CN112290585B - 一种区分孤岛现象与网侧电压暂态扰动现象的方法 - Google Patents

一种区分孤岛现象与网侧电压暂态扰动现象的方法 Download PDF

Info

Publication number
CN112290585B
CN112290585B CN202011031682.4A CN202011031682A CN112290585B CN 112290585 B CN112290585 B CN 112290585B CN 202011031682 A CN202011031682 A CN 202011031682A CN 112290585 B CN112290585 B CN 112290585B
Authority
CN
China
Prior art keywords
harmonic
voltage
grid
phenomenon
islanding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011031682.4A
Other languages
English (en)
Other versions
CN112290585A (zh
Inventor
于淼
赵禹灿
孙铭徽
孙福寿
姜旭
宋晓喆
丁浩
刘家岩
王鼎
葛路明
陈宁
曲立楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
China Electric Power Research Institute Co Ltd CEPRI
State Grid Jilin Electric Power Corp
Original Assignee
Zhejiang University ZJU
China Electric Power Research Institute Co Ltd CEPRI
State Grid Jilin Electric Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, China Electric Power Research Institute Co Ltd CEPRI, State Grid Jilin Electric Power Corp filed Critical Zhejiang University ZJU
Priority to CN202011031682.4A priority Critical patent/CN112290585B/zh
Publication of CN112290585A publication Critical patent/CN112290585A/zh
Application granted granted Critical
Publication of CN112290585B publication Critical patent/CN112290585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提出了一种区分孤岛现象与网侧电压暂态扰动现象的方法,适用于光伏并网系统故障检测技术。该方法以不同故障前后谐波电压的变化特性为主要依据,综合考虑了主电网背景谐波和频谱泄漏对谐波检测的影响。本发明具体给出了谐波电压阈值的整定公式,可以有效区分孤岛现象和电压暂态扰动现象,不受频谱泄漏和主电网背景谐波的干扰,具有切实可行性。

Description

一种区分孤岛现象与网侧电压暂态扰动现象的方法
技术领域
本发明涉及一种区分孤岛现象与网侧电压暂态扰动现象的方法,属于新能源领域中的故障检测技术。
背景技术
(1)区分孤岛现象与电压暂态扰动现象的必要性
光伏并网系统在运行故障时会出现电压跌落现象,造成这种现象的原因有两种,其一是网侧短路器断开造成系统处于孤岛状态,其二是系统仍然处于并网状态而网侧电压由于其他原因出现了暂态扰动。根据GB/T 19964-2012、IEEE Std.1547.1-2020等国内外标准(参考文献[1-9])的规定,当检测到公共耦合点(point of common coupling,PCC)电压跌落后,系统需要执行孤岛保护和低电压穿越两种操作,其中孤岛保护要求系统在2s内解列以保证人员设备安全,低电压穿越则要求系统保持2s不脱网以维持电压与频率的稳定。然而,当光伏并网系统处于孤岛状态时,执行低电压穿越操作不仅会影响孤岛检测效果,而且还会对设备与人员造成伤害;而当网侧电压发生暂态扰动时,执行孤岛保护的停机动作会使低电压穿越失败(参考文献[10])。
为了避免这一矛盾,光伏并网系统需要对电压暂态扰动与孤岛状态进行准确而快速的区分,以实现同时进行低电压穿越与孤岛检测操作的目的。参考文献[11]根据故障前后公共耦合点(PCC)阻抗特性的不同来区分孤岛现象和电压暂态扰动现象,但是需要外加1.5次谐波源来测取谐波阻抗,不仅成本高,还会对电能质量产生影响。参考文献[12]把低电压持续的时间作为区分孤岛现象和电压暂态扰动的依据,这并不完全符合并网准则的要求。
(2)频谱泄漏对故障检测的影响
频谱泄漏是指信号频谱中各谱线之间相互影响,使测量结果偏离实际值,同时在谱线两侧其他频率点上出现一些幅值较小的假谱。简单来说,造成频谱泄漏的原因是采样频率不是信号频率的整数倍,造成周期采样信号的相位在始端和终端不连续(参考文献[13])。例如,假设网侧电压暂态扰动以后系统频率由50Hz变为49.5Hz且稳定,此时系统中的100Hz谐波幅值是接近于0的,但事实上,以现有谐波分析技术所得到的谐波谱线中依然会存在100Hz谐波。这是因为“幅值较大的49.5Hz间谐波”的存在干扰了对“幅值为0的50Hz基波”的2次谐波的检测,造成了频谱泄漏。
频谱泄漏在电力检测中是普遍存在的,国内外学者通过各种技术来抑制频谱泄漏现象,但目前仍旧无法完全消除。
参考文献
[1]中国国家标准化委员会.光伏电站接入电力系统技术规定:GB/T 19964-2012[S].北京:中国标准出版社,2012.
[2]IEEE standard for interconnecting distributed resources withelectric power systems:IEEE Std 1547.1-2020[S].2020.
[3]IEEE recommended practice for utility interface of photovoltaic(PV)systems:IEEE Std 929-2000[S].2000.
[4]中国国家标准化委员会.分布式电源并网要求:GB/T 33593-2017[S].北京:中国标准出版社,2017.
[5]中国国家标准化委员会.光伏发电系统接入配电网技术规定:GB/T 29319-2012[S].北京:中国标准出版社,2012.
[6]国家能源局.分布式电源接入配电网技术规定:NB/T 32015-2013[S].北京:2013.
[7]国家能源局.光伏并网逆变器技术规范:NB/T 32004-2018[S].北京:2018.
[8]国家电网公司.Q/GDW 1617-2015光伏电站接入电网技术规定[S].北京:国家电网公司科技部,2016.
[9]国家电网公司.Q/GDW 1480-2015分布式电源接入电网技术规定[S].北京:国家电网公司科技部,2015.
[10]马聪,高峰,李瑞生,等.新能源并网发电系统低电压穿越与孤岛同步检测的无功功率扰动算法[J].电网技术,2016,40(05):1406-1414.
[11]叶林,苗丽芳,苏剑,等.基于阻抗特性的IIDG孤岛保护与故障穿越协调运行方法[J].电力系统自动化,2017,41(18):67-73.
[12]REDDY V R,ES S.A feedback based hybrid islanding detection methodand voltage ride-through of one cycle controlled PV inverter[C].NationalPower Electronics Conference(NPEC),Dec 13-15,2019,Tiruchirappalli,India:6p.
[13]马仁政,陈明凯.减少频谱泄漏的一种自适应采样算法[J].电力系统自动化,2002:55-58.
[14]Xu Jiang,Fushou Sun,Chunhua Wang.Coordinated Operation Strategyfor Islanding Protection and Low Voltage Ride-through of Grid-connectedPhotovoltaic System Based on Harmonic Characteristics[C].32nd Chinese Controland Decision Conference(CCDC),2020:6p.
[15]中国国家标准化委员会.电能质量-公用电网谐波:GB/T 14549-1993[S].北京:中国标准出版社,1993.
发明内容
本发明的目的是针对光伏并网系统孤岛保护与低电压穿越之间运行冲突问题,根据孤岛前后和网侧电压跌落前后PCC谐波电压的变化特性差异,提出了一种区分孤岛现象与网侧电压暂态扰动现象的方法,从而为并网控制器执行下一步操作提供依据。
本发明的目的是通过以下技术方案来实现的:
一种区分孤岛现象与网侧电压暂态扰动现象的方法,所述方法为:在光伏并网系统中,公共耦合点(PCC)电压跌落后,以第h次谐波电压Uh的变化为依据来判断此时系统的运行状态及电压跌落的原因:
若Uh大于第h次谐波电压阈值Uh,set,则判定系统处于孤岛状态,电压跌落是由孤岛造成的。
若Uh小于Uh,set,则判定系统处于并网状态,电压跌落是由网侧电压暂态扰动造成的。
其中,第h次谐波电压阈值Uh,set由下式计算获得:
Figure BDA0002703920660000031
其中,UN为PCC处电压等级,Gh是一个与谐波次数h有关的计算参数,δUh为h次的背景谐波电压有效值。
作为优选方案,所述δUh可由下式计算获得:
Figure BDA0002703920660000032
Zh为PCC处2次谐波的负载阻抗,ω0=2πf0为工频对应的角频率,LS为电网侧等效电感,SK1为基准短路容量,δIhP为短路容量为SK1时的h次背景谐波电流允许值。
作为优选方案,所述h为偶数,偶数次的背景谐波对检测干扰更小。
作为优选方案,所述h为2,次数越低,谐波幅值越大,相应的,G2=0.0119。。
本发明的有益效果是:1)能够快速准确区分造成PCC处电压跌落的原因;2)直接以2次谐波作为检测对象,不向系统引入扰动,不影响电能质量;3)给出的谐波电压阈值U2,set不受频谱泄漏和主电网背景谐波的干扰,具有切实可行性。
附图说明
图1为光伏并网系统经典模型;
图2为2次谐波电压的函数图像。
具体实施方式
下面根据附图详细说明本发明的原理。
两种故障的谐波特性
如图1所示,本地负荷为RLC并联恒阻抗负载。为了分析方便,此处暂时假设主电网背景谐波为0。易知h次谐波的负载阻抗Zh的值为:
Figure BDA0002703920660000041
式中:R、L、C为并联负载参数,ω0=2πf0为工频对应的角频率。
在系统并网运行的情况下,断路器闭合,PCC的h次谐波电压与谐波电流满足如下关系:
Figure BDA0002703920660000042
式中:
Figure BDA0002703920660000043
Figure BDA0002703920660000044
分别为并网状态下PCC电压和负载电流对应的h次谐波相量(有效值),LS为电网侧等效电感。
在孤岛运行的情况下,断路器断开,谐波电压与谐波电流之间的关系变为:
Figure BDA0002703920660000045
式中:
Figure BDA0002703920660000046
Figure BDA0002703920660000047
分别为孤岛状态下PCC电压和负载电流对应的h次谐波相量(有效值)。
由(2)(3)知,孤岛发生前后谐波电压的比值为:
Figure BDA0002703920660000048
因此,孤岛运行时谐波电压(有效值)的理论值为:
U″h=KhU′h (5)
因为主电网背景谐波为0,所以孤岛发生前负载的谐波电流全部由光伏电站提供。又因为孤岛时刻光伏电站产生的谐波电流不能突变,即
Figure BDA0002703920660000049
所以当h满足下式时,Kh>1即
Figure BDA00027039206600000410
Figure BDA00027039206600000411
在网侧电压发生暂态扰动的情况下,断路器依旧闭合,扰动后经过一段时间PCC电压会达到新的稳态,此时LS与本地负荷并未断开连接,因而谐波电压与谐波电流满足如下关系:
Figure BDA0002703920660000051
式中:
Figure BDA0002703920660000052
Figure BDA0002703920660000053
分别为电压暂态扰动时PCC电压和负载电流对应的h次谐波相量(有效值)。因为电压暂态扰动前后主电网背景谐波均为0,则在扰动前后负载的谐波电流均由光伏电站提供且不能突变,所以
Figure BDA0002703920660000054
从而由(2)(7)可以推出
Figure BDA0002703920660000055
综上所述,对于某一特定次数(h次以下)的谐波,孤岛发生以后谐波电压会增大,而电压暂态扰动发生以后谐波电压基本不会改变。以此为依据可以区分孤岛现象和电压暂态扰动现象。因此,需要设定一个谐波电压阈值Uh,set,当谐波电压大于Uh,set时,判定系统处于孤岛状态,反之则处于网侧电压暂态扰动状态。
主电网背景谐波和频谱泄漏对故障检测的影响
前文的结论是建立于两个理想化假设之上:1)主电网背景谐波为0;2)故障前后频率不变即ω0恒定。
然而事实上,一方面,任何电力系统都会存在一定的背景谐波,这会对故障检测造成干扰。实际检测到正常运行时的谐波U′h,det和网侧电压暂态扰动时的谐波U″′h,det均要比理论值大,为了简化分析,本发明认为检测到的谐波是背景谐波与其它谐波线性叠加的结果;而孤岛时由于PCC点与主电网断开,谐波检测器不再受背景谐波干扰,实际检测到的谐波U″h,det应与理论值相吻合,即:
Figure BDA0002703920660000056
式中:δUh是h次的背景谐波且δUh>0。
另一方面,孤岛现象和电压暂态扰动均有可能导致系统频率发生变化。因为故障后的频率很难确定,而其具体数值通常不会偏离工频太远,所以目前多数学者仍以工频下的阻抗Zh来分析电压谐波的幅值,即认为式(3)和式(7)依然成立。这么一来就会造成背景技术中所说的频谱泄漏现象。
考虑频谱泄漏最严重的情况,即采样周期不等于信号周期的整数倍且不加窗函数。根据傅里叶级数公式
Figure BDA0002703920660000057
对一个频率为f1+Δf,任意t时刻下的正弦信号V(t)=V sin 2π(f1+Δf)t在长度为1/f1的时间区间[k/f1,(k+1)/f1]内做傅里叶展开,可以得到该区间内的h次谐波幅值Vh(k)的表达式:
Figure BDA0002703920660000061
式中:h为谐波次数,k/f1是所截取的时间区间的起点,k是为了计算需要而引入的一个参数。若将k视为变量,则Vh(k)可视为关于k的函数。考虑实际情况,设V(t)为故障后光伏并网点PCC处的电压,则幅值
Figure BDA0002703920660000062
(UPCC为并网点电压的有效值),f1为工频即f1=50Hz,Δf为故障后的频率偏移量。
接下来讨论频谱泄漏对故障检测的影响。对于孤岛现象,由式(4)可知,光伏并网系统原本就存在一定量的谐波,孤岛发生后这些谐波幅值会被放大Kh倍。而孤岛发生后通常会产生频率偏移,这就会造成频谱泄漏,所以谐波检测装置检测到的谐波实际上是由孤岛系统原有的谐波和因频谱泄漏而产生的谐波(有效值)
Figure BDA0002703920660000063
叠加而成,换句话说,实际检测到的孤岛谐波U″h,det要比式(9)所给出的值更大。
对于网侧电压暂态扰动现象,通常电压跌落的同时也伴随着频率偏移,所以在扰动后也存在频谱泄漏现象,即扰动后检测到的谐波要比扰动前大。而且,因为扰动前后系统原有的谐波幅值很小,所以扰动后检测到的谐波U″′h,det大致上等于由频谱泄漏而产生的谐波
Figure BDA0002703920660000064
与背景谐波δUh之和。
综上,式(8)所给出的实际检测到的谐波与理论分析得出的谐波之间的关系可以修正为:
Figure BDA0002703920660000065
式中:U′h,det为实际检测到的正常运行时的h次谐波电压有效值,U″h,det为孤岛时的h次谐波电压有效值,Vh(k)为网侧电压暂态扰动时由于频谱泄漏而产生的h次谐波电压幅值,δUh为h次的背景谐波电压有效值。
谐波电压阈值的整定
在考虑频谱泄漏的前提下,设置作为区分孤岛和电压暂态扰动判据的谐波电压阈值Uh,set时,Uh,set要大于电压跌落时检测到的谐波电压值U″′h,det,而小于孤岛时检测到的谐波电压值U″h,det。又因为
Figure BDA0002703920660000066
所以Uh,set须满足:
Figure BDA0002703920660000071
由于Vh(k)是关于k的函数,为了使式(11)左边的不等式恒成立,必须保证Vh(k)的最大值Vh,max满足
Figure BDA0002703920660000072
同时为了使式(11)右边的不等式恒成立,Uh,set必须足够小。因此,本发明把作为区分两种故障的阈值整定为:
Figure BDA0002703920660000073
为了进一步给出Uh,set的具体表达式,首先要确定式(9)中含有的两个参数h和Δf的值。关于参数h的取值,文献[14]指出,作为故障判据的谐波,应尽量选择较低的次数,因为次数越低,谐波幅值越大。此外,通常奇数次的背景谐波要大于偶数次的背景谐波,这意味着奇数次的谐波对检测造成干扰更严重,所以应选取偶数次谐波。因此,本发明选取2次谐波即100Hz谐波作为区分故障种类的判据,即h=2。
关于参数Δf的取值,一方面,为了保证本发明所提方法在频谱泄漏最严重时仍能生效,频率偏移量应足够大;另一方面,为了在孤岛保护的检测盲区仍能区分两种故障,故障后的频率应仍在正常范围49.5~50.2Hz(参考文献[1-9])内。因此须设故障后的频率在正常范围的临界,即Δf=-0.5。
确定了h和Δf的值以后,接下来分别求V2,max和δU2的值,从而给出U2,set的整定公式。
1)确定V2,max的值。
把h=2和Δf=-0.5代入式(9),所得到的2次谐波幅值(标幺值)的表达式是关于参数k的函数:
Figure BDA0002703920660000074
用MATLAB软件绘制式(13)的函数图像如图2所示。图2显示,频谱泄漏时的谐波电压(幅值)V2 *(k)是关于参数k的周期函数,且当k=25时,V2 *(k)有最小值
Figure BDA0002703920660000076
当k=50时,V2 *(k)有最大值
Figure BDA0002703920660000077
因此
Figure BDA0002703920660000078
又因为
Figure BDA0002703920660000075
所以还需要确定UPCC的取值。由于UPCC是故障运行时PCC处的电压,其值具有不确定性。根据并网准则(参考文献[1-9]),低电压穿越时PCC处的电压为正常运行电压的0.2~0.9倍。与前文类似,为了使式(8)左边的不等式恒成立,UPCC的取值应尽可能地大,故可以令
Figure BDA0002703920660000081
(UN是PCC处的电压等级,通常指线电压,而本发明中的电压和电流均指相电压和相电流)。
综上可得:
Figure BDA0002703920660000082
式中:UN是PCC处的电压等级。
2)确定δU2的值。
国标GB/T 14549-1993(参考文献[17])给出了公用电网所允许存在的在PCC处注入的2次背景谐波电流允许值δI2的计算公式:
Figure BDA0002703920660000083
式中:SK2为PCC处的最小短路容量(由实际系统决定),SK1为基准短路容量(可以根据电压等级UN查表得到),δI2P为短路容量为SK1时的2次背景谐波电流允许值。对于图1所示的系统,SK2可由下式给出:
Figure BDA0002703920660000084
为了保证U2,set的整定不受背景谐波干扰,应考虑背景谐波最大的情况,故将δU2设为δI2所对应的PCC处背景谐波电压,即:
Figure BDA0002703920660000085
最后,把式(14)、式(16)、式(17)和h=2代入式(12),得到2次谐波电压阈值的整定公式:
Figure BDA0002703920660000086
式中:U2,set为2次谐波电压阈值,UN为PCC处电压等级,Z2为PCC处2次谐波的负载阻抗,ω0=2πf0为工频对应的角频率,LS为电网侧等效电感,SK1为基准短路容量,δI2P为短路容量为SK1时的2次背景谐波电流允许值。其中,SK1和δI2P均可以根据电压等级UN查阅GB/T14549-1993(参考文献[15])得到,且式(18)中所有电压和电流的物理量均为有效值。
以上选取2次谐波作为区分故障种类的判据,推导出如公式(18)所述的阈值。推广到一般情况,h次谐波电压阈值也可以用类似的分析方法得到:
Figure BDA0002703920660000091
式中:Gh是一个与谐波次数h有关的计算参数,G2=0.0119。

Claims (4)

1.一种区分孤岛现象与网侧电压暂态扰动现象的方法,其特征在于,所述方法为:在光伏并网系统中,公共耦合点(PCC)电压跌落后,以第h次谐波电压Uh的变化为依据来判断此时系统的运行状态及电压跌落的原因:
若Uh大于第h次谐波电压阈值Uh,set,则判定系统处于孤岛状态,电压跌落是由孤岛造成的;
若Uh小于Uh,set,则判定系统处于并网状态,电压跌落是由网侧电压暂态扰动造成的;其中,第h次谐波电压阈值Uh,set由下式计算获得:
Figure FDA0003744202090000011
Figure FDA0003744202090000012
UN为PCC处电压等级,δUh为h次的背景谐波电压有效值。
2.根据权利要求1所述的方法,其特征在于,所述δUh可由下式计算获得:
Figure FDA0003744202090000013
Zh为PCC处2次谐波的负载阻抗,ω0=2πf0为工频对应的角频率,LS为电网侧等效电感,SK1为基准短路容量,δIhP为短路容量为SK1时的h次背景谐波电流有效值。
3.根据权利要求1所述的方法,其特征在于,所述h为偶数。
4.根据权利要求1所述的方法,其特征在于,所述h为2,G2=0.0119。
CN202011031682.4A 2020-09-27 2020-09-27 一种区分孤岛现象与网侧电压暂态扰动现象的方法 Active CN112290585B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011031682.4A CN112290585B (zh) 2020-09-27 2020-09-27 一种区分孤岛现象与网侧电压暂态扰动现象的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011031682.4A CN112290585B (zh) 2020-09-27 2020-09-27 一种区分孤岛现象与网侧电压暂态扰动现象的方法

Publications (2)

Publication Number Publication Date
CN112290585A CN112290585A (zh) 2021-01-29
CN112290585B true CN112290585B (zh) 2022-11-08

Family

ID=74423076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011031682.4A Active CN112290585B (zh) 2020-09-27 2020-09-27 一种区分孤岛现象与网侧电压暂态扰动现象的方法

Country Status (1)

Country Link
CN (1) CN112290585B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162003A (zh) * 2021-05-10 2021-07-23 国网浙江余姚市供电有限公司 基于能量注入的含iidg配电网谐波差动保护方法及系统
CN117310350A (zh) * 2023-11-28 2023-12-29 石家庄科林电气股份有限公司 储能微电网系统孤岛检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039998A (zh) * 2017-06-08 2017-08-11 南京工程学院 一种基于双源谐波电压突变量的分布并网发电孤岛检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823416B2 (en) * 2010-07-14 2014-09-02 Virginia Tech Intellectual Properties, Inc. Use of PLL stability for islanding detection
CN102723735B (zh) * 2012-06-29 2015-06-17 京东方科技集团股份有限公司 孤岛检测方法及系统
CN107765108B (zh) * 2016-08-18 2020-01-21 华为技术有限公司 一种逆变器的孤岛检测方法、装置和供电系统
CN107465206B (zh) * 2017-07-11 2021-08-06 中国电力科学研究院 一种基于谐波阻抗矩阵的风电场防孤岛识别方法及其系统
CN107425549B (zh) * 2017-09-13 2021-03-12 国电南瑞科技股份有限公司 一种针对谐波式孤岛检测的阈值整定方法
CN110632413B (zh) * 2019-09-02 2022-02-11 国网吉林省电力有限公司 一种延时触发的无功功率扰动孤岛检测方法
CN110954763B (zh) * 2019-11-11 2022-03-04 天津大学 一种基于谐波电流注入和谐波阻抗测量的微电网非破坏性孤岛检测方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039998A (zh) * 2017-06-08 2017-08-11 南京工程学院 一种基于双源谐波电压突变量的分布并网发电孤岛检测方法

Also Published As

Publication number Publication date
CN112290585A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN104009486B (zh) 一种三相三线制svg的非对称补偿限流方法
CN112290585B (zh) 一种区分孤岛现象与网侧电压暂态扰动现象的方法
CN103760434A (zh) 一种基于模糊控制的自适应相位偏移孤岛检测方法
CN105182189B (zh) 基于电压频率和测量阻抗结合的逆变器扰动式孤岛检测法
Guha et al. Anti-islanding techniques for Inverter-based Distributed Generation systems-A survey
Gupta et al. Islanding detection technique for a distributed generation with perfectly matched load condition
Shafique et al. A simplified passive islanding detection technique based on susceptible power indice with zero NDZ
Nayak et al. A hybrid islanding detection method considering voltage unbalance factor
Wang et al. A novel directional element for transmission line connecting inverter-interfaced renewable energy power plant
Mohiti et al. A hybrid micro grid islanding detection method
Zhao et al. A passive islanding detection method based on interharmonic impedance
Zhou et al. Sag detection algorithm for dynamic voltage restorer used in wind farms under unbalanced and distorted grid voltage conditions
Liu et al. Performance of ROCOF protection in PV system
Altaf et al. Effective ROCOF based islanding detection technique for different types of microgrid
Huayang et al. Based on hybrid algorithm of distributed power islanding detection
Bimenyimana et al. Fault Ride-Through (FRT) Behavior in VSC-HVDC as Key Enabler of Transmission Systems Using SCADA Viewer Software
Charalambous et al. A sensorless asymmetric and harmonic load compensation method by photovoltaic inverters based on event-triggered impedance estimation
CN108594046B (zh) 基于综合阻抗基波分量的孤岛检测方法
Mohiti et al. Two-stage islanding detection method via high frequency impedance and harmonic distortion evaluation in multi-DG networks
Si et al. Reactive power injection and SOGI based active anti-islanding protection method
Gupta et al. Active islanding detection technique for distributed generation
Tang et al. The analysis of distance protection operation characteristics of power system based on VSC-HVDC interconnection
Somalwar et al. Comparative analysis of ripple-based passive islanding detection techniques for single-phase micro-grid system
Pazos et al. Failure analysis of inverter based anti-islanding systems in photovoltaic islanding events
CN111864803B (zh) 一种光伏并网系统及其孤岛检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant