CN112300666A - 一种高耐磨抗腐蚀的石墨烯/环氧超滑移涂层及其制备方法 - Google Patents

一种高耐磨抗腐蚀的石墨烯/环氧超滑移涂层及其制备方法 Download PDF

Info

Publication number
CN112300666A
CN112300666A CN202011390572.7A CN202011390572A CN112300666A CN 112300666 A CN112300666 A CN 112300666A CN 202011390572 A CN202011390572 A CN 202011390572A CN 112300666 A CN112300666 A CN 112300666A
Authority
CN
China
Prior art keywords
graphene
epoxy
slip coating
resistance
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011390572.7A
Other languages
English (en)
Inventor
杨进
张一凡
宋浩杰
贾晓华
李永
王思哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202011390572.7A priority Critical patent/CN112300666A/zh
Publication of CN112300666A publication Critical patent/CN112300666A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/54Amino amides>
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开一种高耐磨抗腐蚀的石墨烯/环氧超滑移涂层及其制备方法,通过将双酚A型环氧树脂、聚酰胺‑胺与单缩水甘油醚封端聚二甲基硅氧烷分散于无水乙醇中,随后混入石墨烯搅拌,在搅拌中利用环氧基团的开环聚合作用将聚二甲基硅氧烷接枝到环氧树脂的固化网络上,通过喷涂加热得到高耐磨抗腐蚀的石墨烯/环氧超滑移涂层,本发明制备方法快速简单;选用石墨烯达到减摩抗磨、耐腐蚀的效果,选用单缩水甘油醚封端聚二甲基硅氧烷提供低表面能和抗粘附效果,双酚A型环氧树脂作为涂层的主体,聚酰胺‑胺作为固化剂,制备的产品表现出良好的液滴超滑移效果,且具有高耐磨、抗腐蚀、耐久性强、使用方便等特点。

Description

一种高耐磨抗腐蚀的石墨烯/环氧超滑移涂层及其制备方法
技术领域
本发明属于表面涂层制备技术领域,涉及一种超滑移涂层的制备方法,尤其涉及一种高耐磨抗腐蚀的石墨烯/环氧超滑移涂层及其制备方法。
背景技术
防粘附材料在航空航天、工业生产、运输、制药工程等许多领域都有着广泛的应用。但在实际应用中,材料表面会面临摩擦腐蚀等风险失去防粘附效果。超疏水表面是比较传统的防粘附表面,源自莲花,蝴蝶翅膀和鸭毛,通常是通过与低表面能材料结合构造分层结构来制造的。但是,分层结构的会导致涂层表面缺乏机械强度和透明度。此外,粗糙结构锁住的空气会被热水中的蒸气代替或被高压破坏,从而导致表面从Cassie-Baxter变为Wenzel状态,失去防粘附效果。
为了避免超疏水表面的脆弱性,Aizenberg受猪笼草的启发,将全氟化的流体注入到纳米/微米结构基材上,形成了光滑的注液多孔表面(SLIPS)。所获得的表面具有5°的水滑动角,由于其光滑的形态因此可以抵抗冰的粘附和高压。参照他的理论,Gu和Guo都报告了通过将润滑剂(例如硅油和离子液体)注入多孔表面而表现出低的水滑动角和自清洁特性的光滑表面。江和他的同事们通过将硅油注入硅烷化的化学蚀刻的不锈钢中,获得了具有耐高温性的光滑表面。这些所谓的SLIPS不怕刮擦,因为主要的活性成分润滑剂会发生富集,但它们可能会遭受冲洗,蒸发和润滑剂消耗的困扰。
另一种方法是将单层聚二甲基硅氧烷(PDMS)或高度易移动的有机分子共价接枝到特定的基材上以提供防粘附性能。McCarthy等人将PDMS接枝到Si-H表面部分获得了厚度为0.3nm的光滑表面,该表面对测试液体表现出低接触角滞后和低滑动角。姚将乙烯基封端的聚二甲基硅氧烷和氨基丙基封端的聚二甲基硅氧烷接枝到硅片上,也获得防粘附的光滑表面。同样,Hozumi报道了通过将聚甲基氢硅氧烷(PMHS)共价附着到Si晶片上而构成的光滑表面。这些表面的特征是存在硅氧烷重复基团(-O-Si-O-),该硅氧烷重复基团可以为接枝分子增加高度的柔韧性,因此可以认为是液体样表面。低接触角滞后和滑动角归因于表面的光滑度和PDMS或PMHS刷子的高迁移率。此外,这些表面的厚度仅为几纳米,从而使它们易受伤害,并且通常没有报道其耐久性。刘等提出了一种将共价接枝到聚氨酯涂料而不是基材上以获得光滑表面的方法。这些涂层都是耐用且透明的,但以水的滑动性能为代价,滑动角往往在38-47°。尽管是有前途的策略,但复杂的合成过程可能会限制实际应用。
通过选择具有多氨基端基的聚酰胺-胺作为固化剂,利用环氧树脂和单缩水甘油醚封端聚二甲基硅氧烷中环氧基的开环聚合反应,混入石墨烯,得到高耐磨抗腐蚀的石墨烯/环氧超滑移涂层。对于500至800nm的波长,该涂层的透射率高于85%。所获得的涂层显示出低的1nN附着力,在室温下对水的低滑动角(2.8°)和在5°倾斜涂层下的高滑动速度(1.16mm/s)。对于高温水滴(80℃),滑动角仍低于5°。该涂层还表现出对牛奶、泥水、果汁、3.5wt%的NaCl溶液和油墨的防污能力。在刮擦、拇指按压和在120℃下加热处理长达100小时后,涂层仍保持了出色的超滑移性能。因此,具有优异的机械化学稳定性、优异的热稳定性、优异的防污性能和出色的耐腐蚀性的无氟超滑移涂层具有广泛的实际应用。
发明内容
本发明的目的是提供一种高耐磨抗腐蚀的石墨烯/环氧超滑移涂层及其制备方法,制备方法快速简单,制备的产品具有良好的液滴超滑移效果,且具有高耐磨、抗腐蚀、耐久性强、使用方便等特点。
为了实现上述目的,本发明采用以下技术方案。
高耐磨抗腐蚀的石墨烯/环氧超滑移涂层的制备方法,包括以下步骤:
1)取石墨烯分散在乙醇溶液中,得到浓度0.1~1mg/mL的石墨烯分散液;
2)量取双酚A型环氧树脂与聚酰胺-胺按质量比2:1加入步骤1)中的溶液,置于磁力搅拌器上搅拌,形成均匀的淡黄色溶液;所取双酚A型环氧树脂和聚酰胺-胺的质量总和与步骤1)中石墨烯的质量比为100:(0.01~1);
3)在步骤2)的溶液中滴加单缩水甘油醚封端聚二甲基硅氧烷,边滴加边搅拌,滴加完毕之后再继续搅拌,获得均匀的有机硅环氧/石墨烯分散液;滴加的单缩水甘油醚封端聚二甲基硅氧烷与步骤2)所述双酚A型环氧树脂的质量比为(0.1~5):1;
4)将步骤3)中的分散液喷涂在不锈钢片上,高温加热即可形成高耐磨抗腐蚀的石墨烯/环氧超滑移涂层。
进一步,所述步骤2)中搅拌的时间为20-30min。
进一步,所述步骤3)所述搅拌时间为2h。
进一步,所述步骤2)与步骤3)所述搅拌处理过程在室温25~30℃条件下进行。
进一步,所述步骤4)所述加热温度为120℃加热时间为2h。
本发明具有以下有益效果:
本发明的制备方法,首先通过将双酚A型环氧树脂、聚酰胺-胺与单缩水甘油醚封端聚二甲基硅氧烷分散于无水乙醇中,随后混入石墨烯搅拌,在搅拌中利用环氧基团的开环聚合作用将聚二甲基硅氧烷接枝到环氧树脂的固化网络上,通过喷涂加热得到高耐磨抗腐蚀的石墨烯/环氧超滑移涂层,本发明制备方法快速简单。
选用石墨烯达到减摩抗磨、耐腐蚀的效果,选用单缩水甘油醚封端聚二甲基硅氧烷提供低表面能和抗粘附效果,双酚A型环氧树脂作为涂层的主体,聚酰胺-胺作为固化剂,制备的产品表现出良好的液滴超滑移效果,且具有高耐磨、抗腐蚀、耐久性强、使用方便等特点。
附图说明
图1为本发明实施例3中涂层的实物图;
图2为本发明实施例1、2、3制备的超滑移涂层的摩擦系数柱状图;
图3a为本发明实施例1、2、3制备的超滑移涂层的腐蚀极化曲线;
图3b为本发明实施例1、2、3制备的超滑移涂层的电化学阻抗谱Nyquist图;
图3c为本发明实施例1、2、3制备的超滑移涂层的电化学阻抗谱Bode图;
图3d为本发明实施例1、2、3制备的超滑移涂层的电化学阻抗谱Bode图。
图4为本发明实施例1、2、3制备的超滑移涂层的的接触角和滑动角柱状图;
具体实施方式
下面结合具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。
实施例1
1)一次量取2mg石墨烯分散在20mL乙醇溶液中,得到浓度0.1mg/mL的石墨烯分散液;
2)量取1g双酚A型环氧树脂与0.5g聚酰胺-胺加入步骤1)中的溶液,置于磁力搅拌器上搅拌15min,形成均匀的淡黄色溶液;
3)在步骤2)的溶液中滴加0.1g单缩水甘油醚封端聚二甲基硅氧烷,边滴加边搅拌,滴加完毕之后再继续搅拌2h,获得均匀的有机硅环氧/石墨烯分散液;
4)将步骤3)中的分散液喷涂在不锈钢片上,120℃加热2h即可形成高耐磨抗腐蚀的石墨烯/环氧超滑移涂层。
实施例2
1)一次量取10mg石墨烯分散在20mL乙醇溶液中,得到浓度0.5mg/mL的石墨烯分散液;
2)量取0.8g双酚A型环氧树脂与0.4g聚酰胺-胺加入步骤1)中的溶液,置于磁力搅拌器上搅拌15min,形成均匀的淡黄色溶液;
3)在步骤2)的溶液中滴加0.8g单缩水甘油醚封端聚二甲基硅氧烷,边滴加边搅拌,滴加完毕之后再继续搅拌2h,获得均匀的有机硅环氧/石墨烯分散液;
4)将步骤3)中的分散液喷涂在不锈钢片上,120℃加热2h即可形成高耐磨抗腐蚀的石墨烯/环氧超滑移涂层。
实施例3
1)一次量取15mg石墨烯分散在20mL乙醇溶液中,得到浓度0.75mg/mL的石墨烯分散液;
2)量取1g双酚A型环氧树脂与0.5g聚酰胺-胺加入步骤1)中的溶液,置于磁力搅拌器上搅拌15min,形成均匀的淡黄色溶液;
3)在步骤2)的溶液中滴加2g单缩水甘油醚封端聚二甲基硅氧烷,边滴加边搅拌,滴加完毕之后再继续搅拌2h,获得均匀的有机硅环氧/石墨烯分散液;
4)将步骤3)中的分散液喷涂在不锈钢片上,120℃加热2h即可形成高耐磨抗腐蚀的石墨烯/环氧超滑移涂层。
表1石墨烯/环氧超滑移涂层的接触角和滑动角
Figure BDA0002812373160000051
表1为本发明实施例1,2,3中涂层水接触角/滑动角变化,实施例1中制备的涂层对水的接触角为99.62°,滑动角4.5°,在1N载荷下的摩擦系数为0.056,自腐蚀电位为-0.81V,电流密度为1.27×10-4A cm-2;实施例2中制备的涂层对水的接触角为99.07°,滑动角3.9°,摩擦系数为0.034,自腐蚀电位为-0.54V,电流密度为1.60×10-8A cm-2;实施例3中制备的涂层对水的接触角为98.52°,滑动角2.8°,摩擦系数为0.012,自腐蚀电位为-0.32V,电流密度为1.83×10-10A cm-2。如图1、图2、图3a-图3d及图4所示,实验结果表明,三种实施例制备的涂层均具有良好的减摩抗磨、耐腐蚀及超滑移特性,实施例3制备的涂层效果最好。
实施例4
1)一次量取2mg石墨烯分散在2mL乙醇溶液中,得到浓度1mg/mL的石墨烯分散液;
2)量取1g双酚A型环氧树脂与1g聚酰胺-胺加入步骤1)中的溶液,置于磁力搅拌器上搅拌15min,形成均匀的淡黄色溶液;
3)在步骤2)的溶液中滴加5g单缩水甘油醚封端聚二甲基硅氧烷,边滴加边搅拌,滴加完毕之后再继续搅拌2h,获得均匀的有机硅环氧/石墨烯分散液;
4)将步骤3)中的分散液喷涂在不锈钢片上,120℃加热2h即可形成高耐磨抗腐蚀的石墨烯/环氧超滑移涂层。
最后应该说明的是:以上实施例仅用于说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本权利要求范围当中。

Claims (6)

1.高耐磨抗腐蚀的石墨烯/环氧超滑移涂层的制备方法,其特征在于包括以下步骤:
1)取石墨烯分散在乙醇溶液中,得到浓度0.1~1mg/mL的石墨烯分散液;
2)量取双酚A型环氧树脂与聚酰胺-胺按质量比2:1加入步骤1)中的溶液,置于磁力搅拌器上搅拌,形成均匀的淡黄色溶液;所取双酚A型环氧树脂和聚酰胺-胺的质量总和与步骤1)中石墨烯的质量比为100:(0.1~1);
3)在步骤2)的溶液中滴加单缩水甘油醚封端聚二甲基硅氧烷,边滴加边搅拌,滴加完毕之后再继续搅拌,获得均匀的有机硅环氧/石墨烯分散液;滴加的单缩水甘油醚封端聚二甲基硅氧烷与步骤2)所述双酚A型环氧树脂的质量比为(0.1~5):1;
4)将步骤3)中的分散液喷涂在不锈钢片上,高温加热即可形成高耐磨抗腐蚀的石墨烯/环氧超滑移涂层。
2.如权利要求1所述的高耐磨抗腐蚀的石墨烯/环氧超滑移涂层的制备方法,其特征在于:所述步骤2)中搅拌的时间为20-30min。
3.如权利要求1所述的高耐磨抗腐蚀的石墨烯/环氧超滑移涂层的制备方法,其特征在于:所述步骤3)所述搅拌时间为2h。
4.如权利要求1所述的高耐磨抗腐蚀的石墨烯/环氧超滑移涂层的制备方法,其特征在于:所述步骤2)与步骤3)所述搅拌处理过程在室温25~30℃条件下进行。
5.如权利要求1所述的高耐磨抗腐蚀的石墨烯/环氧超滑移涂层的制备方法,其特征在于:所述步骤4)所述加热温度为120℃加热时间为2h。
6.一种根据权利要求1-5任一项制备的高耐磨抗腐蚀的石墨烯/环氧超滑移涂层。
CN202011390572.7A 2020-12-02 2020-12-02 一种高耐磨抗腐蚀的石墨烯/环氧超滑移涂层及其制备方法 Pending CN112300666A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011390572.7A CN112300666A (zh) 2020-12-02 2020-12-02 一种高耐磨抗腐蚀的石墨烯/环氧超滑移涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011390572.7A CN112300666A (zh) 2020-12-02 2020-12-02 一种高耐磨抗腐蚀的石墨烯/环氧超滑移涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN112300666A true CN112300666A (zh) 2021-02-02

Family

ID=74487773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011390572.7A Pending CN112300666A (zh) 2020-12-02 2020-12-02 一种高耐磨抗腐蚀的石墨烯/环氧超滑移涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN112300666A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388324A (zh) * 2021-06-01 2021-09-14 陕西科技大学 一种耐腐蚀自修复的超滑移涂层的制备方法
CN113549299A (zh) * 2021-07-22 2021-10-26 泉州师范学院 高耐磨和高韧性石墨烯纳米片/环氧树脂复合材料的制备方法
CN113717615A (zh) * 2021-09-17 2021-11-30 陕西科技大学 一种耐磨防腐的石墨烯/二氧化硅/环氧树脂超滑移复合涂层的制备方法
CN113817387A (zh) * 2021-09-17 2021-12-21 陕西科技大学 一种适用于光热除冰的聚吡咯/石墨烯/环氧树脂超滑移涂层及其制备方法
CN116285659A (zh) * 2023-02-17 2023-06-23 长沙理工大学 一种防止医用微型磨钻表面骨屑黏附的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064717A2 (en) * 2010-11-12 2012-05-18 3M Innovative Properties Company Curable and cured compositions
CN105330821A (zh) * 2014-05-26 2016-02-17 罗门哈斯电子材料有限公司 二缩水甘油醚封端的聚硅氧烷化合物和非芳族多胺的共聚物
CN110669415A (zh) * 2019-10-15 2020-01-10 北京盈和瑞环境科技股份有限公司 一种有机涂层钢板及其制造方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064717A2 (en) * 2010-11-12 2012-05-18 3M Innovative Properties Company Curable and cured compositions
CN105330821A (zh) * 2014-05-26 2016-02-17 罗门哈斯电子材料有限公司 二缩水甘油醚封端的聚硅氧烷化合物和非芳族多胺的共聚物
CN110669415A (zh) * 2019-10-15 2020-01-10 北京盈和瑞环境科技股份有限公司 一种有机涂层钢板及其制造方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIN YANG ET AL: "Fabrication of Robust and Transparent Slippery Coating with Hot Water Repellency, Antifouling Property, and Corrosion Resistance", 《ACS APPLIED MATERIALS&INTERFACES》 *
中国硅酸盐学会编著: "《矿物材料学科发展报告》", 31 March 2018, 中国科学技术出版社 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388324A (zh) * 2021-06-01 2021-09-14 陕西科技大学 一种耐腐蚀自修复的超滑移涂层的制备方法
CN113549299A (zh) * 2021-07-22 2021-10-26 泉州师范学院 高耐磨和高韧性石墨烯纳米片/环氧树脂复合材料的制备方法
CN113717615A (zh) * 2021-09-17 2021-11-30 陕西科技大学 一种耐磨防腐的石墨烯/二氧化硅/环氧树脂超滑移复合涂层的制备方法
CN113817387A (zh) * 2021-09-17 2021-12-21 陕西科技大学 一种适用于光热除冰的聚吡咯/石墨烯/环氧树脂超滑移涂层及其制备方法
CN113717615B (zh) * 2021-09-17 2022-11-08 浙江鱼童新材料股份有限公司 一种耐磨防腐的石墨烯/二氧化硅/环氧树脂超滑移复合涂层的制备方法
CN113817387B (zh) * 2021-09-17 2022-11-22 苏州邦得纳米涂层科技有限公司 一种适用于光热除冰的聚吡咯/石墨烯/环氧树脂超滑移涂层及其制备方法
CN116285659A (zh) * 2023-02-17 2023-06-23 长沙理工大学 一种防止医用微型磨钻表面骨屑黏附的方法
CN116285659B (zh) * 2023-02-17 2024-04-12 长沙理工大学 一种防止微型磨钻表面黏附的方法

Similar Documents

Publication Publication Date Title
CN112300666A (zh) 一种高耐磨抗腐蚀的石墨烯/环氧超滑移涂层及其制备方法
Xiao et al. Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide
Yang et al. Fabrication of robust and transparent slippery coating with hot water repellency, antifouling property, and corrosion resistance
Deng et al. Slippery liquid-infused porous surfaces (SLIPSs): a perfect solution to both marine fouling and corrosion?
Zhang et al. High-adhesive superhydrophobic litchi-like coatings fabricated by in-situ growth of nano-silica on polyethersulfone surface
Bharathidasan et al. Above 170 water contact angle and oleophobicity of fluorinated graphene oxide based transparent polymeric films
Togasawa et al. A fluorine-free slippery surface with hot water repellency and improved stability against boiling
Wang et al. Biomimetic self-slippery and transferable transparent lubricant-infused functional surfaces
CN101663555B (zh) 蒸汽冷凝器的涂层
Park et al. Long perfluoroalkyl chains are not required for dynamically oleophobic surfaces
Zhu et al. Gradient structure based dual-robust superhydrophobic surfaces with high-adhesive force
Wei et al. Facile fabrication of highly omniphobic and self-cleaning surfaces based on water mediated fluorinated nanosilica aggregation
CN111793431B (zh) 一种无毒海洋船舶防污涂料及其制备方法
Masheder et al. Transparent and hard zirconia-based hybrid coatings with excellent dynamic/thermoresponsive oleophobicity, thermal durability, and hydrolytic stability
WO2022247035A1 (zh) 一种抗菌低粘附聚乙烯醇涂层
Huang et al. A facile approach to fabricate dynamically omniphobic coating on diverse substrates for self-cleaning
Yang et al. Enhanced anti-biofouling ability of polyurethane anti-cavitation coating with ZIF-8: A comparative study of various sizes of ZIF-8 on coating
CN112262167A (zh) (超)疏水材料和涂层
US20210163776A1 (en) Coating compositions, processes, and applications for low friction and high durability substrates
Yang et al. Fabrication of biomimetic slippery liquid‐infused porous surface on 5086 aluminum alloy with excellent antifouling performance
Yu et al. Lubricant-grafted omniphobic surfaces with anti-biofouling and drag-reduction performances constructed by reactive organic–inorganic hybrid microspheres
He et al. Biomimetic lubricant-infused titania nanoparticle surfaces via layer-by-layer deposition to control biofouling
Cheng et al. Dual functional low surface energy coating of anti-corrosion/fouling via crosslinking polysilazane preceramic precursor incorporated with fluorine
Parale et al. Dip coated superhydrophobic and anticorrosive silica coatings
Wang et al. Durable liquid-and solid-repellent elastomeric coatings infused with partially crosslinked lubricants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210202