CN112297769B - 一种全气候电动汽车热泵空调系统 - Google Patents

一种全气候电动汽车热泵空调系统 Download PDF

Info

Publication number
CN112297769B
CN112297769B CN202011220796.3A CN202011220796A CN112297769B CN 112297769 B CN112297769 B CN 112297769B CN 202011220796 A CN202011220796 A CN 202011220796A CN 112297769 B CN112297769 B CN 112297769B
Authority
CN
China
Prior art keywords
heat exchanger
vehicle
valve
way valve
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011220796.3A
Other languages
English (en)
Other versions
CN112297769A (zh
Inventor
巫江虹
许强强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202011220796.3A priority Critical patent/CN112297769B/zh
Publication of CN112297769A publication Critical patent/CN112297769A/zh
Application granted granted Critical
Publication of CN112297769B publication Critical patent/CN112297769B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means

Abstract

本发明涉及一种全气候电动汽车热泵空调系统,高压压缩机一端、车内换热器一端与车外换热器一端分别连接于多向阀,车内换热器另一端与车外换热器另一端连接,高压压缩机另一端与多向阀连接;车内换热器一端与车外换热器一端之间并联设有依次串接的低压压缩机与低压冷却器,低压冷却器一端连接于多向阀,低压压缩机两端分别连接于低压冷却器另一端与车外换热器一端;过冷器两端分别连接于车内换热器另一端与车外换热器另一端,与车内换热器另一端与车外换热器另一端之间管道并联设置;管道上设有阀组,控制装置控制多向阀与阀组的工作状态。通过控制阀组与多向阀,完成标准制冷与高温制冷的切换,实现全气候环境下电动汽车热泵空调系统运行。

Description

一种全气候电动汽车热泵空调系统
技术领域
本发明涉及空调系统技术领域,特别是涉及一种全气候电动汽车热泵空调系统。
背景技术
随着能源危机的加剧和环境问题的日益严重,汽车行业节能环保势在必行。纯电动汽车(PEV)以其高效率、低噪音、零排放等突出优点,为汽车实现可持续发展提供了新途径。汽车空调系统是现代汽车不可缺少的子系统,为驾驶人提供舒适的驾驶环境。当前市场上电动汽车空调夏季采用蒸汽压缩式制冷为乘员舱提供冷量,冬季采用PTC热电阻加热供暖。PTC加热器可以满足低温下乘员舱的供热需求,但对动力电池的消耗极大,严重影响了电动汽车的续航里程。
热泵型汽车空调能实现冷暖一体化,且其具有高效、节能、环保等优点,可作为电动汽车制热的一个有效解决方案,得到越来越多国内外学者和汽车厂商的关注。
热泵型汽车空调通常包括压缩机、车外换热器、车内换热器、四通换向阀、油分离器、储液器、气液分离器和回油开关;压缩机的高压气体出口和油分离器的进口相连,油分离器的工质气体出口通过四通换向阀和车外换热器的一端或车内换热器的一端相连,油分离器的润滑油出口通过回油开关和压缩机相连;四通换向阀同时还和气液分离器的进口相连。
目前热泵型汽车空调的高温/低温适应性还没能得到很好地解决,当外界环境温度较高时,车外换热器的换热能力下降,导致压缩机排气温度过高,系统制冷量不足;在外界环境温度较低时,压缩机压比增大,造成其排气温度过高,导致系统制热性能的急剧下降。如何使电动汽车热泵空调统在全气候外界环境下稳定高效运行,已成为热泵型汽车空调进一步推广的关键问题。
发明内容
针对现有技术中存在的技术问题,本发明的目的是:提供一种全气候电动汽车热泵空调系统,能够在制冷时提高蒸发温度,在制热时降低排气温度,提升系统制热性能,能够在全气候外界环境下稳定高效运行。
为了达到上述目的,本发明采用如下技术方案:
一种全气候电动汽车热泵空调系统,包括控制装置以及通过管道连接的高压压缩机、车内换热器、车外换热器、多向阀、过冷器;
其中,高压压缩机一端、车内换热器一端与车外换热器一端分别连接于多向阀,车内换热器另一端与车外换热器另一端连接,高压压缩机另一端与多向阀连接;
车内换热器一端与车外换热器一端之间并联设有依次串接的低压压缩机与低压冷却器,低压冷却器一端连接于多向阀,低压压缩机两端分别连接于低压冷却器另一端与车外换热器一端;
过冷器两端分别连接于车内换热器另一端与车外换热器另一端,与车内换热器另一端与车外换热器另一端之间管道并联设置;
管道上设有阀组,阀组至少具有第一工作状态和第二工作状态,在第一工作状态下,车内换热器另一端与车外换热器另一端之间通过阀组导通,过冷器与车内换热器另一端之间通过阀组隔断;
在第二工作状态下,车内换热器另一端与车外换热器另一端之间通过阀组隔断,过冷器与车内换热器另一端之间通过阀组导通;
控制装置控制多向阀与阀组的工作状态。
进一步,阀组包括第一截止阀、第二截止阀、第三截止阀、第四截止阀、第一三通阀与第二三通阀,第一截止阀两端分别连通于多向阀与低压冷却器一端,第二截止阀两端分别连通于过冷器一端与车内换热器另一端,第三截止阀两端分别连通于车内换热器另一端与车外换热器另一端,第四截止阀两端分别连通于多向阀与车外换热器一端,第一三通阀的三个阀口分别连通于第三截止阀、车外换热器另一端与过冷器一端,第二三通阀的三个阀口分别连通于第一截止阀、第三截止阀与车外换热器另一端。
进一步,多向阀为四通换向阀。
进一步,车内换热器与车外换热器之间设有膨胀阀。
进一步,车内换热器与车外换热器均设有风扇。
总的说来,本发明具有如下优点:
通过过冷器以及低压冷却器将车外换热器出口及低压压缩机出口的能量进行回收,用来提高蒸发温度,同时可以增加车外换热器出口的过冷度及冷却低压压缩机,从而提升系统制热性能。制冷运行时,通过相应控制阀组与多向阀阀门的关闭或导通,可以完成标准制冷与高温制冷的切换,从而实现了全气候环境下电动汽车热泵空调系统的运行。
附图说明
图1为本发明实施例的标准制冷模式示意图。
图2为本发明实施例的高温制冷模式示意图。
图3为本发明实施例的标准制热模式示意图。
图4为本发明实施例的低温制热模式示意图。
图5为本发明实施例的标准制冷及高温制冷模式下系统压焓图。
图6为本发明实施例的制热模式下系统压焓图。
图7为本发明实施例的低温制热模式下系统压焓图。
附图标记说明:
1——车内换热器,2——四通换向阀,3——油分离器,4——高压压缩机,5—气液分离器,6-1——第一截止阀,6-2——第二截止阀,6-3——第三截止阀,6-4——第四截止阀,6-5——第一三通阀,6-6——第二三通阀,7——低压压缩机,8——过冷器,9——低压冷却器,10——车外换热器,11——膨胀阀。
具体实施方式
下面来对本发明做进一步详细的说明。
如图1所示,一种全气候电动汽车热泵空调系统,包括控制装置以及通过管道连接的高压压缩机4、车内换热器1、车外换热器10、多向阀、过冷器8(回热1);
其中,高压压缩机4一端、车内换热器1一端与车外换热器10一端分别连接于多向阀,车内换热器1另一端与车外换热器10另一端连接,高压压缩机4另一端与多向阀连接;
车内换热器1一端与车外换热器10一端之间并联设有依次串接的低压压缩机7与低压冷却器9(回热2),低压冷却器9一端连接于多向阀,低压压缩机7两端分别连接于低压冷却器9另一端与车外换热器10一端;
过冷器8两端分别连接于车内换热器1另一端与车外换热器10另一端,与车内换热器1另一端与车外换热器10另一端之间管道并联设置;
管道上设有阀组,阀组至少具有第一工作状态和第二工作状态,在第一工作状态下,车内换热器1另一端与车外换热器10另一端之间通过阀组导通,过冷器8与车内换热器1另一端之间通过阀组隔断;在第二工作状态下,车内换热器1另一端与车外换热器10另一端之间通过阀组隔断,过冷器8与车内换热器1另一端之间通过阀组导通;
控制装置控制多向阀与阀组的工作状态。
具体地,高压压缩机4的两端分别连接有油分离器3和气液分离器5,油分离器3两端分别连接于高压压缩机4一端与多向阀,气液分离器5两端分别连接于高压压缩机4另一端与多向阀。
全气候电动汽车热泵空调系统的运转包括标准制冷、高温制冷、标准制热和低温制热四种模式。
标准制冷模式指在夏季或过渡季节室外温度为35℃左右时,系统自发设定运行的制冷循环模式。该模式是以高压压缩机4为动力源的单级压缩制冷循环,系统采用单一车外换热器10进行换热,根据不同的室外气温变化,高压端压缩机可以进行合理的变频调节,在节能高效的条件下提供足够的冷量,保障乘员舱内空气环境的舒适性。该模式下,系统压焓图如图5所示,系统制冷循环过程为1-2-3-4。
如图1所示,在夏季标准制冷时,仅高压压缩机4工作。控制装置控制阀组与多向阀相应动作,阀组处于第一工作状态,车内换热器1另一端与车外换热器10另一端之间通过阀组导通,过冷器8与车内换热器1另一端之间通过阀组隔断,高压压缩机4一端通过多向阀与车外换热器10一端导通,高压压缩机4另一端通过多向阀与车内换热器1一端导通,与低压冷却器9连接的多向阀阀门关闭。
从高压压缩机4出来的制冷剂经油分离器3后从多向阀进入车外换热器10,然后通过阀组进入车内换热器1。从车内换热器1出来后从多向阀进入,经气液分离器5回到高压压缩机4,完成一个制冷循环。
高温制冷模式是在室外环境温度高于38℃时(不超过40℃),系统由标准制冷模式切换为高温制冷模式。该模式依旧以高压压缩机4为动力源,但在车外换热器10方面,采用了原换热器与过冷器8串联的形式。该串联结构相当于增大了车外换热器10的换热面积,在一定程度上降低冷凝温度,有利于提高该条件下的制冷量,从而满足高温制冷的冷量需求。该模式下,系统压焓图如图5所示,系统制冷循环过程为1-2-3’-4’。该循环过程在一定程度上可以降低系统的压比,提升压缩机的效率。
如图2所示,在夏季高温制冷时,仅高压压缩机4工作。控制装置控制阀组与多向阀相应动作,阀组处于第二工作状态,车内换热器1另一端与车外换热器10另一端之间通过阀组隔断,过冷器8与车内换热器1另一端之间通过阀组导通,高压压缩机4一端通过多向阀与车外换热器10一端导通,高压压缩机4另一端通过多向阀与车内换热器1一端导通,与低压冷却器9连接的多向阀阀门关闭。
从高压压缩机4出来的制冷剂经油分离器3后从多向阀进入车外换热器10,然后流经过冷器8,通过阀组进入车内换热器1,从车内换热器1出来后从多向阀进入,经气液分离器5后从高压压缩机4另一端回到高压压缩机4,完成一个制冷循环。
制冷剂流入过冷器8时,增大了换热面积,降低了冷凝温度,为制冷循环创造更适宜的条件,从而提高了制冷量,制冷效果更好。
标准制热模式指在冬季或过渡季节,室外环境温度在7℃左右时系统设定运行的热泵循环模式,该模式为单级压缩热泵循环。启用高压压缩机4提供动力,制冷剂通过多向阀换向,依次经过车外换热器10、车内换热器1,最终再通过多向阀流入高压压缩机4入口,完成循环。基本保障了一般气候条件下的制热需求,也具有很高的经济性。该模式下,系统压焓图如图6所示,系统循环过程为1-2-3-4。
如图3所示,在标准制热工况下,仅高压压缩机4工作。控制装置控制阀组与多向阀相应动作,阀组处于第一工作状态,车内换热器1另一端与车外换热器10另一端之间通过阀组导通,过冷器8与车内换热器1另一端之间通过阀组隔断,高压压缩机4一端通过多向阀与车内换热器1一端导通,高压压缩机4另一端通过多向阀与车外换热器10一端导通,与低压冷却器9连接的多向阀阀门关闭。
从高压压缩机4出来的制冷剂经油分离器3后从多向阀进入,经车内换热器1后通过阀组进入车外换热器10。从车外换热器10出来后通过多向阀进入,经气液分离器5从高压压缩机4另一端回到高压压缩机4,完成标准制热循环。
低温制热是指室外环境温度在-20℃-0℃范围内时,系统由标准制热模式切换为低温制热模式。该模式下,低压压缩机7和高压压缩机4同时启用。低压冷却器9、过冷器8分别在风机气流的作用下与车外换热器10进行热交换。既通过车内换热器1的冷量降低低压压缩机7出口焓、增加换热后的过冷度,又借助低压冷却器9与过冷器8带走车外换热器10的冷量从而提高蒸发温度。这种回热的相互作用可进一步提升制热运行的效率,保证在外界环境较寒冷的工况下,系统依然能供给足够的制热量来满足成员舱内部舒适度的需求。该模式下,系统压焓图如图7所示,系统循环过程为1-2-3-4-5-6-7。该循环过程通过回热的方式,一定程度上减少了压缩机吸气比容,增加了系统循环量,有利于系统的制热。
如图4所示,在低温制热工况下,高压压缩机4和低压压缩机7同时工作。控制装置控制阀组与多向阀相应动作,阀组处于第二工作状态,车内换热器1另一端与车外换热器10另一端之间通过阀组隔断,过冷器8与车内换热器1另一端之间通过阀组导通,高压压缩机4一端通过多向阀与车内换热器1导通,低压冷却器9通过多向阀与高压压缩机4另一端导通。
制冷剂由低压压缩机7流出后进入低压冷却器9,由多向阀进入气液分离器5后,从高压压缩机4另一端进入高压压缩机4进行第二次压缩,经油分离器3,再从多向阀进入车内换热器1,然后经过阀组进入过冷器8,通过车外换热器10的冷量进行冷却,完成换热后进入低压压缩机7的吸气口,完成制热循环。
车外侧冷风先经过过冷器8换热后,再经过低压冷却器9进行二次换热;两次换热后的空气经风道进入车外换热器10,增强了换热效果,提升了制热性能。以两级压缩一次节流制冷循环为基础,利用回热的方式将车外换热器10出口及低压压缩机7出口的能量进行回收,用以提高蒸发温度;与进车内换热器1前的空气换热,增加了车外换热器10出口的过冷度,降低了低压压缩机7排气温度,从而提升系统制热性能。无需设置中冷器,通过回热的方式完成了两级压缩制冷循环。
本发明实施例通过过冷器8以及低压冷却器9将车外换热器10出口及低压压缩机7出口的能量进行回收,用来提高蒸发温度,同时可以增加车外换热器10出口的过冷度及冷却低压压缩机7,从而提升系统制热性能。制冷运行时,通过相应控制阀组与多向阀阀门的关闭或导通,可以完成标准制冷与高温制冷的切换,从而实现了全气候环境下电动汽车热泵空调系统的运行。
优选地,多向阀为四通换向阀2。
阀组包括第一截止阀6-1、第二截止阀6-2、第三截止阀6-3、第四截止阀6-4、第一三通阀6-5与第二三通阀6-6,第一截止阀6-1两端分别连通于多向阀与低压冷却器9一端,第二截止阀6-2两端分别连通于过冷器8一端与车内换热器1另一端,第三截止阀6-3两端分别连通于车内换热器1另一端与车外换热器10另一端,第四截止阀6-4两端分别连通于多向阀与车外换热器10一端,第一三通阀6-5的三个阀口分别连通于第三截止阀6-3、车外换热器10另一端与过冷器8一端,第二三通阀6-6的三个阀口分别连通于第一截止阀6-1、第三截止阀6-3与车外换热器10另一端。
具体地,在夏季标准制冷时,如图1所示,控制装置控制第一截止阀6-1、第二截止阀6-2关闭,第三截止阀6-3、第四截止阀6-4打开,仅高压压缩机4工作。从高压压缩机4出来的制冷剂经油分离器3后从四通换向阀2的D口进入,从四通换向阀2的C口流出,通过第四截止阀6-4进入车外换热器10,节流后进入车内换热器1。从车内换热器1出来的制冷剂从四通换向阀2的E口进入,通过四通换向阀2的S口,经气液分离器5回到高压压缩机4,完成一个制冷循环。图中箭头所示为制冷剂流通路线。
在夏季高温制冷时,如图2所示,可通过对第一三通阀6-5与第二三通阀6-6的调整,使得制冷剂经车外换热器10后,流入过冷器8,通过增大换热面积,一定程度上降低冷凝温度,为制冷循环创造更适宜的条件,从而提高制冷量。图中箭头所示为制冷剂流通路线。
在标准制热工况下,如图3所示,控制装置控制第一截止阀6-1、第二截止阀6-2关闭,第三截止阀6-3、第四截止阀6-4打开,仅高压压缩机4工作。从压缩机出来的制冷剂经油分离器3后从四通换向阀2的D口进入,从四通换向阀2的E口流出,经车内换热器1后通过第三截止阀6-3进入,节流后进入车外换热器10。从车外换热器10出来的制冷剂通过第四截止阀6-4从四通换向阀2的C口进入,从四通换向阀2的S口流出后经气液分离器5回到压缩机,完成标准制热循环。图中箭头所示为制冷剂流通路线。
在低温制热工况下,如图4所示,控制装置控制第三截止阀6-3、第四截止阀6-4关闭,第一截止阀6-1、第二截止阀6-2打开。制冷剂由低压压缩机7流出后进入低压冷却器9,经过第一截止阀6-1后由四通换向阀2的C口进入,再由四通换向阀2的S口流出。制冷剂经过气液分离器5后,进入高压压缩机4进行第二次压缩,经油分离器3,再从四通换向阀2的D口进入,从四通换向阀2的E口流出。制冷剂经车内换热器1后,进入过冷器8,通过车外换热器10的冷量进行冷却,经第二截止阀6-2流过膨胀阀11,最后车外换热器10完成换热后进入低压压缩机7的吸气口,完成制热循环。图中箭头所示为制冷剂流通路线。
车内换热器1与车外换热器10之间设有膨胀阀11。
车内换热器1与车外换热器10均设有风扇。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种全气候电动汽车热泵空调系统,其特征在于:包括控制装置以及通过管道连接的高压压缩机、车内换热器、车外换热器、多向阀、过冷器;
其中,高压压缩机一端、车内换热器一端与车外换热器一端分别连接于多向阀,车内换热器另一端与车外换热器另一端连接,高压压缩机另一端与多向阀连接;
车内换热器一端与车外换热器一端之间并联设有依次串接的低压压缩机与低压冷却器,低压冷却器一端连接于多向阀,低压压缩机两端分别连接于低压冷却器另一端与车外换热器一端;
过冷器两端分别连接于车内换热器另一端与车外换热器另一端,与车内换热器另一端与车外换热器另一端之间管道并联设置;
管道上设有阀组,阀组至少具有第一工作状态和第二工作状态,在第一工作状态下,车内换热器另一端与车外换热器另一端之间通过阀组导通,过冷器与车内换热器另一端之间通过阀组隔断;
在第二工作状态下,车内换热器另一端与车外换热器另一端之间通过阀组隔断,过冷器与车内换热器另一端之间通过阀组导通;
控制装置控制多向阀与阀组的工作状态;
阀组包括第一截止阀、第二截止阀、第三截止阀、第四截止阀、第一三通阀与第二三通阀,第一截止阀两端分别连通于多向阀与低压冷却器一端,第二截止阀两端分别连通于过冷器一端与车内换热器另一端,第三截止阀两端分别连通于车内换热器另一端与车外换热器另一端,第四截止阀两端分别连通于多向阀与车外换热器一端,第一三通阀的三个阀口分别连通于第三截止阀、车外换热器另一端与过冷器一端,第二三通阀的三个阀口分别连通于第一截止阀、第三截止阀与车外换热器另一端。
2.按照权利要求1所述的一种全气候电动汽车热泵空调系统,其特征在于:多向阀为四通换向阀。
3.按照权利要求2所述的一种全气候电动汽车热泵空调系统,其特征在于:车内换热器与车外换热器之间设有膨胀阀。
4.按照权利要求3所述的一种全气候电动汽车热泵空调系统,其特征在于:车内换热器与车外换热器均设有风扇。
CN202011220796.3A 2020-11-05 2020-11-05 一种全气候电动汽车热泵空调系统 Active CN112297769B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011220796.3A CN112297769B (zh) 2020-11-05 2020-11-05 一种全气候电动汽车热泵空调系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011220796.3A CN112297769B (zh) 2020-11-05 2020-11-05 一种全气候电动汽车热泵空调系统

Publications (2)

Publication Number Publication Date
CN112297769A CN112297769A (zh) 2021-02-02
CN112297769B true CN112297769B (zh) 2021-12-21

Family

ID=74326219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011220796.3A Active CN112297769B (zh) 2020-11-05 2020-11-05 一种全气候电动汽车热泵空调系统

Country Status (1)

Country Link
CN (1) CN112297769B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023118683A1 (de) * 2022-08-11 2024-02-22 Hanon Systems Komponentenanordnung für Komponenten eines Kältemittelkreislaufs eines Fahrzeug-Klimatisierungssystems und Klimatisierungssystem mit Kältemittelkreislauf für ein Fahrzeug

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003291633A (ja) * 2002-01-30 2003-10-15 Sanden Corp 車両用空調装置
CN104896793A (zh) * 2014-03-06 2015-09-09 珠海格力电器股份有限公司 空调热水机系统
CN203731741U (zh) * 2014-03-06 2014-07-23 珠海格力电器股份有限公司 空调热水机系统
FR3020130B1 (fr) * 2014-04-16 2019-03-22 Valeo Systemes Thermiques Circuit de fluide frigorigene
US10543737B2 (en) * 2015-12-28 2020-01-28 Thermo King Corporation Cascade heat transfer system
CN106016873B (zh) * 2016-05-26 2018-07-17 西安交通大学 一种两级压缩切换至部分二元复叠的空气源热泵除霜系统
US11305616B2 (en) * 2016-07-05 2022-04-19 Carrier Corporation Dual compressor transportation refrigeration unit
CN110171267A (zh) * 2019-05-28 2019-08-27 中国科学院理化技术研究所 电动汽车热泵空调系统
CN111023613A (zh) * 2019-11-27 2020-04-17 合肥通用制冷设备有限公司 一种精确控温制冷系统

Also Published As

Publication number Publication date
CN112297769A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN209274301U (zh) 一种用于电动车辆的热管理系统
CN103342094B (zh) 纯电动汽车热泵空调系统
CN202747508U (zh) 一种电动汽车热泵空调系统
CN106585323B (zh) 一种带快速融霜除雾功能的新能源汽车空调系统的工作模式
CN109269135A (zh) 电动汽车空调热泵系统及包括其的电动汽车
CN110588279A (zh) 带余热利用的新能源汽车整车热管理系统
CN110588280A (zh) 集三热管理及余热回收功能的新能源汽车热管理系统
CN109059341A (zh) 一种热泵汽车空调系统
CN214324840U (zh) 一种新能源汽车低温热泵空调装置
CN103994598A (zh) 纯电动车用热泵系统
CN206579445U (zh) 热泵空调系统及电动汽车
CN108317766A (zh) 一种电动大巴的空调系统及电动大巴
CN202229328U (zh) 一种超低温热源热泵型电动汽车空调系统
CN112297769B (zh) 一种全气候电动汽车热泵空调系统
CN110356283B (zh) 一种车用动力电池的热管理系统
CN209920981U (zh) 一种超低温电动汽车热泵空调系统
CN114905935A (zh) 一种纯电动汽车热管理系统及其控制方法
CN215096908U (zh) 一种电动汽车热泵空调系统
CN115416444A (zh) 一种用于新能源汽车的热泵热管理系统及其工作方法
CN212124785U (zh) 一种顶置多接口电池热集成热泵空调产品
CN109808448B (zh) 一种空调系统及其控制方法和汽车
CN114683803A (zh) 一种基于热泵的纯电动汽车热管理系统及其控制方法
CN112092577B (zh) 一种纯电动车换热系统及纯电动车换热控制方法
CN210149113U (zh) 一种新能源汽车用余热回收式热泵热管理装置
CN111923693A (zh) 电动汽车热泵空调系统及电动汽车

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant