CN112300788A - 一种核-点壳结构光磁纳米探针及其制备方法和应用 - Google Patents

一种核-点壳结构光磁纳米探针及其制备方法和应用 Download PDF

Info

Publication number
CN112300788A
CN112300788A CN202011205143.8A CN202011205143A CN112300788A CN 112300788 A CN112300788 A CN 112300788A CN 202011205143 A CN202011205143 A CN 202011205143A CN 112300788 A CN112300788 A CN 112300788A
Authority
CN
China
Prior art keywords
core
point shell
nanoprobe
shell structure
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011205143.8A
Other languages
English (en)
Other versions
CN112300788B (zh
Inventor
殷金昌
邵元智
曲鸿斌
汪项
张吴忌
郑宏挺
林晋纬
吴中华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202011205143.8A priority Critical patent/CN112300788B/zh
Publication of CN112300788A publication Critical patent/CN112300788A/zh
Application granted granted Critical
Publication of CN112300788B publication Critical patent/CN112300788B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/183Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an inorganic material or being composed of an inorganic material entrapping the MRI-active nucleus, e.g. silica core doped with a MRI-active nucleus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1857Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
    • A61K49/186Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA the organic macromolecular compound being polyethyleneglycol [PEG]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种核‑点壳结构光磁纳米探针及其制备方法和应用,该光磁纳米探针包括SiO2核、作为点壳分布于SiO2核表面的掺杂金属离子的Gd2O3颗粒和挂接于SiO2核表面的靶标分子;所述金属离子为Yb3+和Er3+,或者Yb3+、Er3+和Li+。本发明提供的核‑点壳结构光磁纳米探针具有良好的磁共振弛豫增强性能、生物相容性和结构稳定性,可作为造影剂应用于核磁共振增强成像;同时该光磁纳米探针具有优异的上转换光致发光能力,在近红外激发下通过光磁纳米探针转换为红光及绿光,使得光磁纳米探针具有肿瘤细胞高灵敏度多色光学成像。

Description

一种核-点壳结构光磁纳米探针及其制备方法和应用
技术领域
本发明涉及纳米生物材料技术领域,更具体的,涉及一种核-点壳结构光磁纳米探针及其制备方法和应用。
背景技术
磁共振成像(MRI)是基于核磁共振原理,并增设线性梯度场对磁性核进行空间编码,从而得到观测核所处位置与其相应磁共振信号之间像图的技术,目前已发展成为临床医学上广泛使用的重要诊断手段。磁共振成像造影剂是这一技术的重要组成部分,它能改变成像核的某些参数,进而提高成像对比度。
1987年Gd-DTPA作为MRI造影剂正式被美国食品药品管理局批准,经大量药理和临床应用研究证明Gd-DTPA是一种安全、方便、增强效果良好的造影剂,可应用于全身所有器官和组织的检查。但它具有弛豫效能较低等缺点,已不能满足日益发展的磁共振成像技术的要求。
邵元智等(Jinchang Yin,Deqi Chen,Yu Zhang,Chaorui Li,Deqi Chen,LizhiLiu and Yuanzhi Shao,MRI relaxivity enhancement of gadolinium oxidenanoshells with a controllable shell thickness,Phys.Chem.Chem.Phys.,2018,20,10038-10047.)报道了一种纳米探针,其结构是Gd2O3包裹在SiO2表面,其弛豫效率比目前临床造影剂Gd-DTPA的弛豫率高六七倍,磁共振成像增强的能力很强;但Gd2O3作为一种晶体,和水不相容,在水溶液里容易沉淀,生物相容性较差。陈弟虎等(Luo Ning-Qi,HuangZhang-Yun,Li L,Shao Yuan-Zhi and Chen Di-Hu,Single-step fabrication of Gd2O3@SiO2 nanoparticles for use as MRI contrastagents by pulsed laser ablation inliquid,Chin.Phys.Lett.2013,30(3):038101.)报道了另一种纳米探针,其结构是SiO2包裹在Gd2O3表面,由于SiO2良好的水溶性,这种探针的生物相容性非常好,但是因为Gd2O3在内层,其磁共振成像的弛豫效率较差。
因此,需要开发出一种同时具有良好弛豫效率和生物相容性的纳米探针。
发明内容
本发明为克服上述现有技术所述的弛豫效率和生物相容性无法兼具的缺陷,提供一种核-点壳结构光磁纳米探针,提供的光磁纳米探针具有良好的磁共振弛豫能力、生物相容性和结构稳定性。
本发明的另一目的在于提供上述光磁纳米探针的制备方法。
本发明的另一目的在于提供上述光磁纳米探针作为造影剂在磁共振成像中的应用。
本发明的另一目的在于提供上述光磁纳米探针在活细胞多色细胞荧光成像中的应用。
为解决上述技术问题,本发明采用的技术方案是:
一种核-点壳结构光磁纳米探针,包括SiO2核、作为点壳分布于SiO2核表面的掺杂金属离子的Gd2O3颗粒和挂接于SiO2核表面的靶标分子;
所述金属离子为Yb3+和Er3+,或者Yb3+、Er3+和Li+
发明人通过研究发现,Gd2O3以点壳的形式分布于SiO2核表面,充分利用了Gd2O3弛豫效率高、SiO2水溶性好的优势,并解决了光磁纳米探针的弛豫效率和生物相容性无法兼具的缺陷,获得了高生物相容性和高弛豫效率的光磁纳米探针。
优选地,所述SiO2核的粒径为40~80nm。
优选地,所述Gd2O3颗粒的粒径为3~8nm。
优选地,所述光磁纳米探针中SiO2核的Si原子与Gd2O3颗粒的Gd原子的摩尔比为1~3:1。
优选地,所述Yb3+掺杂浓度为总稀土离子浓度的3~9mol%;所述Yb3+与Er3+的摩尔比为3~9:2。
更优选地,所述Yb3+掺杂浓度为总稀土离子浓度的5mol%。
更优选地,所述Yb3+与Er3+的摩尔比为5:2。
优选地,所述Li+掺杂浓度为总稀土离子浓度的4~8mol%。
更优选地,所述Yb3+掺杂浓度为总稀土离子浓度的6mol%。
稀土元素指的是化学元素周期表中包括镧系元素在内的IIIB族17个元素,其具有独特的类原子性质,电子能级非常丰富。稀土离子4f能级上的电子可以占据在任意的轨道上,发射的光子波长范围非常广,发光颜色的纯度高,且其激发态的平均寿命较高,物理化学性质较为稳定,适应外界环境变化的能力较强,可承受较高功率的辐射。
本发明使用Gd、Yb和Er三种稀土元素,以Gd2O3主体并在其中掺杂适量的Yb3+和Er3+作为发光材料。发明人通过研究发现,Gd2O3:Yb3+/Er3+纳米颗粒发光强度对于稀土离子的掺杂浓度变化十分敏感,当Yb3+掺杂浓度为3~9mol%时,Gd2O3:Yb3+/Er3+纳米颗粒在544nm和671nm波段的综合发光强度较强。
Li+能够增强稀土离子荧光强度,发明人研究发现当Li+掺杂浓度为4~8mol%时,Gd2O3:Yb3+/Er3+/Li+纳米颗粒在544nm和671nm波段的发光强度较高。
优选地,所述靶标分子为叶酸-聚乙二醇(叶酸PEG)分子。
利用光磁纳米探针的核-点壳结构,在SiO2核表面挂接靶标分子应用于肿瘤靶向成像,通过肿瘤表面丰富的叶酸受体,能够有效吸收挂接叶酸分子的纳米颗粒。
发明人通过对三种常用肿瘤细胞(宫颈癌细胞、鼻咽癌细胞、乳腺癌细胞)进行筛选研究发现,光磁纳米探针在这三种细胞中均展现出红绿色发光信号。并且在荷瘤小鼠中展现良好靶向磁共振增强成像。
本发明还保护上述光磁纳米探针的制备方法,所述制备方法包括如下步骤:
S1.SiO2核的制备:
配制含有乙醇和氨水的混合溶液,35~45℃恒温条件下加入正硅酸乙酯,搅拌条件下充分反应,经离心、洗涤后,得到SiO2核;
S2.核-点壳结构纳米颗粒的制备:
SiO2核溶于含有尿素的去离子水中,加入金属盐溶液,60~90℃恒温条件下充分反应,经离心、洗涤、干燥、煅烧,得到核-点壳结构纳米颗粒;所述金属盐溶液中金属盐为钆盐、铒盐和镱盐,或者钆盐、铒盐、镱盐和锂盐;
S3.挂接靶标分子:
核-点壳结构纳米颗粒分散于乙醇溶液中后,加入3-氨丙基三乙氧基硅烷(APTES)的乙醇溶液,经过回流、离心、乙醇洗涤、干燥,得到氨基化的核-点壳结构纳米颗粒;将氨基化的核-点壳结构纳米颗粒分散于二甲亚砜溶液中,加入叶酸-聚乙二醇-羧基和失水剂,搅拌后分别使用二甲亚砜、乙醇、水洗涤,得到核-点壳结构光磁纳米探针。
优选地,上述步骤S2中所述钆盐、铒盐、镱盐和锂盐分别为为Gd3+、Yb3+、Er3+和Li+的硝酸盐或硫酸盐。
更优选地,上述步骤S2中所述钆盐、铒盐、镱盐和锂盐分别为Gd(NO3)3·6H2O、Yb(NO3)3·6H2O、Er(NO3)3·6H2O、LiNO3
优选地,上述步骤S3中所述失水剂为二环己基碳二亚胺和N-羟基丁二酰亚胺。
本发明的另一目的在于提供上述光磁纳米探针作为造影剂在磁共振成像中的应用。
本发明的另一目的在于提供上述光磁纳米探针在肿瘤细胞多色光学成像中的应用。
与现有技术相比,本发明的有益效果是:
本发明创造性地制备出核-点壳结构光磁纳米探针,其具有优异的磁共振弛豫能力、生物相容性和结构稳定性,可作为造影剂应用于核磁共振成像;同时该光磁纳米探针具有优异的上转换光致发光能力,在近红外激发下通过光磁纳米探针转换为红光及绿光,使得光磁纳米探针具有肿瘤细胞高灵敏度多色光学成像。
附图说明
图1为实施例1制备核-点壳结构光磁纳米探针的路线示意图。
图2为实施例1制备的核-点壳结构光磁纳米探针的形貌和结构表征结果图;图2a、2b、2c、2d分别对应图1中光磁纳米探针制备过程的各结构的透射电镜图;图2e为核-点壳光磁纳米探针的暗场扫描透射电镜图;图2f、2g、2h分别为O,Si,Gd元素能谱Mapping图;图2i为光磁纳米探针EDS能谱;图2j为高分辨透射电镜和快速傅里叶变换图;图2k为探针X-射线衍射图(XRD)及标准单斜氧化钆XRD峰位。
图3为实施例1制备的核-点壳结构光磁纳米探针(CDSNPs)胶体溶液放置120h内的水合粒径变化图。
图4为实施例1制备的核-点壳结构光磁纳米探针的核磁驰豫性能检测结果。
图5为实施例1~6制备的核-点壳结构光磁纳米探针的发光强度变化曲线(a)和红绿光峰值的变化曲线(b)。
图6为实施例1及7~11制备的核-点壳结构光磁纳米探针的红绿光峰值的变化曲线(a)和红绿光通道CIE图(b)。
图7为实施例1制备的核-点壳结构光磁纳米探针的体内磁共振成像图、活细胞上转换发光成像图和荧光成像图;其中图7a、图7b为光磁纳米探针的体内磁共振成像图:向4T1乳腺癌肿瘤鼠注射光磁纳米探针后在不同时间段磁共振成像图及肿瘤部位信号变化;图7c、图7d、图7e分别为光磁纳米探针与HeLa宫颈癌细胞、CNE2鼻咽癌细胞、4T1乳腺癌细胞的活细胞上转换发光成像图:光磁纳米探针分别与其共孵育2h后,在980nm激光器照射下红绿光通道收集到的荧光成像图;图7f、图7g、图7h分别为PBS溶液、无叶酸挂接核-点壳探针、有叶酸挂接核-点壳探针与4T1乳腺癌细胞共孵育2h后,在980nm激光器照射下绿光通道下收集到的DAPI染色图,暗场荧光图,明场成像图以及各图片叠加后的细胞共聚焦成像图。
图8为实施例1的核-点壳结构光磁纳米探针的多色发光和磁共振弛豫性能增强理论分析示意图。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
实施例中的原料均可通过市售得到;
除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
本实施例提供一种核-点壳结构光磁纳米探针,制备路线如图1所示,该光磁纳米探针的制备方法如下:
S1.SiO2核的制备:
向100ml无水乙醇中加入2ml去离子水,再加入6ml 25%(体积分数)的浓氨水,放置于40℃恒温水浴,再加入3ml正硅酸乙酯,持续搅拌24h;将其以10000r/min速率离心15min,再用无水乙醇和去离子水循环洗涤3次,得到SiO2核,溶于乙醇中,得到SiO2核乙醇溶液并等分6份后备用。
S2.核-点壳结构纳米颗粒的制备:
取1份SiO2核乙醇溶液以10000r/min速率离心15min得到SiO2核,溶于含有3g尿素的95ml离子水中,向其分别加入0.5ml金属盐溶液,该金属盐溶液中含有Gd(NO3)3·6H2O、Yb(NO3)3·6H2O和Er(NO3)3·6H2O、的浓度分别为93mol%、2mol%、5mol%,放于80℃水浴5h后,以9000r/min速率离心8min收集,使用去离子水洗涤3次,乙醇洗涤3次,溶于去离子水中,再干燥,得到SiO2@Gd2O(CO3)2:Yb3+/Er3+纳米颗粒;
冷冻干燥12h后,将SiO2@Gd2O(CO3)2:Yb3+/Er3+纳米颗粒锻烧,煅烧温度为800℃,程序升温5h,保温2h。待冷却后收集颗粒,得到核-点壳结构纳米颗粒,即SiO2@Gd2O3:Yb3+/Er3+纳米颗粒。
S3.挂接靶标分子:
将制备所得到的SiO2@Gd2O3:Yb3+/Er3+/Li+核-点壳结构纳米颗粒离心后后超声分散于50mL乙醇溶液中,加入0.5mL 5%(体积比)的3-氨丙基三乙氧基硅烷(APTES)乙醇溶液,在60℃下回流12h,离心,使其表面挂接上氨基,用乙醇洗涤两次去除未反应的APTES,并真空干燥。将氨基化的SiO2@Gd2O3:Yb3+/Er3+/Li+核-点壳结构纳米颗粒超声分散在20mL二甲亚砜(DMSO)中,加入0.01g叶酸-聚乙二醇-羧基(叶酸-PEG-COOH),以及一些失水剂二环己基碳二亚胺(DCC)和N-羟基丁二酰亚胺(NHS),搅拌24h后分别用二甲亚砜、乙醇、水各清洗两遍,得到修饰PEG-Folate的最终产品,SiO2@Gd2O3:Yb3+/Er3+/Li+核-点壳结构光磁纳米探针,得到核-点壳结构光磁纳米探针。
实施例2~6
实施例2~6分别提供一种核-点壳结构光磁纳米探针,实施例2~6提供的光磁纳米探针的制备方法与实施例1的区别在于,步骤S2的金属盐溶液中Yb(NO3)3的浓度分别为1mol%、2mol%、3mol%、7mol%、9mol%;
其他原料的用量和操作与实施例1相同。
实施例7~11
实施例7~11分别提供一种核-点壳结构光磁纳米探针,实施例7~11提供的光磁纳米探针的制备方法与实施例1的区别在于,步骤S2的金属盐溶液中还含有LiNO3,LiNO3的浓度分别为1mol%、2mol%、4mol%、6mol%、8mol%;
其他原料的用量和操作与实施例1相同。实施例7~11制得的核-点壳结构纳米颗粒命名为SiO2@Gd2O3:Yb3+/Er3+/Li+纳米颗粒。
测试方法
(1)形貌和结构测试
通过TEM观察形貌结构,通过Mapping分析组成成分,并通过X-射线衍射(XRD)分析核-点壳结构探针的物相,测试及制样的具体步骤如下:
TEM测试方法为:采用设备120kV透射电子显微镜(TEM,FET Tecnai G2SpiritF12)进行形貌观察,300kV透射电子显微镜(TEM,FEI Tecnai-G2 F30)中的高分辨(HRTEM)和选区电子衍射(SAED)功能对样品的微观结构进行分析,用利用电镜配备的能量色散X射线光谱仪(EDS,简称能谱)对样品进行成分分析并进行MAPPING元素扫描。制样及测试过程:取少量样品分散于10ml环己烷中,超声分散0.5h,取一滴液体滴于200目碳支持膜铜网上,静置10分钟后再取一滴于碳膜铜网上,如此反复操作三至四次,放于鼓风干燥箱,在60℃恒温条件下经10小时烘干,将负载样品的铜网置于透射电子显微镜下,抽真空,调动放大倍数,观察样品形貌。
XRD测试方法为:样品粉末通过X射线衍射仪(Rigaku D-MAX 2200VPC)对样品的物相和结构进行测试分析,测试条件为:加速电压为30kV,使用Cu Kα射线辐射(λ=0.15405nm),在2θ角为10°到80°范围内以8°/min的速率扫描。测试时,取少量粉末加入到XRD专用的方形槽中压片,压片时注意要压实而压均匀,然后放入样平台,测量样品衍射谱。
(2)水合粒径检测方法
采用动态光散射的方法测量探针胶体溶液的水合粒径分布,所有仪器为布鲁克(Brookhaven)动态光散射仪(EliteSizer)。探针分散于水溶液中后超声0.5h,再静置15min,放入仪器检测其水合粒径数值,平行检测5循环。胶体溶液取出静置,每个地一段时间检测其水合粒径,共检测120h,作出粒径变化曲线图。
(3)发光强度测试
使用Edinburgh FLSP920或FLS980荧光光谱仪测试稀土金属掺杂样品的测定光致发光激发和发射光谱。稳态光谱测试采用980nm半导体激光器为激发光源、R928P型红敏光电倍增管或R5509-72近红外光电倍增管作为探测器,上转换样品的瞬态光谱测试中采用脉冲调制的980nm半导体激光器进行激发。
(4)肿瘤鼠磁共振成像测试
采用了Balb/c裸鼠移植瘤模型,使用西门子公司生产的3.0T临床商用核磁共振成像系统进行测试,具体步骤如下:
M1.取4~6周大的Balb/c裸鼠若干只(购自中山大学医学院动物实验中心),用来皮下移植肿瘤细胞:于裸鼠后肢腹侧,经皮下注射100μl含有乳腺癌4T1细胞(5×106)的PBS溶液,观察肿瘤生长;
M2.Balb/c裸鼠经喂养十天左右,待其移植瘤尺寸增大到60mm3,尾静脉注射0.1%戊巴比妥钠将其麻醉,然后尾静脉注射100μL的核-点壳结构光磁纳米探针的PBS或生理盐水溶液,再将小鼠放入磁共振成像系统观察,横断面或者冠状面成像。扫描参数:T1轴位:FOV=64mm,slice thickness=2.0mm,TR=600ms,TE=12ms,averages=6。
(5)肿瘤细胞光学成像测试:
将宫颈癌HeLa细胞(Cervical carcinoma HeLa cells)、鼻咽癌CNE2细胞(Nasopharyngeal carcinoma CNE2 cells)或乳腺癌4T1细胞(4T1 murine breast cancercells)接种在24孔培养板上,于37℃、5%CO2环境下在包含有10%胎牛血清(fetal bovineserum)、青霉素(100单位/mL)和链霉素(100mg/mL)的Dulbecco’s modified Eagle’smedia(DMEM)中培养。在生长至对数生长期后,用磷酸盐缓冲液(PBS)洗涤细胞并在含有20μg/mL样品的新鲜培养基中在相同环境下再培养2小时。除去含有过量样品的培养基,然后把PBS洗涤过的细胞固定住并使用共焦激光扫描显微镜(Leica TCS SP8X)成像。将用于荧光成像的发射光波长设定为980nm,并选择性使用带通滤波器以得到活细胞荧光图像。
测试结果
将实施例1制备的光磁纳米探针置于120kV电镜下观察其形貌,结果如图2所示,其具有明显的核-点壳结构。根据所有电镜下的图片对光磁纳米探针SiO2核和Gd2O3颗粒的直径进行测量,其中SiO2核的粒径为40~80nm,平均粒径为58.8nm;Gd2O3颗粒的粒径为3~8nm,平均粒径为5.7nm。
透射电镜图表明二氧化硅(图2a)、SiO2@Gd2O(CO3)2:Yb3+/Er3+/Li+核壳结构前驱体(图2b)、未挂接叶酸PEG(图2c)和挂接叶酸PEG(图2d)的核-点壳光磁纳米探针均具有良好的分散性和均一性,核壳结构前驱体与核-点壳结构光磁纳米探针的成型率均接近于100%;探针在挂接叶酸PEG前后均保持清晰规整的核-点壳结构。
将实施例1制备的光磁纳米探针置于300kV电镜下,通过mapping观察光磁纳米探针某一颗粒部位的元素分布,结果如图2所示。可以看到,Si元素主要分布在内核部分(图2g),Gd元素主要分布在外壳部分且呈点状(图2h),这基本上符合核-点壳结构的特点。由图2i,可以看出Gd与Si质量比约为1.55:1。由图2j,实施例1制备的光磁纳米探针晶格间距为0.311nm。
实施例1制备的光磁纳米探针的能量色散X-射线衍射图如图2k所示。通过图2k可以看出,XRD图中所有谱峰与立方相氧化钆标准卡片(PDF#65-3181)中谱峰相对应,并且在XRD的检测极限内没有观察到杂质相的存在。在23°左右有馒头状坡峰,是非晶二氧化硅的典型衍射峰。
将实施例1制备的光磁纳米探针置于胶体溶液中,观察其水合粒径变化,如图3所示,胶体溶液中的颗粒在长达120h后仍然保持最初的水合粒径,没有任何明显的沉积,表明叶酸PEG包裹的核-点壳结构光磁纳米探针具有良好的生物相容性、水分散性和稳定性。
通过经典Solomon-Bloembergen-Morgan(SBM)理论解释分析磁共振成像性能,并得到实施例1的光磁纳米探针的核磁驰豫理论分析结果,与市售的Gd-DTPA对比,结果如图4所示。根据图4可知,由于稀土钆中心高自旋产生的顺磁弛豫增强和纳米氧化钆点壳高比表面积特性引起的交换作用增强,使得核-点壳光磁纳米探针(39.08s-1mM-1)展现出比临床造影剂Gd-DTPA(4.2s-1mM-1)高出将近9倍的弛豫效率。核-点壳结构具有独特的量子限域效应和表面水吸附效应使其弛豫率数值要比核-壳结构探针(16.17s-1mM-1)和氧化钆纳米点(20.34s-1mM-1)要大20s-1mM-1左右。
实施例1~6制备的光磁纳米探针发光强度的测试结果如图5a所示。可以看出,在不同的Yb3+掺杂浓度下各光磁纳米探针的发光强度有一定差异。Gd2O3:Yb3+/Er3+纳米颗粒发光强度对于Yb3+的掺杂浓度变化十分敏感,且随着掺杂浓度的不断升高,671nm的红光波段的强度在不断增加,而544nm绿光波段的强度呈现先增后减的趋势。图5b是选择了544nm和671nm波段的强度变化,其发光的强度总和也呈现先增后减的趋势。在综合分析这两张图后,本申请认为最适合纳米颗粒的Yb3+浓度为3~9mol%,这样的纳米颗粒总的发光效率足够高。
实施例7~11及实施例1制备的光磁纳米探针发光强度的测试结果如图6所示。可以看出,在不同的Li+掺杂浓度下各Gd2O3:Yb3+/Er3+/Li+纳米颗粒的发光强度有一定差异。当改变Li+浓度时纳米颗粒发光强度也会有较大的变化,当Li+离子浓度较少时,随着浓度逐渐增大,发光强度逐渐增加;当浓度达到6mol%时,发光强度到达顶峰;之后随着Li+浓度的增大,发光强度反而会减少。因此,最适合纳米颗粒的Li+离子浓度为4~8mol%。
由图7可以看出,用共聚焦激光扫描显微镜对纳米颗粒处理后的宫颈癌HeLa细胞、CNE2鼻咽癌细胞、4T1乳腺癌细胞进行体外成像实验(图7c、图7d、图7e),细胞荧光成像同时还能够用于评估细胞吸收样品的情况(图7f、图7g、图7h)。采用的激发波长为980nm,发射光波长分别位于红绿两个不同的波段。采用500~570nm和600~670nm两个发射光波段能够清晰的观察到细胞发绿色和红色荧光,表明所制备纳米颗粒可用于细胞双色荧光成像。细胞明场图像和共聚焦荧光图像能够完好重合,表明活细胞没有明显的损伤,并且能够有效吞噬纳米颗粒。从图中细胞光学成像的结果可以看到纳米颗粒主要分布于细胞质。明亮可见的细胞光学图像表明所制备纳米颗粒具有用于体内生物成像和生物标记的潜能。采用PBS溶液、无叶酸挂接核-点壳探针、有叶酸挂接核-点壳探针与4T1乳腺癌细胞共孵育2h后,在980nm激光器照射下绿光通道下收集到的DAPI染色图,暗场荧光图,明场成像图以及个图片叠加后的细胞共聚焦成像图。可以看到在相同条件下,挂接叶酸的光磁纳米探针能够有效快速被细胞内吞,这主要归因于4T1乳腺癌细胞中具有更高的叶酸受体表达水平。
实施例1制得的光磁纳米探针能够实现磁共振增强成像和肿瘤细胞多色光学成像,示意图如图8所示。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种核-点壳结构光磁纳米探针,其特征在于,包括SiO2核、作为点壳分布于SiO2核表面的掺杂金属离子的Gd2O3颗粒和挂接于SiO2核表面的靶标分子;
所述掺杂金属离子为Yb3+和Er3+,或者Yb3+、Er3+和Li+
2.根据权利要求1所述核-点壳结构光磁纳米探针,其特征在于,所述SiO2核的粒径为40~80nm。
3.根据权利要求1所述核-点壳结构光磁纳米探针,其特征在于,所述Gd2O3颗粒的粒径为3~8nm。
4.根据权利要求1所述核-点壳结构光磁纳米探针,其特征在于,所述核-点壳结构光磁纳米探针中SiO2核的Si原子与Gd2O3颗粒的Gd原子的摩尔比为1~3:1。
5.根据权利要求1所述核-点壳结构光磁纳米探针,其特征在于,所述Yb3+掺杂浓度为总稀土离子浓度的3~9mol%。
6.根据权利要求1所述核-点壳结构光磁纳米探针,其特征在于,所述Li+掺杂浓度为总稀土离子浓度的4~8mol%。
7.权利要求1~6任一项所述核-点壳结构光磁纳米探针的制备方法,其特征在于,包括如下步骤:
S1.SiO2核的制备:
配制含有乙醇和氨水的混合溶液,35~45℃恒温条件下加入正硅酸乙酯,搅拌条件下充分反应,经离心、洗涤后,得到SiO2核;
S2.核-点壳结构纳米颗粒的制备:
SiO2核溶于含有尿素的去离子水中,加入金属盐溶液,60~90℃恒温条件下充分反应,经离心、洗涤、干燥、煅烧,得到核-点壳结构纳米颗粒;所述金属盐溶液中金属盐为钆盐、铒盐和镱盐,或者钆盐、铒盐、镱盐和锂盐;
S3.挂接靶标分子:
核-点壳结构纳米颗粒分散于乙醇溶液中后,加入3-氨丙基三乙氧基硅烷的乙醇溶液,经过回流、离心、乙醇洗涤、干燥,得到氨基化的核-点壳结构纳米颗粒;将氨基化的核-点壳结构纳米颗粒分散于二甲亚砜溶液中,加入叶酸-聚乙二醇-羧基和失水剂,搅拌后经过洗涤,得到核-点壳结构光磁纳米探针。
8.根据权利要求7所述制备方法,其特征在于,所述钆盐、铒盐、镱盐和锂盐分别为Gd(NO3)3·6H2O、Yb(NO3)3·6H2O、Er(NO3)3·6H2O、LiNO3
9.权利要求1~6任一项所述核-点壳结构光磁纳米探针作为造影剂在磁共振成像中的应用。
10.权利要求1~6任一项所述核-点壳结构光磁纳米探针在活细胞多色细胞荧光成像中的应用。
CN202011205143.8A 2020-11-02 2020-11-02 一种核-点壳结构光磁纳米探针及其制备方法和应用 Active CN112300788B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011205143.8A CN112300788B (zh) 2020-11-02 2020-11-02 一种核-点壳结构光磁纳米探针及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011205143.8A CN112300788B (zh) 2020-11-02 2020-11-02 一种核-点壳结构光磁纳米探针及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112300788A true CN112300788A (zh) 2021-02-02
CN112300788B CN112300788B (zh) 2023-05-26

Family

ID=74333727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011205143.8A Active CN112300788B (zh) 2020-11-02 2020-11-02 一种核-点壳结构光磁纳米探针及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112300788B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113801653A (zh) * 2021-10-19 2021-12-17 中山大学 一种近红外二区发光/测温纳米探针及其制备方法和应用
CN115181568A (zh) * 2022-06-21 2022-10-14 内蒙古大学 一种多层核-壳结构复合纳米双模发光材料的合成
CN115381968A (zh) * 2022-08-23 2022-11-25 中山大学 一种稀土-有机复合光学纳米探针及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882364A (zh) * 2003-11-17 2006-12-20 皇家飞利浦电子股份有限公司 用于医学成像技术的造影剂及其应用
WO2008048074A1 (en) * 2006-10-20 2008-04-24 Seoul National University Industry Foundation Use of core-shell gold nanoparticle which contains magnetic nanoparticles for mri t2 contrast agent, cancer diagnostic and therapy
JP2010037169A (ja) * 2008-08-07 2010-02-18 Keio Gijuku 蛍光及び磁気共鳴によるデュアルモーダルイメージング用ナノ粒子、及びその製造方法
CN102834486A (zh) * 2010-03-31 2012-12-19 海洋王照明科技股份有限公司 双重核壳荧光材料及其制备方法
CN108175859A (zh) * 2018-02-11 2018-06-19 中山大学 一种多模磁光热诊疗一体化纳米探针及其制备方法和应用
CN108853497A (zh) * 2018-07-04 2018-11-23 青岛大学 基于上转换纳米颗粒和超薄二氧化硅层构建靶向光动力纳米探针
CN110974960A (zh) * 2019-12-05 2020-04-10 中山大学 一种哑铃结构的复合纳米探针及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882364A (zh) * 2003-11-17 2006-12-20 皇家飞利浦电子股份有限公司 用于医学成像技术的造影剂及其应用
WO2008048074A1 (en) * 2006-10-20 2008-04-24 Seoul National University Industry Foundation Use of core-shell gold nanoparticle which contains magnetic nanoparticles for mri t2 contrast agent, cancer diagnostic and therapy
JP2010037169A (ja) * 2008-08-07 2010-02-18 Keio Gijuku 蛍光及び磁気共鳴によるデュアルモーダルイメージング用ナノ粒子、及びその製造方法
CN102834486A (zh) * 2010-03-31 2012-12-19 海洋王照明科技股份有限公司 双重核壳荧光材料及其制备方法
CN108175859A (zh) * 2018-02-11 2018-06-19 中山大学 一种多模磁光热诊疗一体化纳米探针及其制备方法和应用
CN108853497A (zh) * 2018-07-04 2018-11-23 青岛大学 基于上转换纳米颗粒和超薄二氧化硅层构建靶向光动力纳米探针
CN110974960A (zh) * 2019-12-05 2020-04-10 中山大学 一种哑铃结构的复合纳米探针及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUAN LIU ET AL.: "Synthesis and Characterization of Bifunctional SiO2@(Y0.95–xGdxEu0.05)2O3 Nanocomposites for Magnetic Resonance and Optical Imaging", 《EUR. J. INORG. CHEM.》 *
JINCHANG YIN ER AL.: "Structure and dysprosium dopant engineering of gadolinium oxide nanoparticles for enhanced dual-modal magnetic resonance and fluorescence imaging", 《PHYS. CHEM. CHEM. PHYS.》 *
JINCHANG YIN ET AL.: "MRI relaxivity enhancement of gadolinium oxide nanoshells with a controllable shell thickness", 《PHYS. CHEM. CHEM. PHYS.》 *
刘芳同: "基于 CdTe 量子点的荧光/磁共振双模成像材料的合成研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *
司元纯 等: "超小氧化钆点缀的介孔二氧化硅作为磁共振 T1 造影剂的实验研究", 《安徽医科大学学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113801653A (zh) * 2021-10-19 2021-12-17 中山大学 一种近红外二区发光/测温纳米探针及其制备方法和应用
CN115181568A (zh) * 2022-06-21 2022-10-14 内蒙古大学 一种多层核-壳结构复合纳米双模发光材料的合成
CN115181568B (zh) * 2022-06-21 2024-06-07 内蒙古大学 一种多层核-壳结构复合纳米双模发光材料的合成
CN115381968A (zh) * 2022-08-23 2022-11-25 中山大学 一种稀土-有机复合光学纳米探针及其制备方法和应用
CN115381968B (zh) * 2022-08-23 2023-09-26 中山大学 一种稀土-有机复合光学纳米探针及其制备方法和应用

Also Published As

Publication number Publication date
CN112300788B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
CN112300788B (zh) 一种核-点壳结构光磁纳米探针及其制备方法和应用
Yin et al. Lanthanide-doped GdVO 4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging
Zhou et al. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties
Wang et al. Recent progress in biomedical applications of persistent luminescence nanoparticles
Wong et al. Water dispersible ultra-small multifunctional KGdF 4: Tm 3+, Yb 3+ nanoparticles with near-infrared to near-infrared upconversion
Zeng et al. Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4: Gd/Yb/Er nanorods for blood vessel visualization
Chen et al. Monodisperse NaYbF 4: Tm 3+/NaGdF 4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties
CN101500938B (zh) 稀土纳米粒子
Wang et al. Single ultrasmall Mn 2+-doped NaNdF 4 nanocrystals as multimodal nanoprobes for magnetic resonance and second near-infrared fluorescence imaging
Gao et al. One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging
He et al. Optimization of upconversion luminescence of Nd 3+-sensitized BaGdF 5-based nanostructures and their application in dual-modality imaging and drug delivery
Li et al. One-pot synthesis of polyamines improved magnetism and fluorescence Fe 3 O 4–carbon dots hybrid NPs for dual modal imaging
Zhao et al. Double-mesoporous core–shell nanosystems based on platinum nanoparticles functionalized with lanthanide complexes for in vivo magnetic resonance imaging and photothermal therapy
CN110743019A (zh) 靶向肺腺癌肿瘤的细胞膜仿生纳米探针及其应用
Liu et al. Development of PEGylated KMnF 3 nanoparticles as a T 1-weighted contrast agent: chemical synthesis, in vivo brain MR imaging, and accounting for high relaxivity
Huang et al. Facile and large-scale synthesis of Gd (OH) 3 nanorods for MR imaging with low toxicity
Luo et al. Core@ shell Fe 3 O 4@ Mn 2+-doped NaYF 4: Yb/Tm nanoparticles for triple-modality T 1/T 2-weighted MRI and NIR-to-NIR upconversion luminescence imaging agents
Yin et al. MRI relaxivity enhancement of gadolinium oxide nanoshells with a controllable shell thickness
Wang et al. Gadolinium-doped carbon dots with high-performance in dual-modal molecular imaging
Zhao et al. Heterogeneous growth of palladium nanocrystals on upconversion nanoparticles for multimodal imaging and photothermal therapy
Zhao et al. Multifunctional NaYF 4: Nd/NaDyF 4 nanocrystals as a multimodal platform for NIR-II fluorescence and magnetic resonance imaging
Di et al. Fluorescent and paramagnetic core–shell hybrid nanoparticles for bi-modal magnetic resonance/luminescence imaging
Li et al. Potential detection of cancer with fluorinated silicon nanoparticles in 19 F MR and fluorescence imaging
Rao et al. One-pot synthesis of PEG modified BaLuF 5: Gd/Yb/Er nanoprobes for dual-modal in vivo upconversion luminescence and X-ray bioimaging
Wang et al. Nanostructures based on vanadium disulfide growing on UCNPs: simple synthesis, dual-mode imaging, and photothermal therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant