CN112346710A - A quantum random number generator chip and design method - Google Patents

A quantum random number generator chip and design method Download PDF

Info

Publication number
CN112346710A
CN112346710A CN202011420448.0A CN202011420448A CN112346710A CN 112346710 A CN112346710 A CN 112346710A CN 202011420448 A CN202011420448 A CN 202011420448A CN 112346710 A CN112346710 A CN 112346710A
Authority
CN
China
Prior art keywords
chip
optical
random number
quantum random
number generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011420448.0A
Other languages
Chinese (zh)
Inventor
白冰
张军
乔冠儒
聂友奇
潘建伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202011420448.0A priority Critical patent/CN112346710A/en
Publication of CN112346710A publication Critical patent/CN112346710A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • G06F7/588Random number generators, i.e. based on natural stochastic processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Optical Communication System (AREA)

Abstract

The invention discloses a quantum random number generator chip and a design method, wherein the chip comprises: optical chip, transimpedance amplifier chip and the microcontroller chip that connects gradually, wherein: the optical chip comprises a continuous laser, an optical beam splitter, a first optical attenuator, a second optical attenuator, a first photoelectric detector and a second photoelectric detector; the microcontroller chip comprises a first digital-to-analog converter, a second digital-to-analog converter, an analog-to-digital converter and a processor; the transimpedance amplifier chip comprises a transimpedance amplifier; the quantum random number generator chip is obtained by packaging the optical chip, the transimpedance amplifier chip and the microcontroller chip. The optical chip and the microcontroller chip are packaged in one chip by a systematic packaging method, so that the volume of the quantum random number system is greatly reduced, the stability of the system and the structure is greatly improved, the power consumption and the cost are reduced, and the application range and the application scene are improved.

Description

一种量子随机数发生器芯片及设计方法A quantum random number generator chip and design method

技术领域technical field

本发明属于量子随机数产生技术领域,尤其涉及一种量子随机数发生器芯片及设计方法。The invention belongs to the technical field of quantum random number generation, and in particular relates to a quantum random number generator chip and a design method.

背景技术Background technique

随机数是一种广泛使用的基础资源,在量子通信、密码学、博彩业、蒙特卡洛模拟、数值计算、随机抽样、神经网络计算、传统信息安全等众多领域都有着广泛而重要的应用。量子随机数发生器的随机性保障源于量子物理原理,通过测量量子物理系统中内秉的随机特性产生真随机数,具备不可预测性,不可重复性和无偏性,其随机性是由量子力学基本原理所保证的,相比于其它随机数产生技术来说更具优势,因而具有更高的安全性,特别适合对于随机性要求较高的应用场景。Random number is a widely used basic resource, which has extensive and important applications in many fields such as quantum communication, cryptography, gaming industry, Monte Carlo simulation, numerical computing, random sampling, neural network computing, traditional information security and so on. The randomness guarantee of the quantum random number generator originates from the principle of quantum physics. It generates a true random number by measuring the inherent random characteristics in the quantum physical system, which is unpredictable, irreproducible and unbiased. Its randomness is determined by the quantum Compared with other random number generation technologies, the basic principles of mechanics have more advantages, so it has higher security, and is especially suitable for application scenarios with high randomness requirements.

多种方案可以实现量子随机数发生器,例如光子路径选择方案、光子到达时间方案、激光相位波动方案和测量器件无关的量子随机数方案等。目前基于分立光电子器件搭建的量子随机数系统,普遍具有价格昂贵、体积大、功耗高、稳定性差、可靠性低等缺点,难以满足量子随机数普及应用需求。例如上述举例,单光子路径选择的方案和光子到达时间方案,其比特率为Mbps量级,系统中用到了单光子探测器,系统体积大、成本高;激光相位波动的方案,比特率可达10Gbps以上,但是由于此方案中含有光学干涉仪,导致系统体积较大,对振动和温度很敏感,不利于实用化。Various schemes can realize quantum random number generator, such as photon path selection scheme, photon arrival time scheme, laser phase fluctuation scheme and quantum random number scheme independent of measurement device, etc. At present, the quantum random number system based on discrete optoelectronic devices generally has the disadvantages of high price, large size, high power consumption, poor stability, and low reliability, etc., and it is difficult to meet the requirements of the popular application of quantum random numbers. For example, in the above example, the single-photon path selection scheme and the photon arrival time scheme have a bit rate of the order of Mbps, and a single-photon detector is used in the system, which is large in size and high in cost; the laser phase fluctuation scheme has a bit rate up to 10Gbps or more, but because the optical interferometer is included in this solution, the system is bulky and sensitive to vibration and temperature, which is not conducive to practical application.

目前,现有的另一种随机数方案的光源与读数电路为独立外接结构,且读数电路为现场可编程阵列,体积较大,且功耗较高;同时,上述技术方案的光源与光学芯片通过贴合的方式固定,结构稳定性较差。At present, the light source and reading circuit of another existing random number scheme are independent external structures, and the reading circuit is a field programmable array, which is large in size and has high power consumption; at the same time, the light source and optical chip of the above technical scheme It is fixed by fitting, and the structural stability is poor.

从以上例子可以看出,量子随机数应用场景需要低成本、低功耗、小体积、稳定性和可靠性高的随机数方案。It can be seen from the above examples that quantum random number application scenarios require random number solutions with low cost, low power consumption, small size, high stability and reliability.

综上所述,现有技术的缺陷为:目前的量子随机数系统价格昂贵、体积大、功耗高、稳定性差、可靠性低,难以满足量子随机数普及应用需求。To sum up, the defects of the prior art are: the current quantum random number system is expensive, bulky, high power consumption, poor stability, low reliability, and it is difficult to meet the requirements of the popular application of quantum random numbers.

发明内容SUMMARY OF THE INVENTION

因此在现有技术中,基于分立光电子器件搭建的量子随机数系统价格昂贵、体积大、功耗高、稳定性差、可靠性低,难以满足量子随机数普及应用需求。Therefore, in the prior art, a quantum random number system based on discrete optoelectronic devices is expensive, bulky, high power consumption, poor stability, and low reliability, and it is difficult to meet the requirements for the popularization and application of quantum random numbers.

为此,非常需要一种改进的量子随机数发生器芯片及设计方法,以使实时量子随机数发生器通过单芯片的方式实现,并通过混合集成和系统级封装的方法,将光学芯片和后端读数电路芯片集成在一个封装内,最终单芯片实时量子随机数发生器能够满足低成本、低功耗、小体积、稳定性和可靠性高的实用化应用需求。For this reason, an improved quantum random number generator chip and design method are very much needed, so that the real-time quantum random number generator can be realized by a single chip, and the optical chip and the post-processing can be integrated by the method of hybrid integration and system-in-package. The terminal reading circuit chip is integrated in one package, and finally the single-chip real-time quantum random number generator can meet the practical application requirements of low cost, low power consumption, small size, high stability and reliability.

在本上下文中,本发明的实施方式期望提供一种量子随机数发生器芯片及设计方法。In this context, embodiments of the present invention are expected to provide a quantum random number generator chip and design method.

在本发明实施方式的第一方面中,提供了一种量子随机数发生器芯片,包括:依次连接的光学芯片、跨阻放大器芯片和微控制器芯片,其中:上述光学芯片包括连续激光器、光分束器、第一光衰减器、第二光衰减器、第一光电探测器和第二光电探测器;上述微控制器芯片包括第一数模转换器、第二数模转换器、模数转换器和处理器;上述跨阻放大器芯片包括跨阻放大器;In a first aspect of the embodiments of the present invention, a quantum random number generator chip is provided, comprising: an optical chip, a transimpedance amplifier chip and a microcontroller chip connected in sequence, wherein: the above-mentioned optical chip includes a continuous laser, a light A beam splitter, a first optical attenuator, a second optical attenuator, a first photodetector and a second photodetector; the microcontroller chip includes a first digital-to-analog converter, a second digital-to-analog converter, an analog-to-digital converter A converter and a processor; the above-mentioned transimpedance amplifier chip includes a transimpedance amplifier;

在本发明的一个实施例中,上述光分束器的两个输出端分别独立连接上述第一光衰减器与第二光衰减器;上述第一光衰减器的输出端连接上述第一光电探测器,上述第二光衰减器输出端连接上述第二光电探测器。In an embodiment of the present invention, the two output ends of the optical beam splitter are respectively independently connected to the first optical attenuator and the second optical attenuator; the output end of the first optical attenuator is connected to the first photodetector The output end of the second optical attenuator is connected to the second photodetector.

在本发明的另一个实施例中,上述光分束器设置有两个输入端,上述光分束器的一个输入端与上述连续激光器连接,另一个输入端空置,作为真空态光输入端。In another embodiment of the present invention, the optical beam splitter is provided with two input ends, one of the input ends of the optical beam splitter is connected to the continuous laser, and the other input end is vacant as a vacuum state optical input end.

在本发明的又一个实施例中,上述光学芯片的第一光电探测器与第二光电探测器的输出端与上述跨阻放大器芯片的跨阻放大器连接。In yet another embodiment of the present invention, the output ends of the first photodetector and the second photodetector of the optical chip are connected to the transimpedance amplifier of the transimpedance amplifier chip.

在本发明的再一个实施例中,上述处理器分别与第一数模转换器、第二数模转换器和模数转换器连接。In yet another embodiment of the present invention, the above-mentioned processor is respectively connected to the first digital-to-analog converter, the second digital-to-analog converter, and the analog-to-digital converter.

在本发明的再一个实施例中,上述第一数模转换器的输出端与上述第一光衰减器连接,上述第二数模转换器的输出端与上述第二光衰减器连接。In yet another embodiment of the present invention, the output end of the first digital-to-analog converter is connected to the first optical attenuator, and the output end of the second digital-to-analog converter is connected to the second optical attenuator.

在本发明的再一个实施例中,上述模数转换器的输入端连接上述跨阻放大器。In yet another embodiment of the present invention, the input end of the analog-to-digital converter is connected to the transimpedance amplifier.

在本发明的再一个实施例中,上述光学芯片的尺寸为2cm x1cm或5mmx3mm。In yet another embodiment of the present invention, the size of the above-mentioned optical chip is 2cm×1cm or 5mm×3mm.

在本发明的再一个实施例中,上述跨阻放大器芯片的尺寸为1mmx1mm;上述微控制器芯片的尺寸为3mm x4mm。In yet another embodiment of the present invention, the size of the transimpedance amplifier chip is 1 mm×1 mm; the size of the microcontroller chip is 3 mm×4 mm.

在本发明实施方式的第二方面中,提供了一种上述量子随机数发生器芯片的设计方法,包括:通过光子集成的方法将上述光分束器、第一光衰减器和第二光衰减器集成到光波导芯片上;通过混合集成的方法将上述连续激光器、第一光电探测器、第二光电探测器和光波导芯片混合集成,构成光学芯片;通过系统化封装的方法将上述光学芯片、跨阻放大器芯片和微控制器芯片进行封装,构成量子随机数发生器芯片。In a second aspect of the embodiments of the present invention, a method for designing the above quantum random number generator chip is provided, comprising: attenuating the above-mentioned optical beam splitter, the first optical attenuator and the second optical beam by means of photon integration The optical device is integrated into the optical waveguide chip; the above-mentioned continuous laser, the first photodetector, the second photodetector and the optical waveguide chip are mixed and integrated by the method of hybrid integration to form an optical chip; the above-mentioned optical chip, The transimpedance amplifier chip and the microcontroller chip are packaged to form a quantum random number generator chip.

根据本发明实施方式的量子随机数发生器芯片及设计方法,通过采用光子集成和混合集成的方法将真空态量子随机数方案中的光源、光路设计和探测器集成在一个光学芯片上,并通过系统化封装的方法将微控制器芯片和光学芯片封装在一块芯片内,大幅度缩小了量子随机数系统的体积,极大地提高了系统和结构的稳定性,同时降低了功耗和成本,提升了应用范围和应用场景。According to the quantum random number generator chip and the design method according to the embodiment of the present invention, the light source, the optical path design and the detector in the vacuum state quantum random number scheme are integrated on an optical chip by adopting the method of photon integration and hybrid integration. The systematic packaging method encapsulates the microcontroller chip and the optical chip in one chip, which greatly reduces the volume of the quantum random number system, greatly improves the stability of the system and structure, reduces power consumption and cost, and improves the The scope of application and application scenarios.

附图说明Description of drawings

图1是本发明实施例提供的量子随机数发生器芯片的结构示意图。FIG. 1 is a schematic structural diagram of a quantum random number generator chip provided by an embodiment of the present invention.

图中:1、光学芯片;2、跨阻放大器芯片;3、微控制器芯片;11、连续激光器;12、真空态光;13、光分束器;14、第一光衰减器;15、第一光电探测器;16、第二光衰减器;17、第二光电探测器;21、跨阻放大器;31、第一数模转换器;32、模数转换器;33、第二数模转换器;34、处理器。In the figure: 1, optical chip; 2, transimpedance amplifier chip; 3, microcontroller chip; 11, continuous laser; 12, vacuum state light; 13, optical beam splitter; 14, first optical attenuator; 15, first photodetector; 16, second optical attenuator; 17, second photodetector; 21, transimpedance amplifier; 31, first digital-to-analog converter; 32, analog-to-digital converter; 33, second digital-to-analog converter Converter; 34. Processor.

图2是本发明实施例提供的量子随机数发生器芯片的设计方法流程图。FIG. 2 is a flowchart of a method for designing a quantum random number generator chip provided by an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.

下面结合图1对本发明示例性实施方式的量子随机数发生器芯片进行描述。The quantum random number generator chip of the exemplary embodiment of the present invention will be described below with reference to FIG. 1 .

如图1所示,本发明实施例提供的量子随机数发生器芯片包括:光学芯片1、跨阻放大器芯片2、微控制器芯片3、连续激光器11、真空态光12、光分束器13、第一光衰减器14、第一光电探测器15、第二光衰减器16、第二光电探测器17、跨阻放大器21、第一数模转换器31、模数转换器32、第二数模转换器33、处理器34。As shown in FIG. 1 , the quantum random number generator chip provided by the embodiment of the present invention includes: an optical chip 1 , a transimpedance amplifier chip 2 , a microcontroller chip 3 , a continuous laser 11 , a vacuum state light 12 , and an optical beam splitter 13 , the first optical attenuator 14, the first photodetector 15, the second optical attenuator 16, the second photodetector 17, the transimpedance amplifier 21, the first digital-to-analog converter 31, the analog-to-digital converter 32, the second A digital-to-analog converter 33 and a processor 34 .

在本发明的一个实施例中,量子随机数发生器芯片由光学芯片1、跨阻放大器芯片2和微控制器芯片3通过系统级封装得到;In an embodiment of the present invention, the quantum random number generator chip is obtained by the optical chip 1, the transimpedance amplifier chip 2 and the microcontroller chip 3 through system level packaging;

光学芯片1包括连续激光器11、光分束器13、第一光衰减器14、第二光衰减器16、第一光电探测器15和第二光电探测器17;微控制器芯片3包括第一数模转换器31、第二数模转换器33、模数转换器32和处理器34;跨阻放大器芯片2包括跨阻放大器21。The optical chip 1 includes a continuous laser 11, an optical beam splitter 13, a first optical attenuator 14, a second optical attenuator 16, a first photodetector 15 and a second photodetector 17; the microcontroller chip 3 includes a first optical attenuator 14 A digital-to-analog converter 31 , a second digital-to-analog converter 33 , an analog-to-digital converter 32 and a processor 34 ; the transimpedance amplifier chip 2 includes a transimpedance amplifier 21 .

本实施例中,光分束器13的两个输出端分别独立连接第一光衰减器14与第二光衰减器16;第一光衰减器14的输出端连接第一光电探测器15,第二光衰减器16输出端连接第二光电探测器17。光分束器13设置有两个输入端,光分束器13的一个输入端与连续激光器11连接,另一个输入端空置,作为真空态光12输入端。In this embodiment, the two output ends of the optical beam splitter 13 are respectively independently connected to the first optical attenuator 14 and the second optical attenuator 16; the output end of the first optical attenuator 14 is connected to the first photodetector 15, The output ends of the two optical attenuators 16 are connected to the second photodetector 17 . The optical beam splitter 13 is provided with two input ends, one input end of the optical beam splitter 13 is connected to the CW laser 11 , and the other input end is vacant, serving as the input end of the vacuum state light 12 .

本实施例中,光学芯片1的第一光电探测器15与第二光电探测器17的输出端与跨阻放大器芯片2的跨阻放大器21连接。In this embodiment, the output ends of the first photodetector 15 and the second photodetector 17 of the optical chip 1 are connected to the transimpedance amplifier 21 of the transimpedance amplifier chip 2 .

本实施例中,处理器34分别与第一数模转换器31、第二数模转换器33和模数转换器32连接。第一数模转换器31的输出端与第一光衰减器14连接,第二数模转换器33的输出端与第二光衰减器16连接。模数转换器32的输入端连接跨阻放大器21。In this embodiment, the processor 34 is connected to the first digital-to-analog converter 31 , the second digital-to-analog converter 33 and the analog-to-digital converter 32 respectively. The output end of the first digital-to-analog converter 31 is connected to the first optical attenuator 14 , and the output end of the second digital-to-analog converter 33 is connected to the second optical attenuator 16 . The input end of the analog-to-digital converter 32 is connected to the transimpedance amplifier 21 .

本实施例中,光学芯片1的尺寸为2cm x1cm或5mmx3mm,跨阻放大器芯片2的尺寸为1mmx1mm,微控制器芯片3的尺寸为3mm x4mm;值得说明的是,本发明实施例的的光学芯片1、跨阻放大器芯片2和微控制器芯片3的大小包括但不限于上述具体尺寸,并能够根据使用和设计需求调整量子随机数发生器芯片的大小尺寸。In this embodiment, the size of the optical chip 1 is 2cm×1cm or 5mm×3mm, the size of the transimpedance amplifier chip 2 is 1mm×1mm, and the size of the microcontroller chip 3 is 3mm×4mm; 1. The sizes of the transimpedance amplifier chip 2 and the microcontroller chip 3 include but are not limited to the above specific sizes, and the size of the quantum random number generator chip can be adjusted according to usage and design requirements.

根据本发明的实施例,通过将光学芯片1、跨阻放大器芯片2和微控制器芯片3进行系统级封装使得单芯片实时量子随机数发生器方案理论上可行,并使系统级集成的量子随机数发生器达到1cm量级,极大地缩小了量子随机数系统的体积,提升了应用范围和应用场景。According to the embodiment of the present invention, the single-chip real-time quantum random number generator scheme is theoretically feasible by the system-level packaging of the optical chip 1, the transimpedance amplifier chip 2 and the microcontroller chip 3, and the system-level integrated quantum random number generator The number generator reaches the order of 1cm, which greatly reduces the size of the quantum random number system and improves the application scope and application scenarios.

在介绍了本发明示例性实施方式的芯片之后,接下来,参考图2对本发明示例性实施方式的量子随机数发生器芯片的设计方法进行描述。After the chip of the exemplary embodiment of the present invention is introduced, next, the design method of the quantum random number generator chip of the exemplary embodiment of the present invention will be described with reference to FIG. 2 .

如图2所示,根据本发明实施例的量子随机数发生器芯片的设计方法包括操作S101~操作S103。As shown in FIG. 2 , the method for designing a quantum random number generator chip according to an embodiment of the present invention includes operations S101 to S103 .

在操作S101,通过光子集成的方法将光分束器13、第一光衰减器14和第二光衰减器16集成到光波导芯片上。In operation S101, the optical beam splitter 13, the first optical attenuator 14 and the second optical attenuator 16 are integrated on the optical waveguide chip by means of photonic integration.

在操作S102,通过混合集成的方法将连续激光器11、第一光电探测器15、第二光电探测器17和光波导芯片混合集成,构成光学芯片1。In operation S102 , the continuous laser 11 , the first photodetector 15 , the second photodetector 17 , and the optical waveguide chip are mixed and integrated by a hybrid integration method to form the optical chip 1 .

在操作S103,通过系统化封装的方法将光学芯片1、跨阻放大器芯片2和微控制器芯片3进行封装,构成量子随机数发生器芯片。In operation S103, the optical chip 1, the transimpedance amplifier chip 2 and the microcontroller chip 3 are packaged by the method of systematic packaging to form a quantum random number generator chip.

根据本发明的实施例,通过采用光子集成和混合集成的方法将真空态量子随机数方案中的光源、光路设计和探测器集成在一个光学芯片1上,并通过系统化封装的方法将微控制器芯片3和光学芯片1封装在一块芯片内,使量子随机数系统的集成度更高,降低了各结构间的结构布局与排线难度,大幅度缩小了量子随机数系统的体积,极大地提高了系统和结构的稳定性,同时降低了功耗和成本。According to the embodiment of the present invention, the light source, the optical path design and the detector in the vacuum state quantum random number scheme are integrated on an optical chip 1 by adopting the method of photon integration and hybrid integration, and the micro-controller is integrated by the method of systematic packaging. The device chip 3 and the optical chip 1 are packaged in one chip, which makes the integration of the quantum random number system higher, reduces the structural layout and wiring difficulty between the structures, greatly reduces the volume of the quantum random number system, and greatly reduces the size of the quantum random number system. Improved system and structural stability while reducing power consumption and cost.

为了进一步便于理解,下面针对图1所示的一种量子随机数发生器芯片设计方法的工作流程及工作原理进行介绍。In order to further facilitate understanding, the following introduces the working process and working principle of a quantum random number generator chip design method shown in FIG. 1 .

1、工作流程1. Workflow

连续激光,输入到光学芯片中的光分束器的一端,光分束器输入的另一端空置,作为真空态光输入端。光分束器的两个输出端口各有一个光衰减器,光分束器和光衰减器将输入光分成强度比为50/50的两束光,这两束光分别进入两个光电探测器进行光电转换过程;光信号转换成两路的电流信号相减(零差探测)后,进入跨阻放大器,将微弱的高频电流信号放大并且转化为电压信号;此电压信号即为量子涨落产生的随机信号,信号进入模数转换器并且经过微控制器中的处理器后处理后得到实时产生的量子随机数。The continuous laser is input to one end of the optical beam splitter in the optical chip, and the other end of the input of the optical beam splitter is vacant, serving as the light input end in a vacuum state. Each of the two output ports of the optical beam splitter has an optical attenuator. The optical beam splitter and the optical attenuator divide the input light into two beams of light with an intensity ratio of 50/50, and the two beams of light enter two photodetectors respectively. Photoelectric conversion process; after the optical signal is converted into two current signals and subtracted (homodyne detection), it enters the transimpedance amplifier, amplifies the weak high-frequency current signal and converts it into a voltage signal; this voltage signal is generated by quantum fluctuations The signal enters the analog-to-digital converter and is post-processed by the processor in the microcontroller to obtain a quantum random number generated in real time.

2、工作原理2. Working principle

量子涨落存在于相干态光场中,它在振幅和位相上满足最小不确定性原理。此随机数方案本质上就是相干态量子涨落。本发明实施例中利用光电探测器对经过光分束器分束后的两路光进行零差探测,随机性得以体现。Quantum fluctuations exist in coherent light fields, which satisfy the principle of least uncertainty in amplitude and phase. This random number scheme is essentially a quantum fluctuation of coherent states. In the embodiment of the present invention, the photodetector is used to perform homodyne detection on the two paths of light after being split by the optical beam splitter, and the randomness is embodied.

光分束器的输入一路为本振光源(即连续激光),另一路空置(即真空态光)。若假设两路输入量子态为

Figure BDA0002816839830000071
经过光分束器和两路衰减器后,两路光变为
Figure BDA0002816839830000072
则有下列关系:One input of the optical beam splitter is a local oscillator light source (ie, continuous laser), and the other is vacant (ie, vacuum state light). If we assume that the two input quantum states are
Figure BDA0002816839830000071
After passing through the beam splitter and the two attenuators, the two paths of light become
Figure BDA0002816839830000072
There are the following relationships:

Figure BDA0002816839830000073
Figure BDA0002816839830000073

其中,

Figure BDA0002816839830000074
分别对应本振光源和真空态。对于50∶50的分光比的光分束器
Figure BDA0002816839830000075
在分束器输出端则有:in,
Figure BDA0002816839830000074
Corresponding to the local oscillator light source and the vacuum state, respectively. Beamsplitter for 50:50 splitting ratio
Figure BDA0002816839830000075
At the output of the beam splitter there are:

Figure BDA0002816839830000076
Figure BDA0002816839830000076

Figure BDA0002816839830000077
Figure BDA0002816839830000077

上式中,

Figure BDA0002816839830000078
即为真空态;In the above formula,
Figure BDA0002816839830000078
is the vacuum state;

光电转换后,第一与第二光电探测器上通过的电流为:After photoelectric conversion, the current passing through the first and second photodetectors is:

Figure BDA0002816839830000079
Figure BDA0002816839830000079

Figure BDA00028168398300000710
Figure BDA00028168398300000710

上式中,k为光电探测器的量子效率,

Figure BDA00028168398300000711
分别对应两路输入光电探测器的光强;
Figure BDA00028168398300000712
增加了上标“+”代表
Figure BDA00028168398300000713
量子态的厄米共轭。电流值应等于量子效率与光强大小的乘积,两路电流的差为:In the above formula, k is the quantum efficiency of the photodetector,
Figure BDA00028168398300000711
Corresponding to the light intensity of the two input photodetectors respectively;
Figure BDA00028168398300000712
Added superscript "+" to represent
Figure BDA00028168398300000713
Hermitian conjugation of quantum states. The current value should be equal to the product of quantum efficiency and light intensity, and the difference between the two currents is:

Figure BDA00028168398300000714
Figure BDA00028168398300000714

可以证明:can prove:

Figure BDA00028168398300000715
Figure BDA00028168398300000715

其中<Δi2>对应量子噪声σq 2,量子噪声从零差探测的结果中得以体现。在本发明实施例中,电子学读出电路得到的噪声分布分为两部分,量子噪声σq 2和经典噪声σe 2,即where <Δi 2 > corresponds to quantum noise σ q 2 , which is reflected in the results of homodyne detection. In the embodiment of the present invention, the noise distribution obtained by the electronic readout circuit is divided into two parts, quantum noise σ q 2 and classical noise σ e 2 , namely

σtotal 2=σq 2e 2 (八)σ total 2q 2e 2 (eight)

连续激光是相干光源,其平均光子数记为μ。对于使用相干光源,其光子数n服从泊松分布,其分布由下式给出:A continuous laser is a coherent light source whose average number of photons is recorded as μ. For using a coherent light source, the photon number n obeys a Poisson distribution whose distribution is given by:

Figure BDA0002816839830000081
Figure BDA0002816839830000081

其中,平均光子数μ需要通过理论分析与实验结果来优化的,通常通过调节光源发光强度和可调衰减器来控制该实验参数。Among them, the average photon number μ needs to be optimized through theoretical analysis and experimental results, and this experimental parameter is usually controlled by adjusting the luminous intensity of the light source and the adjustable attenuator.

两路光电探测器将光电探测的结果零差探测后,光子数服从Skellam分布,其分布由下式给出:After the homodyne detection of the photodetection results by the two photodetectors, the number of photons obeys the Skellam distribution, and its distribution is given by the following formula:

pk=P(n1-n2=k)=e-2μIk(2μ) (十)p k =P(n 1 -n 2 =k)=e -2μ I k (2μ) (ten)

其中,Ik(2μ)为修正贝塞尔函数;n1、n2分别对应两路光的平均光子数,也是Skellam分布的两个参数,决定了此分布的形状。Among them, I k (2μ) is the modified Bessel function; n 1 and n 2 respectively correspond to the average photon number of the two paths of light, and are also two parameters of the Skellam distribution, which determine the shape of the distribution.

在本发明实施例中,通过以上计算可以获知量子噪声分布情况。In the embodiment of the present invention, the distribution of quantum noise can be obtained through the above calculation.

经典噪声在系统中是服从高斯分布的,只需要测量出没有光输入的时候的经典噪声σe 2,就可以计算出量子噪声所占比例。The classical noise obeys the Gaussian distribution in the system, and the proportion of quantum noise can be calculated only by measuring the classical noise σ e 2 when there is no light input.

通过计算量子噪声分布情况计算得到最小熵。随机性是由最小熵来量化的,其定义为:The minimum entropy is calculated by calculating the distribution of quantum noise. Randomness is quantified by minimum entropy, which is defined as:

H=-log2pmax (十一)H = -log 2 p max (11)

其中pmax是最有可能出现结果的概率。真空态涨落的随机数是服从Skellam分布的,通过前述的量子噪声方差σq 2,就可以得到pmax,从而计算出最小熵。where pmax is the probability of the most likely outcome. The random numbers of vacuum state fluctuations obey the Skellam distribution, and through the aforementioned quantum noise variance σ q 2 , p max can be obtained, thereby calculating the minimum entropy.

在最终的随机数后处理中,采用基于快速傅里叶变换的T0eplitz矩阵算法,矩阵大小为n×m,即从n比特原始量子随机数数据可提取出m比特的最终随机数,且满足如下关系:n/m≤H。根据最小熵结果,上述处理可以得到最终的量子随机数,其随机性来源于量子物理基本原理,是信息理论可证的。In the final random number post-processing, the T0eplitz matrix algorithm based on fast Fourier transform is used, and the matrix size is n×m, that is, the final random number of m bits can be extracted from the original quantum random number data of n bits, and the following conditions are satisfied Relationship: n/m≤H . According to the minimum entropy result, the above processing can obtain the final quantum random number, whose randomness originates from the basic principles of quantum physics and is verifiable by information theory.

上述方案中,原始数据的最小熵是根据测量结果计算得到的,测量结果可在微控制器内部得到,从而实现了最小熵的精确估算。原始数据经过后处理之后,可以实时得到最终的真空态涨落的量子随机数。通过以上方案,可以获得高速、稳定的量子随机数。In the above scheme, the minimum entropy of the original data is calculated according to the measurement result, and the measurement result can be obtained inside the microcontroller, thereby realizing the accurate estimation of the minimum entropy. After the original data is post-processed, the final quantum random number of the vacuum state fluctuation can be obtained in real time. Through the above scheme, high-speed and stable quantum random numbers can be obtained.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned specific embodiments are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principle of the present invention, any modifications, equivalent replacements, improvements, etc. made should be included within the protection scope of the present invention.

Claims (10)

1.一种量子随机数发生器芯片,其特征在于,包括:依次连接的光学芯片、跨阻放大器芯片和微控制器芯片,其中:1. a quantum random number generator chip, is characterized in that, comprises: optical chip, transimpedance amplifier chip and microcontroller chip connected successively, wherein: 所述光学芯片包括连续激光器、光分束器、第一光衰减器、第二光衰减器、第一光电探测器和第二光电探测器;The optical chip includes a continuous laser, an optical beam splitter, a first optical attenuator, a second optical attenuator, a first photodetector and a second photodetector; 所述微控制器芯片包括第一数模转换器、第二数模转换器、模数转换器和处理器;The microcontroller chip includes a first digital-to-analog converter, a second digital-to-analog converter, an analog-to-digital converter and a processor; 所述跨阻放大器芯片包括跨阻放大器;The transimpedance amplifier chip includes a transimpedance amplifier; 其中,所述光学芯片、所述跨阻放大器芯片和所述微控制器芯片封装得到所述量子随机数发生器芯片。Wherein, the optical chip, the transimpedance amplifier chip and the microcontroller chip are packaged to obtain the quantum random number generator chip. 2.如权利要求1所述的量子随机数发生器芯片,其特征在于,所述光分束器的两个输出端分别独立连接所述第一光衰减器与第二光衰减器;所述第一光衰减器的输出端连接所述第一光电探测器,所述第二光衰减器输出端连接所述第二光电探测器。2. The quantum random number generator chip according to claim 1, wherein the two output ends of the optical beam splitter are respectively independently connected to the first optical attenuator and the second optical attenuator; the The output end of the first optical attenuator is connected to the first photodetector, and the output end of the second optical attenuator is connected to the second photodetector. 3.如权利要求1所述的量子随机数发生器芯片,其特征在于,所述光分束器设置有两个输入端,所述光分束器的一个输入端与所述连续激光器连接,另一个输入端空置,作为真空态光输入端。3. The quantum random number generator chip of claim 1, wherein the optical beam splitter is provided with two input ends, and an input end of the optical beam splitter is connected with the continuous laser, The other input is vacant as a vacuum light input. 4.如权利要求1所述的量子随机数发生器芯片,其特征在于,所述光学芯片的第一光电探测器的输出端与第二光电探测器的输出端,分别与所述跨阻放大器芯片的跨阻放大器连接。4. The quantum random number generator chip according to claim 1, wherein the output end of the first photodetector and the output end of the second photodetector of the optical chip are respectively connected with the transimpedance amplifier. The chip's transimpedance amplifier is connected. 5.如权利要求1所述的量子随机数发生器芯片,其特征在于,所述处理器分别与第一数模转换器、第二数模转换器和模数转换器连接。5 . The quantum random number generator chip of claim 1 , wherein the processor is respectively connected to the first digital-to-analog converter, the second digital-to-analog converter, and the analog-to-digital converter. 6 . 6.如权利要求1所述的量子随机数发生器芯片,其特征在于,所述第一数模转换器的输出端与所述第一光衰减器连接,所述第二数模转换器的输出端与所述第二光衰减器连接。6 . The quantum random number generator chip according to claim 1 , wherein the output end of the first digital-to-analog converter is connected to the first optical attenuator, and the output of the second digital-to-analog converter is connected to the first optical attenuator. The output end is connected to the second optical attenuator. 7.如权利要求1所述的量子随机数发生器芯片,其特征在于,所述模数转换器的输入端连接所述跨阻放大器。7 . The quantum random number generator chip of claim 1 , wherein the input end of the analog-to-digital converter is connected to the transimpedance amplifier. 8 . 8.如权利要求1所述的量子随机数发生器芯片,其特征在于,所述光学芯片的尺寸为2cm x1 cm或5mmx3mm。8 . The quantum random number generator chip of claim 1 , wherein the size of the optical chip is 2 cm×1 cm or 5 mm×3 mm. 9 . 9.如权利要求1所述的量子随机数发生器芯片,其特征在于,所述跨阻放大器芯片的尺寸为1mmx1mm;所述微控制器芯片的尺寸为3mmx4mm。9 . The quantum random number generator chip according to claim 1 , wherein the size of the transimpedance amplifier chip is 1 mm×1 mm; the size of the microcontroller chip is 3 mm×4 mm. 10 . 10.一种如权利要求1-9所述的量子随机数发生器芯片的设计方法,其特征在于,包括:10. A method for designing a quantum random number generator chip as claimed in claim 1-9, characterized in that, comprising: 通过光子集成的方法将所述光分束器、所述第一光衰减器和所述第二光衰减器集成到光波导芯片上;Integrating the optical beam splitter, the first optical attenuator and the second optical attenuator onto an optical waveguide chip by a photonic integration method; 通过混合集成的方法将所述连续激光器、所述第一光电探测器、所述第二光电探测器和光波导芯片混合集成,构成所述光学芯片;The continuous laser, the first photodetector, the second photodetector and the optical waveguide chip are mixed and integrated by a hybrid integration method to form the optical chip; 通过系统化封装的方法将所述光学芯片、所述跨阻放大器芯片和所述微控制器芯片进行封装,构成量子随机数发生器芯片。The optical chip, the transimpedance amplifier chip and the microcontroller chip are packaged by a systematic packaging method to form a quantum random number generator chip.
CN202011420448.0A 2020-12-04 2020-12-04 A quantum random number generator chip and design method Pending CN112346710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011420448.0A CN112346710A (en) 2020-12-04 2020-12-04 A quantum random number generator chip and design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011420448.0A CN112346710A (en) 2020-12-04 2020-12-04 A quantum random number generator chip and design method

Publications (1)

Publication Number Publication Date
CN112346710A true CN112346710A (en) 2021-02-09

Family

ID=74427579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011420448.0A Pending CN112346710A (en) 2020-12-04 2020-12-04 A quantum random number generator chip and design method

Country Status (1)

Country Link
CN (1) CN112346710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113867688A (en) * 2021-09-08 2021-12-31 安徽光纤光缆传输技术研究所(中国电子科技集团公司第八研究所) Quantum noise source module based on photoelectric co-packaging and quantum noise source generation method
WO2024186266A1 (en) * 2023-03-07 2024-09-12 National University Of Singapore Chip-based self-validation quantum random number generator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101044449A (en) * 2004-07-23 2007-09-26 高通股份有限公司 Method and apparatus for random-number generator
CN105975248A (en) * 2016-05-24 2016-09-28 富尧 Quantum random number generator based on amplified spontaneous emission and generation method
CN206331407U (en) * 2016-12-22 2017-07-14 清华大学 A kind of quantum random number generator
CN108491185A (en) * 2018-06-08 2018-09-04 中国科学技术大学 The real-time quantum random number generator of high speed based on photoelectricity hybrid integrated
US20190050203A1 (en) * 2017-08-11 2019-02-14 Ut-Battelle, Llc Quantum random number generator
CN109375898A (en) * 2018-11-26 2019-02-22 弦海(上海)量子科技有限公司 Quantum True Random Number Generator chip and method based on CMOS detection
CN109542396A (en) * 2018-12-04 2019-03-29 浙江九州量子信息技术股份有限公司 A kind of random number entropy source device based on vacuum fluctuation principle
CN110187867A (en) * 2019-05-13 2019-08-30 弦海(上海)量子科技有限公司 The quantum random number generator of chip structure phase noise sampling
CN213659430U (en) * 2020-12-04 2021-07-09 中国科学技术大学 A quantum random number generator chip

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101044449A (en) * 2004-07-23 2007-09-26 高通股份有限公司 Method and apparatus for random-number generator
CN105975248A (en) * 2016-05-24 2016-09-28 富尧 Quantum random number generator based on amplified spontaneous emission and generation method
CN206331407U (en) * 2016-12-22 2017-07-14 清华大学 A kind of quantum random number generator
US20190050203A1 (en) * 2017-08-11 2019-02-14 Ut-Battelle, Llc Quantum random number generator
CN108491185A (en) * 2018-06-08 2018-09-04 中国科学技术大学 The real-time quantum random number generator of high speed based on photoelectricity hybrid integrated
CN109375898A (en) * 2018-11-26 2019-02-22 弦海(上海)量子科技有限公司 Quantum True Random Number Generator chip and method based on CMOS detection
CN109542396A (en) * 2018-12-04 2019-03-29 浙江九州量子信息技术股份有限公司 A kind of random number entropy source device based on vacuum fluctuation principle
CN110187867A (en) * 2019-05-13 2019-08-30 弦海(上海)量子科技有限公司 The quantum random number generator of chip structure phase noise sampling
CN213659430U (en) * 2020-12-04 2021-07-09 中国科学技术大学 A quantum random number generator chip

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
聂友奇;张军;: "实用化量子随机数发生器研究进展", 信息安全研究, no. 01, 5 January 2017 (2017-01-05) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113867688A (en) * 2021-09-08 2021-12-31 安徽光纤光缆传输技术研究所(中国电子科技集团公司第八研究所) Quantum noise source module based on photoelectric co-packaging and quantum noise source generation method
WO2024186266A1 (en) * 2023-03-07 2024-09-12 National University Of Singapore Chip-based self-validation quantum random number generator

Similar Documents

Publication Publication Date Title
CN108491185B (en) High-speed real-time quantum random number generator based on photoelectric hybrid integration
Bai et al. 18.8 Gbps real-time quantum random number generator with a photonic integrated chip
CN103942030B (en) True random number generation method and device
CN213659430U (en) A quantum random number generator chip
Rashed High reliability optical interconnections for short range applications in high performance optical communication systems
CN108563422B (en) Random number generator and random number generating method
CN209103272U (en) A kind of quantum random number generator
US11686955B2 (en) Optoelectronic computing platform
CN208547936U (en) High-speed real-time quantum random number generator based on optoelectronic hybrid integration
CN112346710A (en) A quantum random number generator chip and design method
CN105762646B (en) A kind of semiconductor chaos laser of collection feedback in pairs
CN115629735A (en) High-speed quantum random number generator chip based on incoherent light source
CN209514593U (en) A kind of hybrid integrated quantum random number generating device and generating system
CN109783059A (en) A kind of quantum random number production method and device
US11742955B2 (en) Delivering signals to cryogenic environments via photonic links
CN115599343A (en) Photoelectric integrated high-speed quantum random number generator based on incoherent light source
Sturm et al. Scalable Coherent Optical Crossbar Architecture using PCM for AI Acceleration
CN208172776U (en) A kind of quantum random number generators based on laser phase fluctuation
Qin et al. Optical packet header identification utilizing an all-optical feedback chaotic reservoir computing
CN108762723A (en) A kind of quantum random number generators based on laser phase fluctuation
Héeroux et al. Optoelectronic reservoir computing with VCSEL
CN114780058B (en) Quantum random number generator chip based on vacuum fluctuation
CN110618807B (en) A hybrid integrated quantum random number generator and generation system
CN108540216A (en) A kind of high-precision chaotic optical time domain reflectometer
CN111785712A (en) Unbiased quantum entropy source chip structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination