CN112326077B - Micro contact force optical fiber sensing probe based on polymer hollow microtube and preparation method thereof - Google Patents
Micro contact force optical fiber sensing probe based on polymer hollow microtube and preparation method thereof Download PDFInfo
- Publication number
- CN112326077B CN112326077B CN202010987569.7A CN202010987569A CN112326077B CN 112326077 B CN112326077 B CN 112326077B CN 202010987569 A CN202010987569 A CN 202010987569A CN 112326077 B CN112326077 B CN 112326077B
- Authority
- CN
- China
- Prior art keywords
- polymer hollow
- optical fiber
- laser
- hollow microtube
- microtube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 60
- 239000013307 optical fiber Substances 0.000 title claims abstract description 44
- 239000000523 sample Substances 0.000 title abstract description 25
- 238000002360 preparation method Methods 0.000 title abstract description 13
- 239000000835 fiber Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 15
- 239000002313 adhesive film Substances 0.000 claims description 14
- 239000000853 adhesive Substances 0.000 claims description 11
- 230000001070 adhesive effect Effects 0.000 claims description 11
- 239000003292 glue Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 238000004140 cleaning Methods 0.000 claims description 5
- 238000004528 spin coating Methods 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000001228 spectrum Methods 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 102000029749 Microtubule Human genes 0.000 description 2
- 108091022875 Microtubule Proteins 0.000 description 2
- 210000004688 microtubule Anatomy 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/242—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种基于聚合物空心微管的微接触力光纤传感探头,包括聚合物空心微管和单模光纤,聚合物空心微管的外周与单模光纤的端面连接。该探头单模光纤出射光在聚合物空心微管内形成法布里珀罗干涉,当有微接触力作用在聚合物空心微管上,聚合物空心微管产生形变,从而对干涉光信号进行调制,通过对单模光纤反射光谱进行干涉条纹波长解调,即可实现超高灵敏微接触力传感探测。聚合物空心微管的制备操作简单,制备效率高,制备成本低,易于量产,并可实现对聚合物空心微管尺寸的精确控制。
The invention discloses a micro-contact force optical fiber sensing probe based on a polymer hollow microtube, which comprises a polymer hollow microtube and a single-mode optical fiber, and the outer periphery of the polymer hollow microtube is connected with the end face of the single-mode optical fiber. The light emitted from the single-mode fiber of the probe forms Fabry-Perot interference in the polymer hollow microtubes. When a micro-contact force acts on the polymer hollow microtubes, the polymer hollow microtubes are deformed, thereby modulating the interference light signal. , through the interference fringe wavelength demodulation of the reflection spectrum of the single-mode fiber, the ultra-sensitive micro-contact force sensing detection can be realized. The preparation operation of the polymer hollow microtube is simple, the preparation efficiency is high, the preparation cost is low, the mass production is easy, and the precise control of the size of the polymer hollow microtube can be realized.
Description
技术领域technical field
本发明涉及光纤传感技术领域,尤其涉及一种基于聚合物空心微管的微接触力光纤传感探头,以及聚合物空心微管的制备方法。The invention relates to the technical field of optical fiber sensing, in particular to a micro-contact force optical fiber sensing probe based on a polymer hollow microtube, and a preparation method of the polymer hollow microtube.
背景技术Background technique
接触力是指两个接触物体相互挤压时在接触区及其附近产生的应力,通过对微小接触力的研究有助于实现精微操控。微接触力传感器被广泛地应用于生物医学、材料化学等领域,并有效地帮助了这些学科取得创新与进展。例如,在微创手术中,微接触力传感器可以对生物组织信息进行感知,经处理分析后传递给医生,使得医生获得真实生物组织的状态,用来判别生物组织是否发生病变;而且还能够有效地优化手术方案,提高手术的安全性。Contact force refers to the stress generated in the contact area and its vicinity when two contact objects are pressed against each other. The study of tiny contact force helps to achieve fine control. Micro-contact force sensors are widely used in biomedicine, material chemistry and other fields, and effectively help these disciplines to achieve innovation and progress. For example, in minimally invasive surgery, the micro-contact force sensor can sense biological tissue information, process and analyze it and transmit it to the doctor, so that the doctor can obtain the state of the real biological tissue and use it to determine whether the biological tissue is diseased; it can also effectively Optimize the surgical plan and improve the safety of the surgery.
光纤传感技术以光纤作为信号调制与传播的介质,通过光纤传感系统感知和探测生活生产环境中的各种信息,抗电磁干扰能力强、体积小、重量轻、易弯曲、低功耗,应用领域广阔,一问世就受到极大重视。Optical fiber sensing technology uses optical fiber as the medium for signal modulation and propagation, and senses and detects various information in the living and production environment through the optical fiber sensing system. The application field is broad, and it has been paid great attention when it came out.
现有技术中,接触力光纤传感探头主要基于光纤布拉格光栅,例如专利申请201880049665.8利用布拉格光栅发射光谱中心波长信息测量接触力。此类传感探头基于石英材料,由于石英材料的杨氏模量较低,导致传感灵敏度较低,不能够对微小接触力进行准确测量。聚合物材料具有更高的杨氏模量,在微小接触力作用下更容易形变,且回弹性好,更适于应用到光纤微接触力探头中,大幅提高探头灵敏度。In the prior art, the contact force optical fiber sensing probe is mainly based on fiber Bragg gratings. For example, the patent application 201880049665.8 uses the information of the center wavelength of the Bragg grating emission spectrum to measure the contact force. This type of sensing probe is based on quartz material. Due to the low Young's modulus of the quartz material, the sensing sensitivity is low, and it cannot accurately measure the tiny contact force. The polymer material has a higher Young's modulus, is easier to deform under the action of a small contact force, and has good resilience, which is more suitable for application in the optical fiber micro-contact force probe, which greatly improves the sensitivity of the probe.
另外,目前的聚合物微结构的制备主要基于飞秒激光双光子聚合技术,例如专利申请201410375257.5利用高倍聚焦后的飞秒激光对未聚合的紫外固化胶进行三维逐点扫描,设备成本高,制备效率低、难度大,无法真正进行量产与产业化推广。In addition, the current preparation of polymer microstructures is mainly based on femtosecond laser two-photon polymerization technology. For example, patent application 201410375257.5 uses a high-power focused femtosecond laser to perform three-dimensional point-by-point scanning of unpolymerized UV-curable adhesives. The equipment cost is high, and the preparation It is inefficient and difficult to carry out mass production and industrialization promotion.
发明内容SUMMARY OF THE INVENTION
为解决背景技术中存在的技术问题,本发明提出一种基于聚合物空心微管的微接触力光纤传感探头,以及聚合物空心微管的制备方法。In order to solve the technical problems existing in the background art, the present invention provides a micro-contact force optical fiber sensing probe based on polymer hollow microtubes, and a preparation method of the polymer hollow microtubes.
本发明提出了一种聚合物空心微管的微接触力光纤传感探头,包括聚合物空心微管和单模光纤,聚合物空心微管的外周与单模光纤的纤芯端面连接。The invention provides a micro-contact force optical fiber sensing probe of a polymer hollow microtube, which includes a polymer hollow microtube and a single-mode optical fiber.
优选地,聚合物空心微管的外周与单模光纤的纤芯端面通过紫外固化胶连接。Preferably, the outer periphery of the polymer hollow microtube and the end face of the core of the single-mode optical fiber are connected by ultraviolet curing glue.
优选地,聚合物空心微管的中心轴线与单模光纤纤芯的中心轴线垂直相交;优选地,聚合物空心微管的中心轴线与单模光纤的纤芯端面平行。Preferably, the central axis of the polymer hollow microtube intersects perpendicularly with the central axis of the single-mode optical fiber core; preferably, the central axis of the polymer hollow microtube is parallel to the core end face of the single-mode optical fiber.
优选地,聚合物空心微管采用紫外固化胶制成;优选地,紫外固化胶的型号为NOA65。Preferably, the polymer hollow microtubes are made of UV-curable glue; preferably, the model of the UV-curable glue is NOA65.
优选地,聚合物空心微管的内径为80-100μm,外径为130-150μm,长度为130-150μm。Preferably, the polymer hollow microtubes have an inner diameter of 80-100 μm, an outer diameter of 130-150 μm, and a length of 130-150 μm.
本发明提出了一种聚合物空心微管的制备方法,包括:The present invention proposes a preparation method of polymer hollow microtubes, comprising:
S1,在基底表面滴紫外固化胶,通过旋涂处理,形成紫外固化胶薄膜;S1, drop UV-curable adhesive on the surface of the substrate, and form a UV-curable adhesive film by spin coating;
S2,设置多模光纤和紫外激光器,紫外激光器产生的激光经聚焦照射到多模光纤入射端端面,通过调节激光入射角度,控制多模光纤出射端射出环形激光光束;S2, set up a multi-mode fiber and an ultraviolet laser, the laser generated by the ultraviolet laser is focused and irradiated to the end face of the incident end of the multi-mode fiber, and the output end of the multi-mode fiber is controlled to emit a ring laser beam by adjusting the incident angle of the laser;
S3,将多模光纤的出射端垂直插入紫外固化胶薄膜内并与基底保持预设距离,打开激光快门,环形激光光束对紫外固化胶薄膜进行曝光,关闭激光快门,将多模光纤撤走;S3, insert the exit end of the multi-mode optical fiber into the UV-curable adhesive film vertically and keep a preset distance from the substrate, open the laser shutter, expose the UV-curable adhesive film with a ring laser beam, close the laser shutter, and remove the multi-mode optical fiber;
S4,清洗分离,基底表面已经曝光的紫外固化胶即形成聚合物空心微管。S4, cleaning and separation, the exposed UV-curable glue on the surface of the substrate forms polymer hollow microtubes.
优选地,S1中,紫外固化胶的型号为NOA65;优选地,紫外固化胶薄膜的厚度为150-200μm。Preferably, in S1, the model of the UV-curable adhesive is NOA65; preferably, the thickness of the UV-curable adhesive film is 150-200 μm.
优选地,S2中,多模光纤的长度为1-3m,纤芯直径为100-105μm。Preferably, in S2, the length of the multimode fiber is 1-3 m, and the core diameter is 100-105 μm.
优选地,S2中,紫外激光器产生的激光波长为385-405nm,光斑尺寸为4-6mm;优选地,紫外激光器产生的激光经透镜进行聚焦;优选地,透镜的放大倍率为40,透镜的数值孔径为0.65。Preferably, in S2, the wavelength of the laser generated by the ultraviolet laser is 385-405 nm, and the spot size is 4-6 mm; preferably, the laser generated by the ultraviolet laser is focused by a lens; preferably, the magnification of the lens is 40, and the numerical value of the lens The aperture is 0.65.
优选地,S4具体包括:通过显影液对紫外固化胶薄膜进行清洗,去除基底表面未曝光的紫外固化胶,已经曝光的紫外固化胶即形成聚合物空心微管,用无水乙醇将聚合物空心微管从基底分离。Preferably, S4 specifically includes: cleaning the UV-curable adhesive film with a developing solution, removing the unexposed UV-curable adhesive on the surface of the substrate, and forming the polymer hollow microtubes from the exposed UV-curable adhesive; Microtubules are isolated from the substrate.
本发明提出的一种基于聚合物空心微管的微接触力光纤传感探头,该探头单模光纤出射光在聚合物空心微管内形成法布里珀罗干涉,当有微接触力作用在聚合物空心微管上,聚合物空心微管产生形变,从而对干涉光信号进行调制,通过对单模光纤反射光谱进行干涉条纹波长解调,即可实现超高灵敏微接触力传感探测。另外,本发明还提出了一种快速高效、可以量产的聚合物空心微管的制备方法,操作简单,制备效率高,制备成本低,易于量产,并可实现对聚合物空心微管尺寸的精确控制。The invention proposes a micro-contact force optical fiber sensing probe based on a polymer hollow micro-tube. The single-mode optical fiber of the probe forms Fabry-Perot interference in the polymer hollow micro-tube. When a micro-contact force acts on the polymerization On the material hollow microtube, the polymer hollow microtube is deformed, thereby modulating the interference light signal. By demodulating the interference fringe wavelength of the single-mode fiber reflection spectrum, ultra-sensitive micro-contact force sensing detection can be realized. In addition, the present invention also proposes a method for preparing polymer hollow microtubes that is fast, efficient and can be mass-produced. precise control.
附图说明Description of drawings
图1为本发明实施例提出的一种基于聚合物空心微管的微接触力光纤传感探头的结构示意图。FIG. 1 is a schematic structural diagram of a micro-contact force optical fiber sensing probe based on a polymer hollow microtube according to an embodiment of the present invention.
图2为图1中传感探头的组装过程示意图。FIG. 2 is a schematic diagram of the assembly process of the sensing probe in FIG. 1 .
图3为本发明实施例提出的一种聚合物空心微管制备的装置示意图。FIG. 3 is a schematic diagram of a device for preparing a polymer hollow microtube according to an embodiment of the present invention.
具体实施方式Detailed ways
如图1-2所示,图1为本发明实施例提出的一种基于聚合物空心微管的微接触力光纤传感探头的结构示意图,图2为图1中传感探头的组装过程示意图。As shown in Figures 1-2, Figure 1 is a schematic structural diagram of a micro-contact force optical fiber sensing probe based on polymer hollow microtubes proposed in an embodiment of the present invention, and Figure 2 is a schematic diagram of the assembly process of the sensing probe in Figure 1 .
参照图1,本发明提出的一种电缆基于聚合物空心微管的微接触力光纤传感探头,包括聚合物空心微管1和单模光纤2,聚合物空心微管1的外周通过紫外固化胶3与单模光纤2的纤芯端面连接。Referring to FIG. 1, a micro-contact force optical fiber sensing probe based on a polymer hollow microtube cable proposed by the present invention includes a polymer
参照图2,在单模光纤2的纤芯端面滴加紫外固化胶3,再将聚合物空心微管1放置在单模光纤2的纤芯端面,通过紫外固化胶3将聚合物空心微管1连接在单模光纤2的纤芯端面,形成微接触力光纤传感探头。其中,紫外固化胶的型号可以选择NOA65。在设置过程中,聚合物空心微管1的中心轴线与单模光纤2的中心轴线垂直相交,聚合物空心微管1的中心轴线与单模光纤2的端面平行。Referring to FIG. 2 , drop the UV-
在上述实施例中,聚合物空心微管1采用紫外固化胶制成,紫外固化胶的型号可以选择NOA65。In the above embodiment, the polymer
在具体设置过程中,聚合物空心微管1内径为80-100μm,外径为130-150μm,高度为130-150μm。当聚合物空心微管1尺寸过大时,影响了干涉光谱质量,不利于光谱信号解调。当聚合物空心微管1尺寸过小时,不利于聚合物空心微管1和单模光纤2的集成。因此聚合物空心微管1的尺寸要略微大于单模光纤2直径尺寸是非常合适的。In the specific setting process, the inner diameter of the polymer
在使用上述探头时,利用光纤环形器将该探头与宽光谱光源和光谱仪连接,该探头单模光纤的出射光,经过聚合物空心微管1的两个壁面分别反射并重新回到单模光纤2中,形成法布里珀罗干涉,在光谱仪记录的反射光谱中可以观测到明显的干涉条纹。当有轴向的微接触力施加在该探头的聚合物空心微管1上,聚合物空心微管1产生形变,对反射光信号的干涉相互进行调制,反射光谱中的干涉条纹产生移动,通过对干涉条纹中心波长移动进行解调,可以实现对微接触力的超高灵敏探测。When the above probe is used, the probe is connected to a wide-spectrum light source and a spectrometer using a fiber optic circulator. The light emitted from the single-mode fiber of the probe is reflected by the two walls of the polymer
本发明实施例还提出了一种聚合物空心微管的制备方法,包括:The embodiment of the present invention also proposes a preparation method of a polymer hollow microtube, comprising:
S1,选干净的载玻片13作为基底,在载玻片13中心滴加一滴紫外固化胶,通过旋涂处理,在载玻片上形成紫外固化胶薄膜14;紫外固化胶的型号采用NOA65,薄膜的厚度为150-200μm。S1, select a
S2,设置多模光纤和紫外激光器。S2, set up multimode fiber and UV laser.
选一根多模光纤8,长度为1-3m,纤芯直径为100-105μm。多模光纤的长度太长增加了紫外光的损耗,太短则使得多个光纤夹具固定多模光纤时,多模光纤产生较大弯折从而增加了紫外光损耗。Select a multimode fiber 8 with a length of 1-3 m and a core diameter of 100-105 μm. If the length of the multimode fiber is too long, it will increase the loss of ultraviolet light, and if it is too short, the multimode fiber will be greatly bent when multiple fiber clamps fix the multimode fiber, which will increase the loss of ultraviolet light.
将多模光纤8两端切平,多模光纤8的入射端用光纤夹具水平固定,多模光纤出射端用光纤夹具9固定。透镜7固定在多轴调整平台12上,紫外激光器产生的激光5经快门6、透镜7聚焦照射到光纤入射端的端面,通过调节多轴调整平台12可以改变激光经过透镜7后的焦点位置和光束角度。紫外激光器产生的激光波长为385-405nm,光斑尺寸为4-6mm;紫外激光器产生的激光经聚焦,透镜放大倍率为40,数值孔径为0.65。Cut both ends of the multimode optical fiber 8 flat, the incident end of the multimode optical fiber 8 is fixed horizontally with an optical fiber clamp, and the outgoing end of the multimode optical fiber is fixed with an optical fiber clamp 9 . The
在不同的入射角度条件下,多模光纤出射端可以出射发散状的柱形光束或环形光束,以环形激光光束为加工要求;当多模光纤出射端出射环形光束时,通过微调多轴调整平台12还可以改变环形光束的空间尺寸。根据设计要求完成环形激光光束及其空间尺寸,关闭快门4,设置完成。Under different incident angle conditions, the multimode fiber exit end can emit a diverging cylindrical beam or a ring beam, and the ring laser beam is the processing requirement; when the multimode fiber exit end emits a ring beam, the multi-axis adjustment platform is adjusted by fine-
S3,将多模光纤的出射端垂直插入载玻片13上的紫外固化胶薄膜14内,并与载玻片13保持预设距离,打开激光快门6,环形激光光束对紫外固化胶薄膜14进行曝光,之后关闭激光快门6,将多模光纤撤走;S3, vertically insert the outgoing end of the multimode optical fiber into the UV-
S4,清洗分离。通过显影液对紫外固化胶薄膜14进行清洗,去除基底表面未曝光的紫外固化胶,已经曝光的紫外固化胶即形成聚合物空心微管,用无水乙醇将聚合物空心微管从载玻片13分离。分离出的聚合物空心微管需要在紫外光下持续曝光两个小时以上,使其结构完全固化。S4, cleaning and separation. The UV-
在本实施例中,聚合物空心微管的制备设备成本低廉、流程操作简单,聚合物空心微管的制备一次成型,制备过程高效可重复,极大降低了基于聚合物空心微管的微接触力光纤传感探头的成本,易于光纤传感探头的量产。此外,可以通过微调多轴调整平台改变激光入射角度,从而制备出不用尺寸的聚合物空心微管;将不同尺寸的聚合物空心微管集成到微接触力光纤传感探头上,可以获得不同的传感灵敏度,适用于具有不同灵敏度要求的各种应用场景。In this embodiment, the preparation equipment of polymer hollow microtubes has low cost and simple process operation. The preparation of polymer hollow microtubes is formed in one time, and the preparation process is efficient and repeatable, which greatly reduces the microcontact based on polymer hollow microtubes. The cost of the force fiber optic sensing probe is easy to mass-produce the fiber optic sensing probe. In addition, the laser incident angle can be changed by fine-tuning the multi-axis adjustment platform, thereby preparing polymer hollow microtubes of different sizes; integrating polymer hollow microtubes of different sizes into the micro-contact force fiber sensing probe can obtain different Sensing sensitivity, suitable for various application scenarios with different sensitivity requirements.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. The equivalent replacement or change of the inventive concept thereof shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010987569.7A CN112326077B (en) | 2020-09-18 | 2020-09-18 | Micro contact force optical fiber sensing probe based on polymer hollow microtube and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010987569.7A CN112326077B (en) | 2020-09-18 | 2020-09-18 | Micro contact force optical fiber sensing probe based on polymer hollow microtube and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112326077A CN112326077A (en) | 2021-02-05 |
CN112326077B true CN112326077B (en) | 2022-05-06 |
Family
ID=74304465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010987569.7A Active CN112326077B (en) | 2020-09-18 | 2020-09-18 | Micro contact force optical fiber sensing probe based on polymer hollow microtube and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112326077B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106052903A (en) * | 2016-08-24 | 2016-10-26 | 哈尔滨工业大学(威海) | Ultra-small-size optical fiber temperature sensing probe and preparation method thereof |
CN110987229A (en) * | 2019-12-20 | 2020-04-10 | 西安工业大学 | An optical fiber end face Fa-Per cavity temperature sensor |
CN111065432A (en) * | 2017-08-02 | 2020-04-24 | 财团法人峨山社会福祉财团 | Catheter and catheter system using FBG fiber to induce shape and contact force |
CN111077113A (en) * | 2019-12-16 | 2020-04-28 | 深圳大学 | Optical fiber end face microcantilever beam sensor and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7602498B2 (en) * | 2001-10-19 | 2009-10-13 | Invivosense Asa | Optical sensing of measurands |
-
2020
- 2020-09-18 CN CN202010987569.7A patent/CN112326077B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106052903A (en) * | 2016-08-24 | 2016-10-26 | 哈尔滨工业大学(威海) | Ultra-small-size optical fiber temperature sensing probe and preparation method thereof |
CN111065432A (en) * | 2017-08-02 | 2020-04-24 | 财团法人峨山社会福祉财团 | Catheter and catheter system using FBG fiber to induce shape and contact force |
CN111077113A (en) * | 2019-12-16 | 2020-04-28 | 深圳大学 | Optical fiber end face microcantilever beam sensor and preparation method thereof |
CN110987229A (en) * | 2019-12-20 | 2020-04-10 | 西安工业大学 | An optical fiber end face Fa-Per cavity temperature sensor |
Non-Patent Citations (1)
Title |
---|
Measurement of milli-Newton axial force and temperature using a hybrid microsilica sphere Fabry–Perot sensor;Omid R等;《Optics Letters》;20181101;第43卷(第21期);正文第3-5段及图1 * |
Also Published As
Publication number | Publication date |
---|---|
CN112326077A (en) | 2021-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kostovski et al. | The optical fiber tip: an inherently light‐coupled microscopic platform for micro‐and nanotechnologies | |
JP4228476B2 (en) | Optical head device | |
JP6227652B2 (en) | System, method, and computer-accessible medium for fabricating a miniature endoscope using soft lithography | |
Xiong et al. | Optical fiber integrated functional micro-/nanostructure induced by two-photon polymerization | |
CN108292016A (en) | Method and apparatus for generating microstructure on optical fiber | |
JP2010224548A (en) | Integrated simulation fabrication and characterization of micro and nano optical element | |
CN101832924A (en) | Refractivity sensor and preparation method thereof based on micro-core optical fiber Bragg grating | |
CN101266319A (en) | Ultraviolet laser point-by-point writing method of long period fiber grating | |
CN112965171B (en) | Fabrication method of fiber collimator | |
JPH03288102A (en) | Manufacture of light beam shape converting element | |
CN112326077B (en) | Micro contact force optical fiber sensing probe based on polymer hollow microtube and preparation method thereof | |
CN101285909A (en) | Device for using continuous CO2 laser and optical fibre array for making long period optical fibre grating | |
CN1280303A (en) | Equipment and method for producing optic fibre grating | |
JP2013527934A (en) | Method of manufacturing a network of microlenses at the end of a bundle of optical fibers, and associated optical fibers and uses | |
CN111077113A (en) | Optical fiber end face microcantilever beam sensor and preparation method thereof | |
Zvagelsky et al. | In-situ Quantitative Phase Imaging during Multi-photon Laser Printing | |
US10610105B2 (en) | Optical probe including wavefront modulator for enhancing lateral resolution and focal depth | |
Hsieh et al. | Realization and characterization of SU-8 micro cylindrical lenses for in-plane micro optical systems | |
JP7324782B2 (en) | System for monitoring lattice formation | |
WO2021174476A1 (en) | Focusing vortex beam generator and manufacturing method therefor | |
CN113359308A (en) | Focused vortex light generator and preparation method thereof | |
CN214011572U (en) | A Fiber Optic Sensor Based on Polymer Whispering Gallery Mode Resonator | |
CN211785115U (en) | Optical fiber end surface micro-cantilever sensor | |
CN112964181A (en) | Optical fiber Bragg grating position detection device and measurement method thereof | |
CN113108938A (en) | Optical fiber temperature sensing probe based on parallel polymer microcavity and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |