为对象,传统五相SVPWM方法和本发明提出的方法的相电流、相电压、共模电压实验波形和相电流FFT分析结果。可见传统方法的CMV为±50V,本发明提出的方法CMV为±10V,降低了80%;但本发明采用反向的大矢量替代零矢量,产生了额外的电流纹波,因此相电流THD比传统SVPWM方法略有增加,这是降低CMV付出的代价。
图11和图12示出了以七相两电平逆变器为对象,传统七相SVPWM方法和本发明提出的方法的相电流、相电压、共模电压实验波形和相电流FFT分析结果。可见传统方法的CMV为±50V,本发明提出的方法CMV为±7V,降低了86%;本发明提出的方法相电流THD比传统SVPWM方法略高。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (4)

1.一种抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法,其特征在于,包括以下步骤:
S1、对奇数相两电平逆变器,选择设定个数的相邻大矢量合成虚拟电压矢量;
S2、利用步骤S1合成的虚拟电压矢量将基波子空间均匀划分为多个扇区,根据参考电压矢量所在的扇区,选择扇区两侧的虚拟电压矢量与零矢量合成参考电压矢量;
S3、选择方向相反的两个大矢量等占空比合成虚拟零矢量。
2.根据权利要求1所述的抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法,其特征在于,所述步骤S1具体包括以下分步骤:
S11、对奇数N相两电平逆变器,根据矢量分布规律,将合成矢量各谐波子空间电压分量表示为:
Figure 283143DEST_PATH_IMAGE001
其中,AN-2行n列的系数矩阵,θ=π/NX为占空比矩阵,λ k 为第k个大矢量占空比,k=1,2, … ,nB为谐波分量矩阵,
Figure 3975DEST_PATH_IMAGE002
Figure 808858DEST_PATH_IMAGE003
为谐波映射到x 2l+1- y 2l+1子空间的电压分量,l=1,2, … ,(N-3)/2;
S12、根据系数矩阵A和占空比矩阵X构建非齐次线性方程组表示为
Figure 640547DEST_PATH_IMAGE004
其中,b=[0 0 0 … 0 1]T
当非齐次线性方程组具有唯一解时,系数矩阵A与增广矩阵C=A|b的秩满足R(A)=R(C)=nn为选择的相邻大矢量设定个数,矩阵AC的秩表示为
Figure 473374DEST_PATH_IMAGE005
则有
Figure 240473DEST_PATH_IMAGE006
求解得到
Figure 893171DEST_PATH_IMAGE007
S13、根据系数矩阵A将占空比矩阵X表示为
Figure 669497DEST_PATH_IMAGE008
则在x 1-y 1子空间合成的虚拟电压矢量V v表示为:
Figure 91251DEST_PATH_IMAGE009
其中,V c为合成虚拟电压矢量选择的N-2个相邻大矢量。
3.根据权利要求2所述的抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法,其特征在于,所述步骤S2中相邻虚拟电压矢量V v1V v2作用时间计算式为:
Figure 294831DEST_PATH_IMAGE010
其中,V v1| x1V v1| y1V v2| x1V v2| y1V v1V v2x 1y 1轴的分量;V ref| x1V ref| y1为参考电压矢量V refx 1y 1轴的分量;T 1T 2V v1V v2的作用时间;T s为开关周期。
4.根据权利要求3所述的抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法,其特征在于,所述步骤S3中每个开关周期由N+1个大矢量共同作用,并且采用对称的开关序列,N+1个大矢量作用时间计算式为:
Figure 169246DEST_PATH_IMAGE011
其中,t 1,t 2,…t N+1N+1个大矢量作用时间。
CN202110015601.XA 2021-01-07 2021-01-07 抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法 Active CN112350555B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110015601.XA CN112350555B (zh) 2021-01-07 2021-01-07 抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110015601.XA CN112350555B (zh) 2021-01-07 2021-01-07 抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法

Publications (2)

Publication Number Publication Date
CN112350555A true CN112350555A (zh) 2021-02-09
CN112350555B CN112350555B (zh) 2021-04-06

Family

ID=74427909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110015601.XA Active CN112350555B (zh) 2021-01-07 2021-01-07 抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法

Country Status (1)

Country Link
CN (1) CN112350555B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078860A (zh) * 2021-04-02 2021-07-06 上海海事大学 一种七相永磁同步电机转速快速控制算法
CN113676072A (zh) * 2021-08-04 2021-11-19 广东工业大学 一种三相开关电容多电平逆变器的脉宽调制方法
WO2023152367A1 (en) 2022-02-14 2023-08-17 Mercedes-Benz Group AG Method for operating an electric drive system for electrically driving a vehicle
CN116961460A (zh) * 2023-07-21 2023-10-27 山东泰开直流技术有限公司 一种基于虚拟空间矢量的空间矢量脉宽调制方法及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1713168A2 (en) * 2005-04-15 2006-10-18 Rockwell Automation Technologies, Inc. DC voltage balance control for three-level NPC power converters with even-order harmonic elimination scheme
EP2393197A2 (en) * 2010-06-07 2011-12-07 Rockwell Automation Technologies, Inc. Common mode voltage reduction apparatus and method for current source converter based drive
CN103199728A (zh) * 2013-03-29 2013-07-10 北京交通大学 一种减小三相pwm变流器共模电压的调制方法
CN106787916A (zh) * 2017-01-12 2017-05-31 西南交通大学 一种抑制五相逆变器共模电压的空间矢量调制方法
CN109302113A (zh) * 2018-10-09 2019-02-01 南京铁道职业技术学院 一种基于svpwm的七相感应电机谐波消除方法
CN111446879A (zh) * 2020-05-14 2020-07-24 西南交通大学 一种基于虚拟电压矢量的五相逆变器共模电压抑制方法
CN111600524A (zh) * 2020-05-26 2020-08-28 成都运达科技股份有限公司 一种基于占空比优化的五相逆变器模型预测电流控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1713168A2 (en) * 2005-04-15 2006-10-18 Rockwell Automation Technologies, Inc. DC voltage balance control for three-level NPC power converters with even-order harmonic elimination scheme
EP2393197A2 (en) * 2010-06-07 2011-12-07 Rockwell Automation Technologies, Inc. Common mode voltage reduction apparatus and method for current source converter based drive
CN103199728A (zh) * 2013-03-29 2013-07-10 北京交通大学 一种减小三相pwm变流器共模电压的调制方法
CN106787916A (zh) * 2017-01-12 2017-05-31 西南交通大学 一种抑制五相逆变器共模电压的空间矢量调制方法
CN109302113A (zh) * 2018-10-09 2019-02-01 南京铁道职业技术学院 一种基于svpwm的七相感应电机谐波消除方法
CN111446879A (zh) * 2020-05-14 2020-07-24 西南交通大学 一种基于虚拟电压矢量的五相逆变器共模电压抑制方法
CN111600524A (zh) * 2020-05-26 2020-08-28 成都运达科技股份有限公司 一种基于占空比优化的五相逆变器模型预测电流控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
余彬,等: ""基于虚拟电压矢量的五相电压源逆变器空间矢量调制算法"", 《中国电机工程学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078860A (zh) * 2021-04-02 2021-07-06 上海海事大学 一种七相永磁同步电机转速快速控制算法
CN113676072A (zh) * 2021-08-04 2021-11-19 广东工业大学 一种三相开关电容多电平逆变器的脉宽调制方法
WO2023152367A1 (en) 2022-02-14 2023-08-17 Mercedes-Benz Group AG Method for operating an electric drive system for electrically driving a vehicle
CN116961460A (zh) * 2023-07-21 2023-10-27 山东泰开直流技术有限公司 一种基于虚拟空间矢量的空间矢量脉宽调制方法及设备
CN116961460B (zh) * 2023-07-21 2024-03-15 山东泰开直流技术有限公司 一种基于虚拟空间矢量的空间矢量脉宽调制方法及设备

Also Published As

Publication number Publication date
CN112350555B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
CN112350555B (zh) 抑制共模电压的多相两电平逆变器空间矢量脉宽调制方法
Wang et al. A low-complexity optimal switching time-modulated model-predictive control for PMSM with three-level NPC converter
Chen et al. Generalized minimum common-mode voltage PWM for two-level multiphase VSIs considering reference order
Sarker et al. An improved multicarrier PWM (MCPWM) technique with a new harmonic mitigation strategy for cascaded H-bridge multilevel inverter applications
Chebabhi et al. A new balancing three level three dimensional space vector modulation strategy for three level neutral point clamped four leg inverter based shunt active power filter controlling by nonlinear back stepping controllers
CN113315436B (zh) 一种基于虚拟矢量的九相开绕组永磁同步电机模型预测控制方法
CN105827176A (zh) 抑制双y移30度六相电机共模电压的空间矢量调制方法
CN104270023B (zh) 一种多电平逆变器的谐波优化调制方法
Vu et al. Model-predictive current control scheme for seven-phase voltage-source inverter with reduced common-mode voltage and current harmonics
CN114400939A (zh) 一种双三相永磁同步电机的模型预测电流控制方法及系统
Mohamed et al. Power quality of dual two-level inverter fed open end winding induction motor
Rony et al. Space vector modulated PWM generation for motor control systems
Li et al. Three‐mode pulse‐width modulation of a three‐phase four‐wire inverter
Rangari et al. Implimentaion of large and medium vectors for SVPWM technique in five phase voltage source inverter
Deng et al. A fast and generalized space vector PWM scheme and its application in optimal performance investigation for multilevel inverters
Chen Space‐vector pulse‐width modulation for multiphase voltage source inverters considering reference order
Zha et al. Asymmetrical carrier phase‐shifted pulse‐width modulation for partly regenerative converter
Nageswari et al. Field programmable gate array implementation of variable common mode injection PWM for three-level inverters
Ariff et al. Space vector PWM technique for a two‐level asymmetrical six‐phase drive
Lalili et al. Simplified space vector PWM algorithm for three-level inverter with neutral point potential control
Duran et al. Multi-dimensional space vector pulse width modulation scheme for five-phase series-connected two-motor drives
Foster et al. Rapid Prototyping of Model Predictive Control in a Grid-Following Three-Phase Inverter to Meet the Conducted EMI Limits in MIL-STD-461G
Bodo et al. A PWM method for seven-and nine-phase open-end winding motor drives
Janabi et al. Real-time implementation of selective harmonic elimination with seamless dynamic performance
Prieto et al. Development of synchronized voltage modulation techniques for seven-phase voltage source inverters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant