CN112328699B - 一种基于区块链的全同态加密算法的安全外包方法及系统 - Google Patents

一种基于区块链的全同态加密算法的安全外包方法及系统 Download PDF

Info

Publication number
CN112328699B
CN112328699B CN202011312426.2A CN202011312426A CN112328699B CN 112328699 B CN112328699 B CN 112328699B CN 202011312426 A CN202011312426 A CN 202011312426A CN 112328699 B CN112328699 B CN 112328699B
Authority
CN
China
Prior art keywords
blockchain
calculation
task
result
local server
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011312426.2A
Other languages
English (en)
Other versions
CN112328699A (zh
Inventor
宋明洋
桑应朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202011312426.2A priority Critical patent/CN112328699B/zh
Publication of CN112328699A publication Critical patent/CN112328699A/zh
Application granted granted Critical
Publication of CN112328699B publication Critical patent/CN112328699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/602Providing cryptographic facilities or services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/64Protecting data integrity, e.g. using checksums, certificates or signatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Bioethics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Technology Law (AREA)
  • General Business, Economics & Management (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明公开了一种基于区块链的全同态加密算法的安全外包方法及系统,该方法包括:在本地服务器生成参数并将计算任务发送到区块链网络执行,返回计算结果后生成密钥;对数据进行加密并通过区块链网络和本地服务器分别执行多项式乘法任务和多项式加法任务,得到加密后的数据;根据密钥对加密后的数据进行解密并将多项式乘法任务发送到区块链网络执行,返回计算结果后得到解密数据。该系统包括:本地服务器和区块链网络。通过使用本发明,降低全同态加密算法的本地运算复杂度,使其能在计算能力有限的设备上更具实用性。本发明作为一种基于区块链的全同态加密算法的安全外包方法及系统,可广泛应用于安全计算领域。

Description

一种基于区块链的全同态加密算法的安全外包方法及系统
技术领域
本发明属于安全计算领域,尤其涉及一种基于区块链的全同态加密算法的安全外包方法及系统。
背景技术
由于区块链拥有不可篡改、可追溯等特性,利用区块链网络的计算能力进行安全计算外包能增加安全性,降低云端作弊的可能,但是,目前对加密算法的安全外包的研究非常稀少,首先是因为,如果加密过程中涉及的参数泄漏,很可能导致最终加密密钥的泄漏,其次,普通加密算法的复杂度并没有全同态加密算法高,而且目前大多数设备都能承受传统的加密算法的复杂度。在现有的基于区块链的通用安全计算外包方案中,都存在本地运行全同态加密算法复杂度过高的问题,导致其难以在运算资源有限的设备上应用。
发明内容
为了解决上述技术问题,本发明的目的是提供一种基于区块链的全同态加密算法的安全外包方法及系统,通过将基于隐理想格的全同态加密算法中的部分复杂运算安全外包给区块链网络,降低全同态加密算法的本地运算复杂度。
本发明所采用的第一技术方案是:一种基于区块链的全同态加密算法的安全外包方法,包括以下步骤:
在本地服务器生成参数并将计算任务发送到区块链网络执行,返回计算结果后生成密钥;
对数据进行加密并通过区块链网络和本地服务器分别执行多项式乘法任务和多项式加法任务,得到加密后的数据;
根据密钥对加密后的数据进行解密并将多项式乘法任务发送到区块链网络执行,返回计算结果后得到解密数据。
进一步,所述在本地服务器生成参数并将计算任务发送到区块链网络执行,返回计算结果后生成密钥这一步骤,其具体包括:
根据预设规则在本地服务器生成参数并发送数据至区块链网络;
基于区块链网络对数据执行多项式乘法计算并返回第一计算结果;
本地服务器对第一计算结果进行验证并将验证结果反馈给区块链;
基于区块链网络对数据执行欧几里得算法计算并返回第二计算结果;
本地服务器对第二计算结果进行验证并将验证结果反馈给区块链。
进一步,所述基于区块链网络对数据执行多项式乘法计算并返回第一计算结果这一步骤,其具体包括:
向区块链网络发送向量并发布傅里叶变换任务;
计算节点选择傅里叶变换任务并在任务完成后将变换后的结果返回给区块链,再由区块链将变换后的计算结果发送至本地服务器;
向区块链网络发送向量并发布傅里叶逆变换任务;
计算节点选择傅里叶逆变换任务并在任务完成后将逆变换后的结果返回给区块链,再由区块链将逆变换后的计算结果发送至本地服务器。
进一步,所述欧几里得算法包括多项式乘法运算和幂运算,所述基于区块链网络对数据执行欧几里得算法计算并返回第二计算结果这一步骤,其具体包括:
基于区块链网络对数据执行多项式乘法计算并返回结果;
发布数据和幂运算任务到区块链网络;
计算节点选择幂运算任务并将幂运算后的结果返回给区块链,再由区块链将幂运算后的结果发给本地。
进一步,将验证结果反馈给区块链后,具体还包括:
判断到验证结果正确,本地服务器接受该结果,区块链执行交易;
判断到验证结果不正确,本地服务器不接受该结果,区块链检查计算节点并对计算节点进行相应惩罚。
进一步,所述计算节点选择傅里叶变换任务具体为选择待处理向量并对其进行傅里叶变换任务,所述计算节点选择傅里叶逆变换任务具体为选择待处理向量并对其进行傅里叶逆变换任务,所述计算节点选择幂运算任务具体为选择待处理数据并对其进行幂运算。
进一步,所述在本地服务器生成参数具体包括生成8个随机数、3个随机向量和4个随机矩阵。
进一步,向区块链网络发送的向量具体为从随机矩阵中获得的向量。
本发明所采用的第二技术方案是:一种基于区块链的全同态加密算法的安全外包系统,包括:
本地服务器,用于生成参数、发布计算任务、执行普通计算和验证;
区块链网络,用于接收来自本地服务器发布的计算任务、返回计算结果、并由其计算节点选择计算任务、承担计算工作和返回计算结果。
本发明方法及系统的有益效果是:通过将基于隐理想格的全同态加密算法中的部分复杂运算安全外包给区块链网络,降低全同态加密算法的本地运算复杂度,从而使其能在计算能力有限的设备上更具实用性。
附图说明
图1是本发明一种基于区块链的全同态加密算法的安全外包的步骤流程图;
图2是本发明一种基于区块链的全同态加密算法的安全外包系统的示意图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。
如图1所示,本发明提供了一种基于区块链的全同态加密算法的安全外包方法,该方法包括以下步骤:
S1、在本地服务器生成参数并将计算任务发送到区块链网络执行,返回计算结果后生成密钥;
S2、对数据进行加密并通过区块链网络和本地服务器分别执行多项式乘法任务和多项式加法任务,得到加密后的数据;
S3、根据密钥对加密后的数据进行解密并将多项式乘法任务发送到区块链网络执行,返回计算结果后得到解密数据。
参照图2可得,本发明中用到的外包云平台为区块链网络。在基于隐理想格的全同态加密算法的运行过程中,运行至多项式乘法就可以将该运算外包给区块链网络;运行至扩展欧几里得算法,也可以将该算法中涉及的多项式乘法和幂运算分别根据多项式乘法和幂运算的安全外包算法外包给区块链网络。进而减少本地运算负担。
进一步作为本方法的优选实施例,所述在本地服务器生成参数并将计算任务发送到区块链网络执行,返回计算结果后生成密钥这一步骤,其具体包括:
根据预设规则在本地服务器生成参数并发送数据至区块链网络;
基于区块链网络对数据执行多项式乘法计算并返回第一计算结果;
本地服务器对第一计算结果进行验证并将验证结果反馈给区块链;
基于区块链网络对数据执行欧几里得算法计算并返回第二计算结果;
本地服务器对第二计算结果进行验证并将验证结果反馈给区块链。
进一步作为本方法的优选实施例,所述基于区块链网络对数据执行多项式乘法计算并返回第一计算结果这一步骤,其具体包括:
向区块链网络发送向量并发布傅里叶变换任务;
计算节点选择傅里叶变换任务并在任务完成后将变换后的结果返回给区块链,再由区块链将变换后的计算结果发送至本地服务器;
向区块链网络发送向量并发布傅里叶逆变换任务;
计算节点选择傅里叶逆变换任务并在任务完成后将逆变换后的结果返回给区块链,再由区块链将逆变换后的计算结果发送至本地服务器。
进一步作为本方法优选实施例,所述欧几里得算法包括多项式乘法运算和幂运算,所述基于区块链网络对数据执行欧几里得算法计算并返回第二计算结果这一步骤,其具体包括:
基于区块链网络对数据执行多项式乘法计算并返回结果;
发布数据和幂运算任务到区块链网络;
计算节点选择幂运算任务并将幂运算后的结果返回给区块链,再由区块链将幂运算后的结果发给本地。
进一步作为本方法优选实施例,将验证结果反馈给区块链后,具体还包括:
判断到验证结果正确,本地服务器接受该结果,区块链执行交易;
判断到验证结果不正确,本地服务器不接受该结果,区块链检查计算节点并对计算节点进行相应惩罚。
具体地,在所有运算中,本地需要验证运算结果,并通知区块链是否接受运算结果,如果本地服务器接受外包运算的结果,则区块链直接执行交易(计算发布者付费,承担运算的节点得到报酬);如果本地服务器不接受外包运算的结果,区块链根据数据和所发布的计算,模拟所有计算过程,寻找不诚实的计算节点,并进行惩罚,对于诚实的节点进行补偿。
进一步作为本方法优选实施例,所述计算节点选择傅里叶变换任务具体为选择待处理向量并对其进行傅里叶变换任务,所述计算节点选择傅里叶逆变换任务具体为选择待处理向量并对其进行傅里叶逆变换任务,所述计算节点选择幂运算任务具体为选择待处理数据并对其进行幂运算。
进一步作为本方法优选实施例,述在本地服务器生成参数具体包括生成8个随机数、3个随机向量和4个随机矩阵。
进一步作为本方法优选实施例,向区块链网络发送的向量具体为从随机矩阵中获得的向量。
具体地,多项式乘法计算具体步骤如下:
1.参数生成,8个随机数0≤i,j≤n,0≤β,m,l≤2n.k1,k2,k3R Z,3个随机向量r1=L(i,k1,n),r2=L(j,k2,n)和r3=L(β,k3,2n),4个随机矩阵V=T(a,r1),U=T(a,r1),Z=T(b,r2)和S=T(b,r2)。
2.将随机矩阵中的4p个向量发送给4p个计算节点;
3.计算节点对其收到的向量进行傅里叶变换并将计算结果返回给任务发布者;
4.本地计算及验证:验证验证计算/>Fc(Fa和Fb对应位置相乘的结果);
5.生成随机矩阵D=T(Fc,r3)和E=T(Fc,r3);
6.将随机矩阵中2p个向量分发给2p个计算节点;
7.计算节点对得到向量进行傅里叶逆变换,并将结果返回给任务发布者;
8.本地计算及验证:计算验证验证/>验证
另外,p代表一个多项式系数向量要拆成子向量的个数,在多项式乘法安全计算外包算法中共需要6p个计算节点;定义可以生成第i项为k,其他项为0的向量;定义/>生成满足/>的随机矩阵W=[w1,w2,...wp];小写非黑体字母代表数字;Fr为向量r的傅里叶变换(Fr[m]为向量r的傅里叶变换的第m项);F-1 r为向量r的逆傅里叶变换。
幂运算具体步骤如下:
1.参数生成g1,g2,e,k1,k2∈Z;
2.本地计算v1=g1 e,v2=g2 e,w1=u/g1,w2=u/g2,t1=d-k1e和l1=d-k2t1
3.发布数据(k1,v1),(k1,v2),(l1,w1),(k2,w1),(l1,w2),(k2,w2)和幂运算任务到区块链网络;
4.计算节点选择任务并对得到的数据(ai,bi)计算得到将计算结果返回给区块链;
5.区块链将计算结果发给本地;
6.本地验证并将结果反馈给区块链;
7.区块链执行仲裁和交易。
在对多项式乘法的安全外包过程中,共涉及3轮用户和区块链的交互。首先是做傅里叶变换的向量的发布;其次是做逆傅里叶变换的向量发布;最后是对计算结果的反馈。在幂运算的安全外包过程中,共涉及2轮用户和区块链的交互,第一次用于发布数据,第二次用于对计算结果的反馈。
一种基于区块链的全同态加密算法的安全外包系统,包括:
本地服务器,用于生成参数、发布计算任务、执行普通计算和验证;
区块链网络,用于接收来自本地服务器发布的计算任务、返回计算结果、并由其计算节点选择计算任务、承担计算工作和返回计算结果。
上述方法实施例中的内容均适用于本系统实施例中,本系统实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (8)

1.一种基于区块链的全同态加密算法的安全外包方法,其特征在于,包括以下步骤:
在本地服务器生成参数并将计算任务发送到区块链网络执行,返回计算结果后生成密钥;
对数据进行加密并通过区块链网络和本地服务器分别执行多项式乘法任务和多项式加法任务,得到加密后的数据;
根据密钥对加密后的数据进行解密并将多项式乘法任务发送到区块链网络执行,返回计算结果后得到解密数据;
所述在本地服务器生成参数并将计算任务发送到区块链网络执行,返回计算结果后生成密钥这一步骤,其具体包括:
根据预设规则在本地服务器生成参数并发送数据至区块链网络;
基于区块链网络对数据执行多项式乘法计算并返回第一计算结果;
本地服务器对第一计算结果进行验证并将验证结果反馈给区块链;
基于区块链网络对数据执行欧几里得算法计算并返回第二计算结果;
本地服务器对第二计算结果进行验证并将验证结果反馈给区块链。
2.根据权利要求1所述一种基于区块链的全同态加密算法的安全外包方法,其特征在于,所述基于区块链网络对数据执行多项式乘法计算并返回第一计算结果这一步骤,其具体包括:
向区块链网络发送向量并发布傅里叶变换任务;
计算节点选择傅里叶变换任务并在任务完成后将变换后的结果返回给区块链,再由区块链将变换后的计算结果发送至本地服务器;
向区块链网络发送向量并发布傅里叶逆变换任务;
计算节点选择傅里叶逆变换任务并在任务完成后将逆变换后的结果返回给区块链,再由区块链将逆变换后的计算结果发送至本地服务器。
3.根据权利要求2所述一种基于区块链的全同态加密算法的安全外包方法,其特征在于,所述欧几里得算法包括多项式乘法运算和幂运算,所述基于区块链网络对数据执行欧几里得算法计算并返回第二计算结果这一步骤,其具体包括:
基于区块链网络对数据执行多项式乘法计算并返回结果;
发布数据和幂运算任务到区块链网络;
计算节点选择幂运算任务并将幂运算后的结果返回给区块链,再由区块链将幂运算后的结果发给本地。
4.根据权利要求3所述一种基于区块链的全同态加密算法的安全外包方法,其特征在于,将验证结果反馈给区块链后,具体还包括:
判断到验证结果正确,本地服务器接受该结果,区块链执行交易;
判断到验证结果不正确,本地服务器不接受该结果,区块链检查计算节点并对计算节点进行相应惩罚。
5.根据权利要求4所述一种基于区块链的全同态加密算法的安全外包方法,其特征在于,所述计算节点选择傅里叶变换任务具体为选择待处理向量并对其进行傅里叶变换任务,所述计算节点选择傅里叶逆变换任务具体为选择待处理向量并对其进行傅里叶逆变换任务,所述计算节点选择幂运算任务具体为选择待处理数据并对其进行幂运算。
6.根据权利要求5所述一种基于区块链的全同态加密算法的安全外包方法,其特征在于,所述在本地服务器生成参数具体包括生成8个随机数、3个随机向量和4个随机矩阵。
7.根据权利要求6所述一种基于区块链的全同态加密算法的安全外包方法,其特征在于,向区块链网络发送的向量具体为从随机矩阵中获得的向量。
8.一种基于区块链的全同态加密算法的安全外包系统,其特征在于,用于执行如权利要求1-7任一项所述的基于区块链的全同态加密算法的安全外包方法,包括:
本地服务器,用于生成参数、发布计算任务、执行普通计算和验证;
区块链网络,用于接收来自本地服务器发布的计算任务、返回计算结果、并由其计算节点选择计算任务、承担计算工作和返回计算结果。
CN202011312426.2A 2020-11-20 2020-11-20 一种基于区块链的全同态加密算法的安全外包方法及系统 Active CN112328699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011312426.2A CN112328699B (zh) 2020-11-20 2020-11-20 一种基于区块链的全同态加密算法的安全外包方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011312426.2A CN112328699B (zh) 2020-11-20 2020-11-20 一种基于区块链的全同态加密算法的安全外包方法及系统

Publications (2)

Publication Number Publication Date
CN112328699A CN112328699A (zh) 2021-02-05
CN112328699B true CN112328699B (zh) 2023-07-28

Family

ID=74321881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011312426.2A Active CN112328699B (zh) 2020-11-20 2020-11-20 一种基于区块链的全同态加密算法的安全外包方法及系统

Country Status (1)

Country Link
CN (1) CN112328699B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055153B (zh) * 2021-03-10 2022-12-23 中国人民大学 一种基于全同态加密算法的数据加密方法、系统和介质
CN117411913B (zh) * 2023-12-15 2024-02-13 徐州医科大学 一种基于幂变换的云平台与健康应用的安全交互方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294698A (zh) * 2017-07-25 2017-10-24 西安电子科技大学 单密文同态计算的全同态加密方法
CN109450625A (zh) * 2018-11-12 2019-03-08 青岛大学 大规模多项式扩展欧几里得算法的安全外包方法
CN109690551A (zh) * 2018-08-24 2019-04-26 区链通网络有限公司 区块链数据保护方法、装置、系统及计算机可读存储介质
CN111277406A (zh) * 2020-01-08 2020-06-12 中山大学 一种基于区块链的安全两方向量优势比较方法
CN111371561A (zh) * 2020-02-27 2020-07-03 华信咨询设计研究院有限公司 基于cp-abe算法的联盟区块链数据访问控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294698A (zh) * 2017-07-25 2017-10-24 西安电子科技大学 单密文同态计算的全同态加密方法
CN109690551A (zh) * 2018-08-24 2019-04-26 区链通网络有限公司 区块链数据保护方法、装置、系统及计算机可读存储介质
CN109450625A (zh) * 2018-11-12 2019-03-08 青岛大学 大规模多项式扩展欧几里得算法的安全外包方法
CN111277406A (zh) * 2020-01-08 2020-06-12 中山大学 一种基于区块链的安全两方向量优势比较方法
CN111371561A (zh) * 2020-02-27 2020-07-03 华信咨询设计研究院有限公司 基于cp-abe算法的联盟区块链数据访问控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种面向医疗大数据安全共享的新型区块链技术;佘维;《小型微型计算机系统》;第第40卷卷(第第7期期);1449-1454页 *

Also Published As

Publication number Publication date
CN112328699A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
CN112989368B (zh) 多方联合进行隐私数据处理的方法及装置
US6587563B1 (en) Cryptographic system using chaotic dynamics
US8331568B2 (en) Efficient distribution of computation in key agreement
CN108712260A (zh) 云环境下保护隐私的多方深度学习计算代理方法
CN112328699B (zh) 一种基于区块链的全同态加密算法的安全外包方法及系统
CN112822005A (zh) 基于同态加密的安全迁移学习系统
CN103795534A (zh) 基于口令的认证方法及用于执行该方法的装置
CN113434878B (zh) 基于联邦学习的建模及应用方法、装置、设备及存储介质
CN114696990B (zh) 基于全同态加密的多方计算方法、系统及相关设备
CN112733163A (zh) 基于离散对数相等性证明的可监管零知识证明方法及装置
CN110599163A (zh) 一种面向区块链交易监管的交易记录外包方法
CN117291258A (zh) 一种基于函数秘密共享的神经网络训练推理方法和系统
CN113965320A (zh) 一种支持快速撤销的密文策略属性加密方法
CN112765570A (zh) 一个支持数据转移的基于身份可证明数据持有方法
CN112995189B (zh) 一种基于隐私保护的公开验证矩阵乘法正确性的方法
CN112737783A (zh) 一种基于sm2椭圆曲线的解密方法及设备
CN113761570B (zh) 一种面向隐私求交的数据交互方法
CN109639409B (zh) 密钥初始化方法、装置、电子设备及计算机可读存储介质
CN109450625B (zh) 大规模多项式扩展欧几里得算法的安全外包方法
US20070101140A1 (en) Generation and validation of diffie-hellman digital signatures
CN112163228B (zh) 一种基于幺模矩阵加密的岭回归安全外包方法及系统
CN113206839B (zh) 一种数据传输中的数据隐藏及补全方法
Rath et al. Privacy-Preserving Outsourcing Algorithm for Solving Large Systems of Linear Equations
CN114257412B (zh) 隐私保护的多方数据协作分箱方法、系统、设备、终端
CN114640468B (zh) 一种基于在线离线属性加密的区块链隐私保护方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Sang Yingpeng

Inventor after: Song Mingyang

Inventor before: Song Mingyang

Inventor before: Sang Yingpeng

CB03 Change of inventor or designer information