CN112308626A - 基于区块链和人工智能的广告推送方法及大数据挖掘中心 - Google Patents

基于区块链和人工智能的广告推送方法及大数据挖掘中心 Download PDF

Info

Publication number
CN112308626A
CN112308626A CN202011253976.1A CN202011253976A CN112308626A CN 112308626 A CN112308626 A CN 112308626A CN 202011253976 A CN202011253976 A CN 202011253976A CN 112308626 A CN112308626 A CN 112308626A
Authority
CN
China
Prior art keywords
advertisement
interest point
information
interest
crowd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011253976.1A
Other languages
English (en)
Other versions
CN112308626B (zh
Inventor
陈炜炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nongfu Shop Development Group Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202011253976.1A priority Critical patent/CN112308626B/zh
Priority to CN202110381334.8A priority patent/CN113077286A/zh
Priority to CN202110381264.6A priority patent/CN113077285A/zh
Publication of CN112308626A publication Critical patent/CN112308626A/zh
Application granted granted Critical
Publication of CN112308626B publication Critical patent/CN112308626B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0242Determining effectiveness of advertisements
    • G06Q30/0244Optimization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0254Targeted advertisements based on statistics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0255Targeted advertisements based on user history
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0269Targeted advertisements based on user profile or attribute

Landscapes

  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请实施例提供一种基于区块链和人工智能的广告推送方法及大数据挖掘中心,能够根据每个人群兴趣点所对应的人群兴趣点信息,生成每个人群兴趣点所对应的广告推送优化信息,然后对每个人群兴趣点所对应的广告策略起始信息进行处理,得到每个人群兴趣点所对应的广告策略确认信息,由此生成通过区块链进行广告推送的广告推送控制进程。采用上述方式,基于多个人群兴趣点并行处理来自不同维度的广告策略信息,进而在多广告策略场景下,可通过广告推送优化信息对不同维度上的广告策略信息进行广告投放策略节点强化或者优化,从而能够实时优化广告策略信息,由此提升广告策略检测过程中的配置信息准确度,有利于提升后续的广告策略处理效果。

Description

基于区块链和人工智能的广告推送方法及大数据挖掘中心
技术领域
本申请涉及基于人工智能的广告推送技术领域,具体而言,涉及一种基于区块链和人工智能的广告推送方法及大数据挖掘中心。
背景技术
在人们的日常生活中,各种广告无处不在,广告市场正在由大众行销转向分众行销,以及产品与消费者不断被细分化的时代,传统媒体的局限性已经无法有效的区分产品的目标受众群。
对于进行广告厂商而言,其广告策略涉及到大量的数据优化,如何在多广告策略场景下,实时优化广告策略信息,从而提升广告策略检测过程中的配置信息准确度,提升后续的广告策略处理效果,是本领域亟待解决的技术问题。
发明内容
为了至少克服现有技术中的上述不足,本申请的目的在于提供一种基于区块链和人工智能的广告推送方法及大数据挖掘中心,通过获取预设数量个人群兴趣点内每个人群兴趣点所对应的人群兴趣点信息,根据每个人群兴趣点所对应的人群兴趣点信息,生成每个人群兴趣点所对应的广告推送优化信息,然后采用每个人群兴趣点所对应的广告推送优化信息,对每个人群兴趣点所对应的广告策略起始信息进行处理,得到每个人群兴趣点所对应的广告策略确认信息,最后根据每个人群兴趣点所对应的广告策略确认信息,生成通过区块链进行广告推送的广告推送控制进程。采用上述方式,基于多个人群兴趣点并行处理来自不同维度的广告策略信息,进而在多广告策略场景下,可通过广告推送优化信息对不同维度上的广告策略信息进行广告投放策略节点强化或者广告投放策略节点优化,从而能够实时优化广告策略信息,由此提升广告策略检测过程中的配置信息准确度,有利于提升后续的广告策略处理效果。
第一方面,本申请提供一种基于区块链和人工智能的广告推送方法,应用于大数据挖掘中心,所述大数据挖掘中心与多个广告服务终端通信连接,所述方法包括:
获取目标广告推送任务的广告推送反馈信息对应的访问者兴趣数据,并基于所述访问者兴趣数据进行人群兴趣点检索;
获取预设数量个人群兴趣点内每个人群兴趣点所对应的人群兴趣点信息,其中,所述人群兴趣点信息包括人群兴趣点覆盖标签、兴趣点广告标签以及访问属性信息,所述人群兴趣点覆盖标签用于人群兴趣点所覆盖的人群标签,所述兴趣点广告标签用于指示所述人群兴趣点的广告关注内容,所述访问属性信息用于指示所述人群兴趣点内的广告访问情况;
根据所述每个人群兴趣点所对应的人群兴趣点信息,生成所述每个人群兴趣点所对应的广告推送优化信息,其中,所述广告推送优化信息用于对广告策略起始信息进行广告投放策略节点优化处理或广告投放策略节点强化处理,所述广告推送优化信息与所述人群兴趣点具有一一对应的关系;
采用所述每个人群兴趣点所对应的广告推送优化信息,对所述每个人群兴趣点所对应的广告策略起始信息进行处理,得到所述每个人群兴趣点所对应的广告策略确认信息,并根据所述每个人群兴趣点所对应的广告策略确认信息,生成通过区块链进行广告推送的广告推送控制进程,其中,所述广告推送优化信息、所述广告策略起始信息以及所述广告策略确认信息具有一一对应的关系。
在第一方面的一种可能的实现方式中,所述获取预设数量个人群兴趣点内每个人群兴趣点所对应的人群兴趣点信息,包括:
对所述预设数量个人群兴趣点内的所述每个人群兴趣点进行检测,得到所述每个人群兴趣点所对应的广告访问检测结果;
根据所述每个人群兴趣点所对应的广告访问检测结果确定所述每个人群兴趣点所对应的访问属性信息;
根据所述每个人群兴趣点所对应的广告访问检测结果确定所述每个人群兴趣点所对应的访问迁移关系信息;
获取所述每个人群兴趣点所对应的人群兴趣点覆盖标签以及所述每个人群兴趣点所对应的兴趣点广告标签;
根据所述每个人群兴趣点所对应的访问属性信息、所述每个人群兴趣点所对应的访问迁移关系信息、所述每个人群兴趣点所对应的人群兴趣点覆盖标签以及所述每个人群兴趣点所对应的兴趣点广告标签,生成所述每个人群兴趣点所对应的人群兴趣点信息。
在第一方面的一种可能的实现方式中,所述根据所述每个人群兴趣点所对应的广告访问检测结果确定所述每个人群兴趣点所对应的访问迁移关系信息,包括:
针对于所述预设数量个人群兴趣点中的任意一个人群兴趣点,若所述广告访问检测结果为人群兴趣点内存在具有访问节点迁移的访问对象信息,则将所述访问对象信息在人群兴趣点内的访问节点迁移过程的信息确定为所述每个人群兴趣点所对应的访问迁移关系信息。
在第一方面的一种可能的实现方式中,所述根据所述每个人群兴趣点所对应的人群兴趣点信息,生成所述每个人群兴趣点所对应的广告推送优化信息,包括:
从预先配置的所述人群兴趣点覆盖标签对应的广告推送策略需求信息中获取与所述兴趣点广告标签对应的关系实体信息;
根据所述访问属性信息对所述关系实体信息进行特征提取,得到所述关系实体信息分别匹配于所述访问属性信息的推送优化情景信息;
基于所述关系实体信息的推送优化情景信息确定全局广告推送优化信息;
根据所述访问迁移关系信息在所述关系实体信息中确定访问迁移关系实体信息,并确定所述访问迁移关系实体信息对应的推送优化情景信息;
对所述全局广告推送优化信息和所述访问迁移关系实体信息对应的推送优化情景信息进行融合,得到所述每个人群兴趣点所对应的广告推送优化信息,所述广告推送优化信息中包括有需要对所述广告策略起始信息进行广告投放策略节点优化处理或广告投放策略节点强化处理的广告投放策略节点;
所述访问属性信息包括广告访问热力图,所述广告访问热力图中包括多个热力单元,以及连接两个热力单元之间的热力关键词特征,所述热力关键词特征包括热力关键词特征的热力关键词标签和热力关键词词向量,所述热力单元包括关系实体热力节点和热点图谱;
所述根据所述访问属性信息对所述关系实体信息进行特征提取,得到所述关系实体信息分别匹配于所述访问属性信息的推送优化情景信息,包括:
在所述广告访问热力图中确定所述关系实体信息对应的关系实体热力节点;
根据所述热力关键词标签在所述广告访问热力图的多个热力单元中确定所述关系实体热力节点的投放热力关键词参数、优化热力关键词参数;
根据连接所述关系实体热力节点和所述投放热力关键词参数之间的热力关键词特征的热力关键词词向量计算所述投放热力关键词参数对所述关系实体信息所产生的第一推送优化情景;
根据连接所述关系实体热力节点和所述投放热力关键词参数之间的热力关键词特征的热力关键词词向量计算所述投放热力关键词参数对所述关系实体信息所产生的第二推送优化情景;
根据所述第一推送优化情景和第二推送优化情景确定所述关系实体信息的推送优化情景信息;
所述采用所述每个人群兴趣点所对应的广告推送优化信息,对所述每个人群兴趣点所对应的广告策略起始信息进行处理,得到所述每个人群兴趣点所对应的广告策略确认信息,包括:
根据所述广告推送优化信息中包括有需要对所述广告策略起始信息进行广告投放策略节点优化处理或广告投放策略节点强化处理的广告投放策略节点,获取需要对所述广告策略起始信息进行广告投放策略节点优化处理的第一广告投放策略节点,以及需要对所述广告策略起始信息进行广告投放策略节点强化处理的第二广告投放策略节点;
根据所述广告推送优化信息中对应的优化策略信息对所述第一广告投放策略节点进行优化处理,以及根据所述广告推送优化信息中对应的强化策略信息对所述第二广告投放策略节点进行强化处理。
在第一方面的一种可能的实现方式中,所述根据所述每个人群兴趣点所对应的广告策略确认信息,生成通过区块链进行广告推送的广告推送控制进程,包括:
根据所述每个人群兴趣点所对应的广告策略确认信息,确定所述每个人群兴趣点所对应的广告推送偏好意图矩阵,其中,所述广告推送偏好意图矩阵为所述广告策略确认信息在每个广告策略单元上的广告推送偏好意图矩阵;
根据所述每个人群兴趣点所对应的广告推送偏好意图矩阵,确定所述每个人群兴趣点所对应的广告推送控制链接文件的推送控制信息;
基于所述每个人群兴趣点所对应的广告推送控制链接文件的推送控制信息对当前的广告推送控制链接文件进行重定向配置,得到所述每个人群兴趣点所对应的广告推送控制进程。
在第一方面的一种可能的实现方式中,所述基于所述每个人群兴趣点所对应的广告推送控制链接文件的推送控制信息对当前的广告推送控制链接文件进行重定向配置,得到所述每个人群兴趣点所对应的广告推送控制进程,包括:
获取所述每个人群兴趣点所对应的广告推送控制链接文件的推送控制信息针对当前的广告推送控制链接文件中每个链接跳转信息的推送控制关联信息;
基于当前的广告推送控制链接文件中每个链接跳转信息的推送控制关联信息对当前的广告推送控制链接文件进行重定向配置,得到所述每个人群兴趣点所对应的广告推送控制进程。
在第一方面的一种可能的实现方式中,所述获取目标广告推送任务的广告推送反馈信息对应的访问者兴趣数据,并基于所述访问者兴趣数据进行人群兴趣点检索的步骤,包括:
获取针对所述广告服务终端的每个广告推送片段对应的广告控制节点信息,并基于所述广告控制节点信息对目标广告推送任务的广告推送反馈信息进行广告引流搜寻,获得对应的广告引流搜寻片段;
基于所述广告引流搜寻片段获取对应的广告引流跳转子图,基于所述广告引流跳转子图,确定多个广告引流路径的用户兴趣学习信息;
将所述用户兴趣学习信息分别输入兴趣点检索模型中的多个兴趣点检索单元,通过所述兴趣点检索单元进行至少一次广告关注内容匹配得到至少一个广告关注内容;其中,通过所述兴趣点检索单元进行的至少一次广告关注内容匹配是基于关联大数据检索分区进行的,所述关联大数据检索分区关联至所述多个兴趣点检索单元的其它兴趣点检索单元提取的广告关注内容,其中,所述兴趣点检索单元基于人工智能网络和对应的训练样本训练获得,所述训练样本包括用户兴趣学习信息样本和对应的广告关注内容标签;
对所述多个兴趣点检索单元输出的多个广告关注内容进行兴趣点检索,得到兴趣点检索内容,基于所述兴趣点检索内容,得到所述广告引流跳转子图在所述广告推送反馈信息下的访问者兴趣数据,并基于所述广告引流跳转子图在所述广告推送反馈信息下的访问者兴趣数据进行人群兴趣点检索。
在第一方面的一种可能的实现方式中,所述方法还包括:
将所述多个兴趣点检索单元的其中一个兴趣点检索单元作为目标兴趣点检索单元;
获取所述目标兴趣点检索单元提取的第一广告关注内容,以及所述多个兴趣点检索单元中除所述目标兴趣点检索单元之外的其它兴趣点检索单元提取的第二广告关注内容;
当所述第二广告关注内容的广告引流路径不匹配所述第一广告关注内容的广告引流路径时,对所述第二广告关注内容进行兴趣度分布标记,兴趣度分布标记后的所述第二广告关注内容的广告引流路径与所述第一广告关注内容的广告引流路径相同;
通过所述目标兴趣点检索单元,对兴趣度分布标记后的所述第二广告关注内容和所述第一广告关注内容的内容匹配信息进行广告关注内容匹配;
其中,所述第二广告关注内容的数量为至少两个;所述方法还包括:
当同时存在广告引流路径不匹配所述第一广告关注内容的广告引流路径的第二广告关注内容,以及广告引流路径匹配所述第一广告关注内容的广告引流路径的第二广告关注内容时,对广告引流路径不匹配所述第一广告关注内容的广告引流路径的第二广告关注内容进行兴趣度分布标记,对广告引流路径匹配所述第一广告关注内容的广告引流路径的第二广告关注内容进行逆向兴趣度分布标记,兴趣度分布标记后的所述第二广告关注内容的广告引流路径、逆向兴趣度分布标记后的所述第二广告关注内容的广告引流路径均与所述第一广告关注内容的广告引流路径相同;
通过所述目标兴趣点检索单元,对兴趣度分布标记后的所述第二广告关注内容、逆向兴趣度分布标记后的所述第二广告关注内容以及所述第一广告关注内容的内容匹配信息进行广告关注内容匹配;
其中,所述方法还包括:
当所述第二广告关注内容的广告引流路径匹配所述第一广告关注内容的广告引流路径时,对所述第二广告关注内容进行逆向兴趣度分布标记,逆向兴趣度分布标记后的所述第二广告关注内容的广告引流路径与所述第一广告关注内容的广告引流路径相同;
通过所述目标兴趣点检索单元,对逆向兴趣度分布标记后的所述第二广告关注内容和所述第一广告关注内容的内容匹配信息进行广告关注内容匹配。
在第一方面的一种可能的实现方式中,所述用户兴趣学习信息至少包括第一用户兴趣学习信息、第二用户兴趣学习信息和第三用户兴趣学习信息,所述兴趣点检索模型包括第一兴趣点检索单元、第二兴趣点检索单元和第三兴趣点检索单元,其中,所述第一用户兴趣学习信息、第二用户兴趣学习信息和第三用户兴趣学习信息分别对应兴趣覆盖学习片段、兴趣数据源片段以及兴趣输出源片段的用户兴趣学习信息,所述第一兴趣点检索单元、第二兴趣点检索单元和第三兴趣点检索单元分别对应兴趣覆盖学习片段、兴趣数据源片段以及兴趣输出源片段的兴趣点检索单元;
所述将所述用户兴趣学习信息分别输入兴趣点检索模型中的多个兴趣点检索单元,通过所述兴趣点检索单元进行至少一次广告关注内容匹配得到至少一个广告关注内容,包括:
将所述第一用户兴趣学习信息输入第一兴趣点检索单元进行第一兴趣点检索层的广告关注内容匹配,得到所述第一兴趣点检索单元在第一兴趣点检索层提取的广告关注内容;
对所述第一兴趣点检索单元在第一兴趣点检索层提取的广告关注内容和所述第二用户兴趣学习信息进行兴趣点检索,得到所述第二兴趣点检索单元在第二兴趣点检索层相应的兴趣点检索元素;
获取所述第一兴趣点检索单元在第一兴趣点检索层提取的广告关注内容,用作所述第一兴趣点检索单元在第二兴趣点检索层相应的兴趣点检索元素;
通过所述第一兴趣点检索单元,对所述第一兴趣点检索单元在第二兴趣点检索层相应的兴趣点检索元素进行第二兴趣点检索层首次广告关注内容匹配,得到所述第一兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容;
通过所述第二兴趣点检索单元,对所述第二兴趣点检索单元在第二兴趣点检索层相应的兴趣点检索元素进行第二兴趣点检索层首次广告关注内容匹配,得到所述第二兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容;
将所述第一兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容传递给所述第二兴趣点检索单元,并将所述第二兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容传递给所述第一兴趣点检索单元;
通过所述第一兴趣点检索单元对所述第一兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容和所述第二兴趣点检索单元传递的广告关注内容进行兴趣点检索,并对内容匹配信息进行广告关注内容匹配;
通过所述第二兴趣点检索单元对所述第二兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容和所述第一兴趣点检索单元传递的广告关注内容进行兴趣点检索,并对内容匹配信息进行广告关注内容匹配;
对所述第一兴趣点检索单元在第二兴趣点检索层提取的广告关注内容、所述第二兴趣点检索单元在第二兴趣点检索层提取的广告关注内容和所述第三用户兴趣学习信息进行兴趣点检索,得到所述第三兴趣点检索单元在第三兴趣点检索层相应的兴趣点检索元素;
通过所述第一兴趣点检索单元基于所述第一兴趣点检索单元在第二兴趣点检索层提取的广告关注内容进行第三兴趣点检索层的广告关注内容匹配,通过所述第二兴趣点检索单元基于所述第二兴趣点检索单元在第二兴趣点检索层提取的广告关注内容进行第三兴趣点检索层的广告关注内容匹配,并通过所述第三兴趣点检索单元对所述第三兴趣点检索单元在第三兴趣点检索层相应的兴趣点检索元素进行第三兴趣点检索层的广告关注内容匹配。
第二方面,本申请实施例还提供一种基于区块链和人工智能的广告推送装置,应用于大数据挖掘中心,所述大数据挖掘中心与多个广告服务终端通信连接,所述装置包括:
第一获取模块,用于获取目标广告推送任务的广告推送反馈信息对应的访问者兴趣数据,并基于所述访问者兴趣数据进行人群兴趣点检索;
第二获取模块,用于获取预设数量个人群兴趣点内每个人群兴趣点所对应的人群兴趣点信息,其中,所述人群兴趣点信息包括人群兴趣点覆盖标签、兴趣点广告标签以及访问属性信息,所述人群兴趣点覆盖标签用于人群兴趣点所覆盖的人群标签,所述兴趣点广告标签用于指示所述人群兴趣点的广告关注内容,所述访问属性信息用于指示所述人群兴趣点内的广告访问情况;
第一生成模块,用于根据所述每个人群兴趣点所对应的人群兴趣点信息,生成所述每个人群兴趣点所对应的广告推送优化信息,其中,所述广告推送优化信息用于对广告策略起始信息进行广告投放策略节点优化处理或广告投放策略节点强化处理,所述广告推送优化信息与所述人群兴趣点具有一一对应的关系;
第二生成模块,用于采用所述每个人群兴趣点所对应的广告推送优化信息,对所述每个人群兴趣点所对应的广告策略起始信息进行处理,得到所述每个人群兴趣点所对应的广告策略确认信息,并根据所述每个人群兴趣点所对应的广告策略确认信息,生成通过区块链进行广告推送的广告推送控制进程,其中,所述广告推送优化信息、所述广告策略起始信息以及所述广告策略确认信息具有一一对应的关系。
第三方面,本申请实施例还提供一种基于区块链和人工智能的广告推送系统,所述基于区块链和人工智能的广告推送系统包括大数据挖掘中心以及与所述大数据挖掘中心通信连接的多个广告服务终端;
所述大数据挖掘中心,用于:
获取目标广告推送任务的广告推送反馈信息对应的访问者兴趣数据,并基于所述访问者兴趣数据进行人群兴趣点检索;
获取预设数量个人群兴趣点内每个人群兴趣点所对应的人群兴趣点信息,其中,所述人群兴趣点信息包括人群兴趣点覆盖标签、兴趣点广告标签以及访问属性信息,所述人群兴趣点覆盖标签用于人群兴趣点所覆盖的人群标签,所述兴趣点广告标签用于指示所述人群兴趣点的广告关注内容,所述访问属性信息用于指示所述人群兴趣点内的广告访问情况;
根据所述每个人群兴趣点所对应的人群兴趣点信息,生成所述每个人群兴趣点所对应的广告推送优化信息,其中,所述广告推送优化信息用于对广告策略起始信息进行广告投放策略节点优化处理或广告投放策略节点强化处理,所述广告推送优化信息与所述人群兴趣点具有一一对应的关系;
采用所述每个人群兴趣点所对应的广告推送优化信息,对所述每个人群兴趣点所对应的广告策略起始信息进行处理,得到所述每个人群兴趣点所对应的广告策略确认信息,并根据所述每个人群兴趣点所对应的广告策略确认信息,生成通过区块链进行广告推送的广告推送控制进程,其中,所述广告推送优化信息、所述广告策略起始信息以及所述广告策略确认信息具有一一对应的关系。
第四方面,本申请实施例还提供一种大数据挖掘中心,所述大数据挖掘中心包括处理器、机器可读存储介质和网络接口,所述机器可读存储介质、所述网络接口以及所述处理器之间通过总线系统相连,所述网络接口用于与至少一个广告服务终端通信连接,所述机器可读存储介质用于存储程序、指令或代码,所述处理器用于执行所述机器可读存储介质中的程序、指令或代码,以执行第一方面或者第一方面中任意一个可能的实现方式中的基于区块链和人工智能的广告推送方法。
第五方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其被执行时,使得计算机执行上述第一方面或者第一方面中任意一个可能的实现方式中的基于区块链和人工智能的广告推送方法。
基于上述任意一个方面,本申请通过获取预设数量个人群兴趣点内每个人群兴趣点所对应的人群兴趣点信息,根据每个人群兴趣点所对应的人群兴趣点信息,生成每个人群兴趣点所对应的广告推送优化信息,然后采用每个人群兴趣点所对应的广告推送优化信息,对每个人群兴趣点所对应的广告策略起始信息进行处理,得到每个人群兴趣点所对应的广告策略确认信息,最后根据每个人群兴趣点所对应的广告策略确认信息,生成通过区块链进行广告推送的广告推送控制进程。采用上述方式,基于多个人群兴趣点并行处理来自不同维度的广告策略信息,进而在多广告策略场景下,可通过广告推送优化信息对不同维度上的广告策略信息进行广告投放策略节点强化或者广告投放策略节点优化,从而能够实时优化广告策略信息,由此提升广告策略检测过程中的配置信息准确度,有利于提升后续的广告策略处理效果。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要调用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它相关的附图。
图1为本申请实施例提供的基于区块链和人工智能的广告推送系统的应用场景示意图;
图2为本申请实施例提供的基于区块链和人工智能的广告推送方法的流程示意图;
图3为本申请实施例提供的基于区块链和人工智能的广告推送装置的功能模块示意图;
图4为本申请实施例提供的用于实现上述的基于区块链和人工智能的广告推送方法的大数据挖掘中心的结构组件示意框图。
具体实施方式
下面结合说明书附图对本申请进行具体说明,方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。
图1是本申请一种实施例提供的基于区块链和人工智能的广告推送系统10的交互示意图。基于区块链和人工智能的广告推送系统10可以包括大数据挖掘中心100以及与大数据挖掘中心100通信连接的广告服务终端200。图1所示的基于区块链和人工智能的广告推送系统10仅为一种可行的示例,在其它可行的实施例中,该基于区块链和人工智能的广告推送系统10也可以仅包括图1所示组成部分的其中一部分或者还可以包括其它的组成部分。
本实施例中,基于区块链和人工智能的广告推送系统10中的大数据挖掘中心100和广告服务终端200可以通过配合执行以下方法实施例所描述的基于区块链和人工智能的广告推送方法,具体大数据挖掘中心100和广告服务终端200的执行步骤部分可以参照以下方法实施例的详细描述。
为了解决前述背景技术中的技术问题,图2为本申请实施例提供的基于区块链和人工智能的广告推送方法的流程示意图,本实施例提供的基于区块链和人工智能的广告推送方法可以由图1中所示的大数据挖掘中心100执行,下面对该基于区块链和人工智能的广告推送方法进行详细介绍。
步骤S110,获取目标广告推送任务的广告推送反馈信息对应的访问者兴趣数据,并基于访问者兴趣数据进行人群兴趣点检索。
步骤S120,获取预设数量个人群兴趣点内每个人群兴趣点所对应的人群兴趣点信息。
本实施例中,人群兴趣点信息具体可以包括人群兴趣点覆盖标签、兴趣点广告标签以及访问属性信息。例如,人群兴趣点覆盖标签可以用于人群兴趣点所覆盖的人群标签(例如使用某个APP的人群标签、扫描某个商品二维码的人群标签等),兴趣点广告标签用于指示人群兴趣点的广告关注内容,广告关注内容可以是指广告播放流所对应的用户点击内容区域,访问属性信息用于指示人群兴趣点内的广告访问情况,例如点击访问情况、收藏访问情况、分享访问情况等。
步骤S130,根据每个人群兴趣点所对应的人群兴趣点信息,生成每个人群兴趣点所对应的广告推送优化信息。
本实施例中,广告推送优化信息用于对广告策略起始信息进行广告投放策略节点优化处理或广告投放策略节点强化处理,广告推送优化信息与人群兴趣点具有一一对应的关系。其中,对广告策略起始信息进行广告投放策略节点优化处理可以是指广告策略起始信息存在广告投放策略节点需要进行自适应性优化,从而与当前的人群兴趣点所对应的人群兴趣点信息适配。对广告策略起始信息进行广告投放策略节点强化处理可以是指广告策略起始信息存在广告投放策略节点需要进行自适应性强化,可以将该广告投放策略节点的投放强度进行强化。
步骤S140,采用每个人群兴趣点所对应的广告推送优化信息,对每个人群兴趣点所对应的广告策略起始信息进行处理,得到每个人群兴趣点所对应的广告策略确认信息,并根据每个人群兴趣点所对应的广告策略确认信息,生成通过区块链进行广告推送的广告推送控制进程。
其中,广告推送优化信息、广告策略起始信息以及广告策略确认信息具有一一对应的关系。这样,通过生成最终的广告推送控制进程,即可基于最终的广告推送控制进程重新生成对各个广告关注内容进行人群兴趣点检索的配置信息,由此进行闭环反馈控制。
基于上述步骤,本实施例能够根据每个人群兴趣点所对应的人群兴趣点信息,生成每个人群兴趣点所对应的广告推送优化信息,然后对每个人群兴趣点所对应的广告策略起始信息进行处理,得到每个人群兴趣点所对应的广告策略确认信息,由此生成通过区块链进行广告推送的广告推送控制进程。采用上述方式,基于多个人群兴趣点并行处理来自不同维度的广告策略信息,进而在多广告策略场景下,可通过广告推送优化信息对不同维度上的广告策略信息进行广告投放策略节点强化或者广告投放策略节点优化,从而能够实时优化广告策略信息,由此提升广告策略检测过程中的配置信息准确度,有利于提升后续的广告策略处理效果。
在一种可能的实现方式中,针对步骤S120而言,在获取预设数量个人群兴趣点内每个人群兴趣点所对应的人群兴趣点信息的过程中,可以通过以下示例性的子步骤实现,详细描述如下。
子步骤S121,对预设数量个人群兴趣点内的每个人群兴趣点进行检测,得到每个人群兴趣点所对应的广告访问检测结果。
子步骤S122,根据每个人群兴趣点所对应的广告访问检测结果确定每个人群兴趣点所对应的访问属性信息。
子步骤S123,根据每个人群兴趣点所对应的广告访问检测结果确定每个人群兴趣点所对应的访问迁移关系信息。
例如,可以针对于预设数量个人群兴趣点中的任意一个人群兴趣点,若广告访问检测结果为人群兴趣点内存在具有访问节点迁移的访问对象信息,则将访问对象信息在人群兴趣点内的访问节点迁移过程的信息确定为每个人群兴趣点所对应的访问迁移关系信息。
子步骤S124,获取每个人群兴趣点所对应的人群兴趣点覆盖标签以及每个人群兴趣点所对应的兴趣点广告标签。
子步骤S125,根据每个人群兴趣点所对应的访问属性信息、每个人群兴趣点所对应的访问迁移关系信息、每个人群兴趣点所对应的人群兴趣点覆盖标签以及每个人群兴趣点所对应的兴趣点广告标签,生成每个人群兴趣点所对应的人群兴趣点信息。
进一步地,在此基础上,作为一种可能的实现方式中,针对步骤S130,在根据每个人群兴趣点所对应的人群兴趣点信息,生成每个人群兴趣点所对应的广告推送优化信息的过程中,可以通过以下示例性的子步骤实现,详细描述如下。
子步骤S131,从预先配置的人群兴趣点覆盖标签对应的广告推送策略需求信息中获取与兴趣点广告标签对应的关系实体信息。
子步骤S132,根据访问属性信息对关系实体信息进行特征提取,得到关系实体信息分别匹配于访问属性信息的推送优化情景信息。
子步骤S133,基于关系实体信息的推送优化情景信息确定全局广告推送优化信息。
子步骤S134,根据访问迁移关系信息在关系实体信息中确定访问迁移关系实体信息,并确定访问迁移关系实体信息对应的推送优化情景信息。
子步骤S135,对全局广告推送优化信息和访问迁移关系实体信息对应的推送优化情景信息进行融合,得到每个人群兴趣点所对应的广告推送优化信息。
本实施例中,广告推送优化信息中包括有需要对广告策略起始信息进行广告投放策略节点优化处理或广告投放策略节点强化处理的广告投放策略节点。
访问属性信息包括广告访问热力图,广告访问热力图中包括多个热力单元,以及连接两个热力单元之间的热力关键词特征,热力关键词特征包括热力关键词特征的热力关键词标签和热力关键词词向量,热力单元包括关系实体热力节点和热点图谱。
在此基础上,对于子步骤S132而言,可以通过以下示例性的实施方式来实现。
(1)在广告访问热力图中确定关系实体信息对应的关系实体热力节点。
(2)根据热力关键词标签在广告访问热力图的多个热力单元中确定关系实体热力节点的投放热力关键词参数、优化热力关键词参数。
(3)根据连接关系实体热力节点和投放热力关键词参数之间的热力关键词特征的热力关键词词向量计算投放热力关键词参数对关系实体信息所产生的第一推送优化情景。
(4)根据连接关系实体热力节点和投放热力关键词参数之间的热力关键词特征的热力关键词词向量计算投放热力关键词参数对关系实体信息所产生的第二推送优化情景。
(5)根据第一推送优化情景和第二推送优化情景确定关系实体信息的推送优化情景信息。
这样,针对步骤S140而言,在采用每个人群兴趣点所对应的广告推送优化信息,对每个人群兴趣点所对应的广告策略起始信息进行处理,得到每个人群兴趣点所对应的广告策略确认信息的过程中,可以通过以下示例性的子步骤实现,详细描述如下。
子步骤S141,根据广告推送优化信息中包括有需要对广告策略起始信息进行广告投放策略节点优化处理或广告投放策略节点强化处理的广告投放策略节点,获取需要对广告策略起始信息进行广告投放策略节点优化处理的第一广告投放策略节点,以及需要对广告策略起始信息进行广告投放策略节点强化处理的第二广告投放策略节点。
子步骤S142,根据广告推送优化信息中对应的优化策略信息对第一广告投放策略节点进行优化处理,以及根据广告推送优化信息中对应的强化策略信息对第二广告投放策略节点进行强化处理。
在一种可能的实现方式中,仍旧针对步骤S140而言,在根据每个人群兴趣点所对应的广告策略确认信息,生成通过区块链进行广告推送的广告推送控制进程的过程中,可以通过以下示例性的子步骤实现,详细描述如下。
子步骤S143,根据每个人群兴趣点所对应的广告策略确认信息,确定每个人群兴趣点所对应的广告推送偏好意图矩阵,其中,广告推送偏好意图矩阵为广告策略确认信息在每个广告策略单元上的广告推送偏好意图矩阵。
子步骤S144,根据每个人群兴趣点所对应的广告推送偏好意图矩阵,确定每个人群兴趣点所对应的广告推送控制链接文件的推送控制信息。
子步骤S145,基于每个人群兴趣点所对应的广告推送控制链接文件的推送控制信息对当前的广告推送控制链接文件进行重定向配置,得到每个人群兴趣点所对应的广告推送控制进程。
例如,可以获取每个人群兴趣点所对应的广告推送控制链接文件的推送控制信息针对当前的广告推送控制链接文件中每个链接跳转信息的推送控制关联信息,并基于当前的广告推送控制链接文件中每个链接跳转信息的推送控制关联信息对当前的广告推送控制链接文件进行重定向配置,得到每个人群兴趣点所对应的广告推送控制进程。
在一种可能的实现方式中,在上述描述的基础上,针对步骤S110而言,在获取目标广告推送任务的广告推送反馈信息对应的访问者兴趣数据,并基于访问者兴趣数据进行人群兴趣点检索的过程中,可以通过以下示例性的子步骤实现,详细描述如下。
子步骤S111,获取针对所述广告服务终端的每个广告推送片段对应的广告控制节点信息,并基于广告控制节点信息对目标广告推送任务的广告推送反馈信息进行广告引流搜寻,获得对应的广告引流搜寻片段。
本实施例中,广告控制节点信息可以用于表征在进行广告播放流播放过程中进行广告引流搜寻兴趣点检索的控制节点指令,目标广告推送任务可以是指广告推送任务数据的推送控制业务项目,广告推送反馈信息可以是指发起的生产监测请求相关的生产监测配置参数。广告引流搜寻片段可以是指针对目标广告推送任务的广告推送反馈信息从预先配置的索引数据库中获得的与每个广告引流搜寻兴趣点检索的控制节点指令匹配的搜寻片段,具体可以包括引流得到的引流行为、引流时长等等。
子步骤S112,基于广告引流搜寻片段获取对应的广告引流跳转子图,基于广告引流跳转子图,确定多个广告引流路径的用户兴趣学习信息。
本实施例中,广告引流跳转子图可以包括广告引流过程在各个广告播放过程上的跳转记录情况,广告引流路径可以是指各个广告播放过程构成广告引流路径节点集合,用户兴趣学习信息可以是指各个广告播放过程在对广告引流过程进行调度中的用户兴趣的特征提取情况。
子步骤S113,将用户兴趣学习信息分别输入兴趣点检索模型中的多个兴趣点检索单元,通过兴趣点检索单元进行至少一次广告关注内容匹配得到至少一个广告关注内容。
本实施例中,通过兴趣点检索单元进行的至少一次广告关注内容匹配是基于关联大数据检索分区进行的,关联大数据检索分区关联至多个兴趣点检索单元的其它兴趣点检索单元提取的广告关注内容。其中,所述兴趣点检索单元基于人工智能网络和对应的训练样本训练获得,所述训练样本包括用户兴趣学习信息样本和对应的广告关注内容标签。
子步骤S114,对多个兴趣点检索单元输出的多个广告关注内容进行兴趣点检索,得到兴趣点检索内容,基于兴趣点检索内容,得到广告引流跳转子图在广告推送反馈信息下的访问者兴趣数据,并基于广告引流跳转子图在广告推送反馈信息下的访问者兴趣数据进行人群兴趣点检索。
本实施例中,广告引流跳转子图在广告推送反馈信息下的访问者兴趣数据可以用于表征广告引流跳转子图在后续进行人群兴趣点检索过程中的检索指令运行集合,也即在人群兴趣点检索过程中控制检索数据节点的流向关系的检索控制指令,从而按照这些检索控制指令的执行顺序进行计算机程序的执行,从而进行人群兴趣点检索。
基于上述步骤,本实施例先基于广告引流跳转子图确定多个广告引流路径的用户兴趣学习信息,将用户兴趣学习信息分别输入兴趣点检索模型中的多个兴趣点检索单元,每个兴趣点检索单元都会进行至少一次广告关注内容匹配得到至少一个广告关注内容,并且至少一次广告关注内容匹配是基于关联大数据检索分区进行的,关联大数据检索分区关联至多个兴趣点检索单元的其它兴趣点检索单元提取的广告关注内容,其中,所述兴趣点检索单元基于人工智能网络和对应的训练样本训练获得,所述训练样本包括用户兴趣学习信息样本和对应的广告关注内容标签,这样不同兴趣点检索单元中提取的广告关注内容之间可以进行至少一次的交换和融合,进而能够将不同层次的广告关注内容进行兴趣点检索,以通过丰富广告关注内容的层次来提高人群兴趣点检索的表征能力,从而检索针对性更佳。
在一种可能的实现方式中,在上述方案的基础上,本实施例还可以进一步将多个兴趣点检索单元的其中一个兴趣点检索单元作为目标兴趣点检索单元,然后获取目标兴趣点检索单元提取的第一广告关注内容,以及多个兴趣点检索单元中除目标兴趣点检索单元之外的其它兴趣点检索单元提取的第二广告关注内容。
这样,当第二广告关注内容的广告引流路径不匹配第一广告关注内容的广告引流路径时,对第二广告关注内容进行兴趣度分布标记,兴趣度分布标记后的第二广告关注内容的广告引流路径与第一广告关注内容的广告引流路径相同。由此,可以通过目标兴趣点检索单元,对兴趣度分布标记后的第二广告关注内容和第一广告关注内容的内容匹配信息进行广告关注内容匹配。
其中,第二广告关注内容的数量为至少两个。
在上述基础上,当同时存在广告引流路径不匹配第一广告关注内容的广告引流路径的第二广告关注内容,以及广告引流路径匹配第一广告关注内容的广告引流路径的第二广告关注内容时,对广告引流路径不匹配第一广告关注内容的广告引流路径的第二广告关注内容进行兴趣度分布标记,对广告引流路径匹配第一广告关注内容的广告引流路径的第二广告关注内容进行逆向兴趣度分布标记,兴趣度分布标记后的第二广告关注内容的广告引流路径、逆向兴趣度分布标记后的第二广告关注内容的广告引流路径均与第一广告关注内容的广告引流路径相同。
如此,可以通过目标兴趣点检索单元,对兴趣度分布标记后的第二广告关注内容、逆向兴趣度分布标记后的第二广告关注内容以及第一广告关注内容的内容匹配信息进行广告关注内容匹配。
再例如,在上述基础上,当第二广告关注内容的广告引流路径匹配第一广告关注内容的广告引流路径时,对第二广告关注内容进行逆向兴趣度分布标记,逆向兴趣度分布标记后的第二广告关注内容的广告引流路径与第一广告关注内容的广告引流路径相同。如此,可以通过目标兴趣点检索单元,对逆向兴趣度分布标记后的第二广告关注内容和第一广告关注内容的内容匹配信息进行广告关注内容匹配。
譬如,在一种可能的实现方式中,针对步骤S113而言,在将用户兴趣学习信息分别输入兴趣点检索模型中的多个兴趣点检索单元,通过兴趣点检索单元进行至少一次广告关注内容匹配得到至少一个广告关注内容的过程中,可以通过以下示例性的子步骤来实现,详细描述如下。
子步骤S1131,将用户兴趣学习信息分别输入兴趣点检索模型中的多个兴趣点检索单元。
子步骤S1132,对于其中一个兴趣点检索单元,通过兴趣点检索单元对相应的用户兴趣学习信息进行广告关注内容匹配,并在广告关注内容匹配得到第一广告关注内容后,获取通过多个兴趣点检索单元的其它兴趣点检索单元提取的第二广告关注内容与第一广告关注内容进行分区业务匹配,再基于分区业务匹配结果继续进行广告关注内容匹配,以使广告关注内容匹配和分区业务匹配交替进行。
再进一步地,针对步骤S112,在基于广告引流跳转子图,确定多个广告引流路径的用户兴趣学习信息的过程中,可以对广告引流跳转子图进行广告引流路径的索引匹配,得到多个不同广告引流路径的用户兴趣学习信息。
例如,可以索引匹配广告引流跳转子图针对每个广告引流路径的检索信息节点,并将所有检索信息节点按照各自之间的关联关系进行拼接,从而得到多个不同广告引流路径的用户兴趣学习信息。
这样,在另一种并列可能的实现方式中,针对步骤S113,在将用户兴趣学习信息分别输入兴趣点检索模型中的多个兴趣点检索单元,通过兴趣点检索单元进行至少一次广告关注内容匹配得到至少一个广告关注内容的过程中,可以通过以下示例性的子步骤来实现,详细描述如下。
子步骤S1133,将用户兴趣学习信息分别输入兴趣点检索模型中的多个兴趣点检索单元。
其中,用户兴趣学习信息分别与多个兴趣点检索单元的其中一个兴趣点检索单元一一对应。
子步骤S1134,通过兴趣点检索单元对相应的用户兴趣学习信息进行至少一次广告关注内容匹配。其中,提取的广告关注内容的广告引流路径与兴趣点检索单元相应的用户兴趣学习信息的广告引流路径保持一致。
在一种并列可能的实现方式中,前述的用户兴趣学习信息至少包括第一用户兴趣学习信息、第二用户兴趣学习信息和第三用户兴趣学习信息,兴趣点检索模型包括第一兴趣点检索单元、第二兴趣点检索单元和第三兴趣点检索单元,其中,第一用户兴趣学习信息、第二用户兴趣学习信息和第三用户兴趣学习信息分别对应兴趣覆盖学习片段、兴趣数据源片段以及兴趣输出源片段的用户兴趣学习信息,第一兴趣点检索单元、第二兴趣点检索单元和第三兴趣点检索单元分别对应兴趣覆盖学习片段、兴趣数据源片段以及兴趣输出源片段的兴趣点检索单元。
在此基础上,仍旧针对步骤S113,在将用户兴趣学习信息分别输入兴趣点检索模型中的多个兴趣点检索单元,通过兴趣点检索单元进行至少一次广告关注内容匹配得到至少一个广告关注内容的过程中,可以通过以下示例性的子步骤来实现,详细描述如下。
子步骤S1135,将第一用户兴趣学习信息输入第一兴趣点检索单元进行第一兴趣点检索层的广告关注内容匹配,得到第一兴趣点检索单元在第一兴趣点检索层提取的广告关注内容。
子步骤S1136,对第一兴趣点检索单元在第一兴趣点检索层提取的广告关注内容和第二用户兴趣学习信息进行兴趣点检索,得到第二兴趣点检索单元在第二兴趣点检索层相应的兴趣点检索元素。
子步骤S1137,获取第一兴趣点检索单元在第一兴趣点检索层提取的广告关注内容,用作第一兴趣点检索单元在第二兴趣点检索层相应的兴趣点检索元素。
子步骤S1138,通过第一兴趣点检索单元,对第一兴趣点检索单元在第二兴趣点检索层相应的兴趣点检索元素进行第二兴趣点检索层首次广告关注内容匹配,得到第一兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容。
子步骤S11391,通过第二兴趣点检索单元,对第二兴趣点检索单元在第二兴趣点检索层相应的兴趣点检索元素进行第二兴趣点检索层首次广告关注内容匹配,得到第二兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容。
子步骤S11392,将第一兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容传递给第二兴趣点检索单元,并将第二兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容传递给第一兴趣点检索单元。
子步骤S11393,通过第一兴趣点检索单元对第一兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容和第二兴趣点检索单元传递的广告关注内容进行兴趣点检索,并对内容匹配信息进行广告关注内容匹配。
子步骤S11394,通过第二兴趣点检索单元对第二兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容和第一兴趣点检索单元传递的广告关注内容进行兴趣点检索,并对内容匹配信息进行广告关注内容匹配。
子步骤S11395,对第一兴趣点检索单元在第二兴趣点检索层提取的广告关注内容、第二兴趣点检索单元在第二兴趣点检索层提取的广告关注内容和第三用户兴趣学习信息进行兴趣点检索,得到第三兴趣点检索单元在第三兴趣点检索层相应的兴趣点检索元素。
子步骤S11396,通过第一兴趣点检索单元基于第一兴趣点检索单元在第二兴趣点检索层提取的广告关注内容进行第三兴趣点检索层的广告关注内容匹配,通过第二兴趣点检索单元基于第二兴趣点检索单元在第二兴趣点检索层提取的广告关注内容进行第三兴趣点检索层的广告关注内容匹配,并通过第三兴趣点检索单元对第三兴趣点检索单元在第三兴趣点检索层相应的兴趣点检索元素进行第三兴趣点检索层的广告关注内容匹配。
进一步地,在一种可能的实现方式中,针对步骤S114而言,在基于兴趣点检索内容,得到广告引流跳转子图在广告推送反馈信息下的访问者兴趣数据的过程中,可以通过以下示例性的子步骤来实现,详细描述如下。
子步骤S1141,确定广告推送反馈信息相应的检索模型。
子步骤S1142,将兴趣点检索内容输入检索模型,通过检索模型得到广告引流跳转子图在广告推送反馈信息下的访问者兴趣数据。
其中,兴趣点检索模型和检索模型的配置方式可以通过以下示例性的实施方式来实现:
(1)获取兴趣点检索内容样本、兴趣点检索模型和检索模型,兴趣点检索内容样本的检索标签用于表示兴趣点检索内容样本在广告推送反馈信息下的标注结果。
(2)基于兴趣点检索内容样本,确定多个广告引流路径的用户兴趣学习信息样本。
(3)将用户兴趣学习信息样本分别输入兴趣点检索模型中的多个兴趣点检索单元,通过兴趣点检索单元进行至少一次广告关注内容匹配得到至少一个兴趣点检索内容。
其中,通过兴趣点检索单元进行的至少一次广告关注内容匹配是基于关联大数据检索分区进行的,关联大数据检索分区关联至多个兴趣点检索单元的其它兴趣点检索单元提取的兴趣点检索内容。
(4)对多个兴趣点检索单元输出的多个广告关注内容进行兴趣点检索,得到目标兴趣点检索内容。
(5)将目标兴趣点检索内容输入检索模型,通过检索模型得到兴趣点检索内容样本在广告推送反馈信息下的兴趣点检索结果。
(6)基于兴趣点检索结果和检索标签,广告策略兴趣点检索检索模型和检索模型。
进一步地,针对步骤S112而言,在基于广告引流搜寻片段获取对应的广告引流跳转子图的过程中,可以从预设检索分区集合中获取广告引流搜寻片段所对应的对应的广告引流跳转子图。
在此基础上,在上述步骤中,在将兴趣点检索内容输入检索模型,通过检索模型得到广告引流跳转子图在广告推送反馈信息下的访问者兴趣数据的过程中,可以将目标兴趣点检索内容输入检索模型,通过检索模型对目标兴趣点检索内容进行检索广告引流搜寻,得到目标兴趣点检索内容的访问者兴趣数据。
进一步地,在一种可能的实现方式中,针对步骤S114而言,在对多个兴趣点检索单元输出的多个广告关注内容进行兴趣点检索,得到兴趣点检索内容的过程中,可以通过以下示例性的子步骤来实现,详细描述如下。
子步骤S1143,获取多个兴趣点检索单元输出的多个广告关注内容,确定多个广告关注内容中全局广告引流路径的目标广告关注内容。
子步骤S1144,对多个广告关注内容中除目标广告关注内容之外的其它广告关注内容进行兴趣点检索,兴趣点检索后的其它广告关注内容的广告引流路径与目标广告关注内容的广告引流路径相同。
子步骤S1145,列出兴趣点检索后的其它广告关注内容和目标广告关注内容,得到兴趣点检索内容。
图3为本公开实施例提供的基于区块链和人工智能的广告推送装置300的功能模块示意图,本实施例可以根据上述大数据挖掘中心100执行的方法实施例对该基于区块链和人工智能的广告推送装置300进行功能模块的划分,也即该基于区块链和人工智能的广告推送装置300所对应的以下各个功能模块可以用于执行上述大数据挖掘中心100执行的各个方法实施例。其中,该基于区块链和人工智能的广告推送装置300可以包括第一获取模块310、第二获取模块320、第一生成模块330以及第二生成模块340,下面分别对该基于区块链和人工智能的广告推送装置300的各个功能模块的功能进行详细阐述。
第一获取模块310,用于获取目标广告推送任务的广告推送反馈信息对应的访问者兴趣数据,并基于所述访问者兴趣数据进行人群兴趣点检索。其中,第一获取模块310可以用于执行上述的步骤S110,关于第一获取模块310的详细实现方式可以参照上述针对步骤S110的详细描述即可。
第二获取模块320,用于获取预设数量个人群兴趣点内每个人群兴趣点所对应的人群兴趣点信息,其中,所述人群兴趣点信息包括人群兴趣点覆盖标签、兴趣点广告标签以及访问属性信息,所述人群兴趣点覆盖标签用于人群兴趣点所覆盖的人群标签,所述兴趣点广告标签用于指示所述人群兴趣点的广告关注内容,所述访问属性信息用于指示所述人群兴趣点内的广告访问情况。其中,第二获取模块320可以用于执行上述的步骤S120,关于第二获取模块320的详细实现方式可以参照上述针对步骤S120的详细描述即可。
第一生成模块330,用于根据所述每个人群兴趣点所对应的人群兴趣点信息,生成所述每个人群兴趣点所对应的广告推送优化信息,其中,所述广告推送优化信息用于对广告策略起始信息进行广告投放策略节点优化处理或广告投放策略节点强化处理,所述广告推送优化信息与所述人群兴趣点具有一一对应的关系。其中,第一生成模块330可以用于执行上述的步骤S130,关于第一生成模块330的详细实现方式可以参照上述针对步骤S130的详细描述即可。
第二生成模块340,用于采用所述每个人群兴趣点所对应的广告推送优化信息,对所述每个人群兴趣点所对应的广告策略起始信息进行处理,得到所述每个人群兴趣点所对应的广告策略确认信息,并根据所述每个人群兴趣点所对应的广告策略确认信息,生成通过区块链进行广告推送的广告推送控制进程,其中,所述广告推送优化信息、所述广告策略起始信息以及所述广告策略确认信息具有一一对应的关系。其中,第二生成模块340可以用于执行上述的步骤S140,关于第二生成模块340的详细实现方式可以参照上述针对步骤S140的详细描述即可。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现。也可以全部以硬件的形式实现。还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,第一获取模块310可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上第一获取模块310的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所描述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
图4示出了本公开实施例提供的用于实现上述的基于区块链和人工智能的广告推送方法的大数据挖掘中心100的硬件结构示意图,如图4所示,大数据挖掘中心100可包括处理器110、机器可读存储介质120、总线130以及收发器140。
在具体实现过程中,至少一个处理器110执行机器可读存储介质120存储的计算机执行指令(例如图3中所示的基于区块链和人工智能的广告推送装置300包括的第一获取模块310、第二获取模块320、第一生成模块330以及第二生成模块340),使得处理器110可以执行如上方法实施例的基于区块链和人工智能的广告推送方法,其中,处理器110、机器可读存储介质120以及收发器140通过总线130连接,处理器110可以用于控制收发器140的收发动作,从而可以与前述的广告服务终端200进行数据收发。
处理器110的具体实现过程可参见上述大数据挖掘中心100执行的各个方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
在上述的图4所示的实施例中,应理解,处理器可以是中央处理器(英文:CentralProcessing Unit,CPU),还可以是其它通用处理器、数字信号处理器(英文:DigitalSignal Processor,DSP)、专用集成电路(英文:Application SpecificIntegratedCircuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
机器可读存储介质120可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器。
总线130可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线130可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
此外,本申请实施例还提供一种可读存储介质,所述可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如上基于区块链和人工智能的广告推送方法。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本说明书的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对它们的任何新的和有用的改进。相应地,本说明书的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本说明书的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、系统或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本说明书各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、VisualBasic、Fortran2003、Perl、COBOL2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其它编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本说明书处理元素和序列的顺序、数字字母的使用、或其它名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
最后,应当理解的是,本说明书中实施例仅用以说明本说明书实施例的原则。其它的变形也可能属于本说明书范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (10)

1.一种基于区块链和人工智能的广告推送方法,其特征在于,应用于大数据挖掘中心,所述大数据挖掘中心与多个广告服务终端通信连接,所述方法包括:
获取目标广告推送任务的广告推送反馈信息对应的访问者兴趣数据,并基于所述访问者兴趣数据进行人群兴趣点检索;
获取预设数量个人群兴趣点内每个人群兴趣点所对应的人群兴趣点信息,其中,所述人群兴趣点信息包括人群兴趣点覆盖标签、兴趣点广告标签以及访问属性信息,所述人群兴趣点覆盖标签用于人群兴趣点所覆盖的人群标签,所述兴趣点广告标签用于指示所述人群兴趣点的广告关注内容,所述访问属性信息用于指示所述人群兴趣点内的广告访问情况;
根据所述每个人群兴趣点所对应的人群兴趣点信息,生成所述每个人群兴趣点所对应的广告推送优化信息,其中,所述广告推送优化信息用于对广告策略起始信息进行广告投放策略节点优化处理或广告投放策略节点强化处理,所述广告推送优化信息与所述人群兴趣点具有一一对应的关系;
采用所述每个人群兴趣点所对应的广告推送优化信息,对所述每个人群兴趣点所对应的广告策略起始信息进行处理,得到所述每个人群兴趣点所对应的广告策略确认信息,并根据所述每个人群兴趣点所对应的广告策略确认信息,生成通过区块链进行广告推送的广告推送控制进程,其中,所述广告推送优化信息、所述广告策略起始信息以及所述广告策略确认信息具有一一对应的关系。
2.根据权利要求1所述的基于区块链和人工智能的广告推送方法,其特征在于,所述获取预设数量个人群兴趣点内每个人群兴趣点所对应的人群兴趣点信息,包括:
对所述预设数量个人群兴趣点内的所述每个人群兴趣点进行检测,得到所述每个人群兴趣点所对应的广告访问检测结果;
根据所述每个人群兴趣点所对应的广告访问检测结果确定所述每个人群兴趣点所对应的访问属性信息;
根据所述每个人群兴趣点所对应的广告访问检测结果确定所述每个人群兴趣点所对应的访问迁移关系信息;
获取所述每个人群兴趣点所对应的人群兴趣点覆盖标签以及所述每个人群兴趣点所对应的兴趣点广告标签;
根据所述每个人群兴趣点所对应的访问属性信息、所述每个人群兴趣点所对应的访问迁移关系信息、所述每个人群兴趣点所对应的人群兴趣点覆盖标签以及所述每个人群兴趣点所对应的兴趣点广告标签,生成所述每个人群兴趣点所对应的人群兴趣点信息。
3.根据权利要求2所述的基于区块链和人工智能的广告推送方法,其特征在于,所述根据所述每个人群兴趣点所对应的广告访问检测结果确定所述每个人群兴趣点所对应的访问迁移关系信息,包括:
针对于所述预设数量个人群兴趣点中的任意一个人群兴趣点,若所述广告访问检测结果为人群兴趣点内存在具有访问节点迁移的访问对象信息,则将所述访问对象信息在人群兴趣点内的访问节点迁移过程的信息确定为所述每个人群兴趣点所对应的访问迁移关系信息。
4.根据权利要求2所述的基于区块链和人工智能的广告推送方法,其特征在于,所述根据所述每个人群兴趣点所对应的人群兴趣点信息,生成所述每个人群兴趣点所对应的广告推送优化信息,包括:
从预先配置的所述人群兴趣点覆盖标签对应的广告推送策略需求信息中获取与所述兴趣点广告标签对应的关系实体信息;
根据所述访问属性信息对所述关系实体信息进行特征提取,得到所述关系实体信息分别匹配于所述访问属性信息的推送优化情景信息;
基于所述关系实体信息的推送优化情景信息确定全局广告推送优化信息;
根据所述访问迁移关系信息在所述关系实体信息中确定访问迁移关系实体信息,并确定所述访问迁移关系实体信息对应的推送优化情景信息;
对所述全局广告推送优化信息和所述访问迁移关系实体信息对应的推送优化情景信息进行融合,得到所述每个人群兴趣点所对应的广告推送优化信息,所述广告推送优化信息中包括有需要对所述广告策略起始信息进行广告投放策略节点优化处理或广告投放策略节点强化处理的广告投放策略节点;
所述访问属性信息包括广告访问热力图,所述广告访问热力图中包括多个热力单元,以及连接两个热力单元之间的热力关键词特征,所述热力关键词特征包括热力关键词特征的热力关键词标签和热力关键词词向量,所述热力单元包括关系实体热力节点和热点图谱;
所述根据所述访问属性信息对所述关系实体信息进行特征提取,得到所述关系实体信息分别匹配于所述访问属性信息的推送优化情景信息,包括:
在所述广告访问热力图中确定所述关系实体信息对应的关系实体热力节点;
根据所述热力关键词标签在所述广告访问热力图的多个热力单元中确定所述关系实体热力节点的投放热力关键词参数、优化热力关键词参数;
根据连接所述关系实体热力节点和所述投放热力关键词参数之间的热力关键词特征的热力关键词词向量计算所述投放热力关键词参数对所述关系实体信息所产生的第一推送优化情景;
根据连接所述关系实体热力节点和所述投放热力关键词参数之间的热力关键词特征的热力关键词词向量计算所述投放热力关键词参数对所述关系实体信息所产生的第二推送优化情景;
根据所述第一推送优化情景和第二推送优化情景确定所述关系实体信息的推送优化情景信息;
所述采用所述每个人群兴趣点所对应的广告推送优化信息,对所述每个人群兴趣点所对应的广告策略起始信息进行处理,得到所述每个人群兴趣点所对应的广告策略确认信息,包括:
根据所述广告推送优化信息中包括有需要对所述广告策略起始信息进行广告投放策略节点优化处理或广告投放策略节点强化处理的广告投放策略节点,获取需要对所述广告策略起始信息进行广告投放策略节点优化处理的第一广告投放策略节点,以及需要对所述广告策略起始信息进行广告投放策略节点强化处理的第二广告投放策略节点;
根据所述广告推送优化信息中对应的优化策略信息对所述第一广告投放策略节点进行优化处理,以及根据所述广告推送优化信息中对应的强化策略信息对所述第二广告投放策略节点进行强化处理。
5.根据权利要求1-4中任意一项所述的基于区块链和人工智能的广告推送方法,其特征在于,所述根据所述每个人群兴趣点所对应的广告策略确认信息,生成通过区块链进行广告推送的广告推送控制进程的步骤,包括:
根据所述每个人群兴趣点所对应的广告策略确认信息,确定所述每个人群兴趣点所对应的广告推送偏好意图矩阵,其中,所述广告推送偏好意图矩阵为所述广告策略确认信息在每个广告策略单元上的广告推送偏好意图矩阵;
根据所述每个人群兴趣点所对应的广告推送偏好意图矩阵,确定所述每个人群兴趣点所对应的广告推送控制链接文件的推送控制信息;
基于所述每个人群兴趣点所对应的广告推送控制链接文件的推送控制信息对当前的广告推送控制链接文件进行重定向配置,得到所述每个人群兴趣点所对应的广告推送控制进程。
6.根据权利要求5所述的基于区块链和人工智能的广告推送方法,其特征在于,所述基于所述每个人群兴趣点所对应的广告推送控制链接文件的推送控制信息对当前的广告推送控制链接文件进行重定向配置,得到所述每个人群兴趣点所对应的广告推送控制进程,包括:
获取所述每个人群兴趣点所对应的广告推送控制链接文件的推送控制信息针对当前的广告推送控制链接文件中每个链接跳转信息的推送控制关联信息;
基于当前的广告推送控制链接文件中每个链接跳转信息的推送控制关联信息对当前的广告推送控制链接文件进行重定向配置,得到所述每个人群兴趣点所对应的广告推送控制进程。
7.根据权利要求1-6中任意一项所述的基于区块链和人工智能的广告推送方法,其特征在于,所述获取目标广告推送任务的广告推送反馈信息对应的访问者兴趣数据,并基于所述访问者兴趣数据进行人群兴趣点检索的步骤,包括:
获取针对所述广告服务终端的每个广告推送片段对应的广告控制节点信息,并基于所述广告控制节点信息对目标广告推送任务的广告推送反馈信息进行广告引流搜寻,获得对应的广告引流搜寻片段;
基于所述广告引流搜寻片段获取对应的广告引流跳转子图,基于所述广告引流跳转子图,确定多个广告引流路径的用户兴趣学习信息;
将所述用户兴趣学习信息分别输入兴趣点检索模型中的多个兴趣点检索单元,通过所述兴趣点检索单元进行至少一次广告关注内容匹配得到至少一个广告关注内容;其中,通过所述兴趣点检索单元进行的至少一次广告关注内容匹配是基于关联大数据检索分区进行的,所述关联大数据检索分区关联至所述多个兴趣点检索单元的其它兴趣点检索单元提取的广告关注内容,其中,所述兴趣点检索单元基于人工智能网络和对应的训练样本训练获得,所述训练样本包括用户兴趣学习信息样本和对应的广告关注内容标签;
对所述多个兴趣点检索单元输出的多个广告关注内容进行兴趣点检索,得到兴趣点检索内容,基于所述兴趣点检索内容,得到所述广告引流跳转子图在所述广告推送反馈信息下的访问者兴趣数据,并基于所述广告引流跳转子图在所述广告推送反馈信息下的访问者兴趣数据进行人群兴趣点检索。
8.根据权利要求7所述的基于区块链和人工智能的广告推送方法,其特征在于,所述方法还包括:
将所述多个兴趣点检索单元的其中一个兴趣点检索单元作为目标兴趣点检索单元;
获取所述目标兴趣点检索单元提取的第一广告关注内容,以及所述多个兴趣点检索单元中除所述目标兴趣点检索单元之外的其它兴趣点检索单元提取的第二广告关注内容;
当所述第二广告关注内容的广告引流路径不匹配所述第一广告关注内容的广告引流路径时,对所述第二广告关注内容进行兴趣度分布标记,兴趣度分布标记后的所述第二广告关注内容的广告引流路径与所述第一广告关注内容的广告引流路径相同;
通过所述目标兴趣点检索单元,对兴趣度分布标记后的所述第二广告关注内容和所述第一广告关注内容的内容匹配信息进行广告关注内容匹配;
其中,所述第二广告关注内容的数量为至少两个;所述方法还包括:
当同时存在广告引流路径不匹配所述第一广告关注内容的广告引流路径的第二广告关注内容,以及广告引流路径匹配所述第一广告关注内容的广告引流路径的第二广告关注内容时,对广告引流路径不匹配所述第一广告关注内容的广告引流路径的第二广告关注内容进行兴趣度分布标记,对广告引流路径匹配所述第一广告关注内容的广告引流路径的第二广告关注内容进行逆向兴趣度分布标记,兴趣度分布标记后的所述第二广告关注内容的广告引流路径、逆向兴趣度分布标记后的所述第二广告关注内容的广告引流路径均与所述第一广告关注内容的广告引流路径相同;
通过所述目标兴趣点检索单元,对兴趣度分布标记后的所述第二广告关注内容、逆向兴趣度分布标记后的所述第二广告关注内容以及所述第一广告关注内容的内容匹配信息进行广告关注内容匹配;
其中,所述方法还包括:
当所述第二广告关注内容的广告引流路径匹配所述第一广告关注内容的广告引流路径时,对所述第二广告关注内容进行逆向兴趣度分布标记,逆向兴趣度分布标记后的所述第二广告关注内容的广告引流路径与所述第一广告关注内容的广告引流路径相同;
通过所述目标兴趣点检索单元,对逆向兴趣度分布标记后的所述第二广告关注内容和所述第一广告关注内容的内容匹配信息进行广告关注内容匹配。
9.根据权利要求7所述的基于区块链和人工智能的广告推送方法,其特征在于,所述用户兴趣学习信息至少包括第一用户兴趣学习信息、第二用户兴趣学习信息和第三用户兴趣学习信息,所述兴趣点检索模型包括第一兴趣点检索单元、第二兴趣点检索单元和第三兴趣点检索单元,其中,所述第一用户兴趣学习信息、第二用户兴趣学习信息和第三用户兴趣学习信息分别对应兴趣覆盖学习片段、兴趣数据源片段以及兴趣输出源片段的用户兴趣学习信息,所述第一兴趣点检索单元、第二兴趣点检索单元和第三兴趣点检索单元分别对应兴趣覆盖学习片段、兴趣数据源片段以及兴趣输出源片段的兴趣点检索单元;
所述将所述用户兴趣学习信息分别输入兴趣点检索模型中的多个兴趣点检索单元,通过所述兴趣点检索单元进行至少一次广告关注内容匹配得到至少一个广告关注内容,包括:
将所述第一用户兴趣学习信息输入第一兴趣点检索单元进行第一兴趣点检索层的广告关注内容匹配,得到所述第一兴趣点检索单元在第一兴趣点检索层提取的广告关注内容;
对所述第一兴趣点检索单元在第一兴趣点检索层提取的广告关注内容和所述第二用户兴趣学习信息进行兴趣点检索,得到所述第二兴趣点检索单元在第二兴趣点检索层相应的兴趣点检索元素;
获取所述第一兴趣点检索单元在第一兴趣点检索层提取的广告关注内容,用作所述第一兴趣点检索单元在第二兴趣点检索层相应的兴趣点检索元素;
通过所述第一兴趣点检索单元,对所述第一兴趣点检索单元在第二兴趣点检索层相应的兴趣点检索元素进行第二兴趣点检索层首次广告关注内容匹配,得到所述第一兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容;
通过所述第二兴趣点检索单元,对所述第二兴趣点检索单元在第二兴趣点检索层相应的兴趣点检索元素进行第二兴趣点检索层首次广告关注内容匹配,得到所述第二兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容;
将所述第一兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容传递给所述第二兴趣点检索单元,并将所述第二兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容传递给所述第一兴趣点检索单元;
通过所述第一兴趣点检索单元对所述第一兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容和所述第二兴趣点检索单元传递的广告关注内容进行兴趣点检索,并对内容匹配信息进行广告关注内容匹配;
通过所述第二兴趣点检索单元对所述第二兴趣点检索单元在第二兴趣点检索层首次提取的广告关注内容和所述第一兴趣点检索单元传递的广告关注内容进行兴趣点检索,并对内容匹配信息进行广告关注内容匹配;
对所述第一兴趣点检索单元在第二兴趣点检索层提取的广告关注内容、所述第二兴趣点检索单元在第二兴趣点检索层提取的广告关注内容和所述第三用户兴趣学习信息进行兴趣点检索,得到所述第三兴趣点检索单元在第三兴趣点检索层相应的兴趣点检索元素;
通过所述第一兴趣点检索单元基于所述第一兴趣点检索单元在第二兴趣点检索层提取的广告关注内容进行第三兴趣点检索层的广告关注内容匹配,通过所述第二兴趣点检索单元基于所述第二兴趣点检索单元在第二兴趣点检索层提取的广告关注内容进行第三兴趣点检索层的广告关注内容匹配,并通过所述第三兴趣点检索单元对所述第三兴趣点检索单元在第三兴趣点检索层相应的兴趣点检索元素进行第三兴趣点检索层的广告关注内容匹配。
10.一种大数据挖掘中心,其特征在于,所述大数据挖掘中心包括处理器、机器可读存储介质和网络接口,所述机器可读存储介质、所述网络接口以及所述处理器之间通过总线系统相连,所述网络接口用于与至少一个广告服务终端通信连接,所述机器可读存储介质用于存储程序、指令或代码,所述处理器用于执行所述机器可读存储介质中的程序、指令或代码,以执行权利要求1-9中任意一项的基于区块链和人工智能的广告推送方法。
CN202011253976.1A 2020-11-11 2020-11-11 基于区块链和人工智能的广告推送方法及大数据挖掘中心 Active CN112308626B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011253976.1A CN112308626B (zh) 2020-11-11 2020-11-11 基于区块链和人工智能的广告推送方法及大数据挖掘中心
CN202110381334.8A CN113077286A (zh) 2020-11-11 2020-11-11 基于区块链和人工智能的兴趣检索方法及大数据挖掘中心
CN202110381264.6A CN113077285A (zh) 2020-11-11 2020-11-11 基于区块链和人工智能的信息反馈方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011253976.1A CN112308626B (zh) 2020-11-11 2020-11-11 基于区块链和人工智能的广告推送方法及大数据挖掘中心

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202110381264.6A Division CN113077285A (zh) 2020-11-11 2020-11-11 基于区块链和人工智能的信息反馈方法及系统
CN202110381334.8A Division CN113077286A (zh) 2020-11-11 2020-11-11 基于区块链和人工智能的兴趣检索方法及大数据挖掘中心

Publications (2)

Publication Number Publication Date
CN112308626A true CN112308626A (zh) 2021-02-02
CN112308626B CN112308626B (zh) 2021-12-07

Family

ID=74325742

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202110381264.6A Withdrawn CN113077285A (zh) 2020-11-11 2020-11-11 基于区块链和人工智能的信息反馈方法及系统
CN202110381334.8A Withdrawn CN113077286A (zh) 2020-11-11 2020-11-11 基于区块链和人工智能的兴趣检索方法及大数据挖掘中心
CN202011253976.1A Active CN112308626B (zh) 2020-11-11 2020-11-11 基于区块链和人工智能的广告推送方法及大数据挖掘中心

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN202110381264.6A Withdrawn CN113077285A (zh) 2020-11-11 2020-11-11 基于区块链和人工智能的信息反馈方法及系统
CN202110381334.8A Withdrawn CN113077286A (zh) 2020-11-11 2020-11-11 基于区块链和人工智能的兴趣检索方法及大数据挖掘中心

Country Status (1)

Country Link
CN (3) CN113077285A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114663187A (zh) * 2022-03-30 2022-06-24 李海燕 基于人工智能与电子商城的业务数据处理方法及系统
CN114708008A (zh) * 2021-12-30 2022-07-05 北京有竹居网络技术有限公司 一种推广内容处理方法、装置、设备、介质及产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130347032A1 (en) * 2012-06-21 2013-12-26 Ebay Inc. Method and system for targeted broadcast advertising
US20140278952A1 (en) * 2013-03-15 2014-09-18 Yahoo! Inc. Online advertisement push delivery
CN107358459A (zh) * 2017-06-15 2017-11-17 浙江启冠网络股份有限公司 基于定向房产兴趣人群的广告投放方法与系统
CN109523302A (zh) * 2018-10-19 2019-03-26 中链科技有限公司 基于区块链的广告推送方法、装置及计算设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130347032A1 (en) * 2012-06-21 2013-12-26 Ebay Inc. Method and system for targeted broadcast advertising
US20140278952A1 (en) * 2013-03-15 2014-09-18 Yahoo! Inc. Online advertisement push delivery
CN107358459A (zh) * 2017-06-15 2017-11-17 浙江启冠网络股份有限公司 基于定向房产兴趣人群的广告投放方法与系统
CN109523302A (zh) * 2018-10-19 2019-03-26 中链科技有限公司 基于区块链的广告推送方法、装置及计算设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李晓红等: "视频网站广告精准投放的策略研究", 《现代经济信息》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114708008A (zh) * 2021-12-30 2022-07-05 北京有竹居网络技术有限公司 一种推广内容处理方法、装置、设备、介质及产品
CN114663187A (zh) * 2022-03-30 2022-06-24 李海燕 基于人工智能与电子商城的业务数据处理方法及系统

Also Published As

Publication number Publication date
CN113077285A (zh) 2021-07-06
CN112308626B (zh) 2021-12-07
CN113077286A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN112464084B (zh) 基于大数据定位和人工智能的业务优化方法及云计算中心
US11631029B2 (en) Generating combined feature embedding for minority class upsampling in training machine learning models with imbalanced samples
CN112308627B (zh) 基于区块链和人工智能的广告数据接入方法及大数据中心
CN112184872B (zh) 基于大数据和云计算的游戏渲染优化方法及云端计算中心
CN112199580B (zh) 面向云计算和大数据定位的业务处理方法及人工智能平台
CN112308626B (zh) 基于区块链和人工智能的广告推送方法及大数据挖掘中心
CN108121814B (zh) 搜索结果排序模型生成方法和装置
CN112394942A (zh) 基于云计算的分布式软件开发编译方法及软件开发平台
JP7194233B2 (ja) オブジェクト推薦方法、ニューラルネットワークおよびそのトレーニング方法、装置ならびに媒体
CN113326442A (zh) 基于大数据定位的推荐素材推送方法、系统及云计算中心
CN112600893A (zh) 基于大数据定位的软件应用数据挖掘方法及软件服务平台
CN112187890B (zh) 基于云计算和大数据的信息分发方法及区块链金融云中心
CN116680689B (zh) 应用于大数据的安全态势预测方法及系统
CN112199733B (zh) 基于区块链和云计算的信息处理方法及数字金融服务中心
CN112199715B (zh) 基于区块链和云计算的对象生成方法及数字金融服务中心
CN114238740A (zh) 一种确定代理主体代理品牌的方法及装置
CN112579756A (zh) 基于云计算和区块链的服务响应方法及人工智能互动平台
CN113495749B (zh) 车载设备的识别方法、装置、系统、设备及可读介质
CN116738082B (zh) 基于人工智能的气象服务信息展示优化方法及服务器
CN118363932B (zh) 基于无人机的智能巡逻方法及系统
CN113327016A (zh) 基于区块链的化妆品生产信息索引方法、系统及数据中心
CN113327010A (zh) 基于化妆品生产过程的反馈控制方法及人工智能中心
CN112487074A (zh) 基于大数据定位和云计算的软件调用方法及软件服务平台
CN112328286A (zh) 基于云计算的软件开发应用更新处理方法及软件开发平台
CN115481036A (zh) 一种驾驶模型的测试方法、装置、设备及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Yuan Daohong

Inventor after: Chen Weiwei

Inventor before: Chen Weiwei

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20211111

Address after: 465299 Nongfu Pu Zi digital economy industrial park, Gushi County, Xinyang City, Henan Province

Applicant after: Nongfu shop Development Group Co., Ltd

Address before: Room 718, 7 / F, phase II complex building, Jinding Science and Technology Park, 690 Xuefu Road, Wuhua District, Kunming, Yunnan 650000

Applicant before: Chen Weiwei

GR01 Patent grant
GR01 Patent grant