CN112285682A - 水工工程涵洞环境的360°多波束声呐扫描装置及方法 - Google Patents

水工工程涵洞环境的360°多波束声呐扫描装置及方法 Download PDF

Info

Publication number
CN112285682A
CN112285682A CN202011126684.1A CN202011126684A CN112285682A CN 112285682 A CN112285682 A CN 112285682A CN 202011126684 A CN202011126684 A CN 202011126684A CN 112285682 A CN112285682 A CN 112285682A
Authority
CN
China
Prior art keywords
culvert
sonar
scanning device
hydraulic
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011126684.1A
Other languages
English (en)
Inventor
向衍
陈波
陈焕元
李卓
杨阳
刘成栋
沈光泽
孟颖
詹小磊
黄梓梓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources
Nuclear Industry Jingxiang Construction Group Co Ltd
Original Assignee
Hohai University HHU
Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources
Nuclear Industry Jingxiang Construction Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU, Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources, Nuclear Industry Jingxiang Construction Group Co Ltd filed Critical Hohai University HHU
Priority to CN202011126684.1A priority Critical patent/CN112285682A/zh
Publication of CN112285682A publication Critical patent/CN112285682A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications

Abstract

本发明的目的在于提供水工工程涵洞环境的360°多波束声呐扫描装置及方法,水工工程涵洞环境的360°多波束声呐扫描装置,包括声呐基阵、搭载机器人,声呐基阵是声呐收发一体基阵,声呐基阵由声呐基元等距均匀的以圆周阵列的方式排布于搭载机器人上,以匹配水工涵洞的内部环形结构。声呐基阵分为圆形基阵和弧形基阵。声呐基阵是声呐收发一体基阵,声呐基阵由声呐基元等距均匀的以圆周阵列的方式排布于搭载机器人上,以匹配水工涵洞的内部环形结构,多波束声呐探测技术弥补了多波束声纳扫描技术在水工涵洞病害检测应用的空白,能够有效应用于水工涵洞及其他水工建筑物病害的问题定位和量化诊断。

Description

水工工程涵洞环境的360°多波束声呐扫描装置及方法
技术领域
本发明涉及水工技术领域,具体涉及水工工程涵洞环境的360°多波束声呐扫描装置及方法。
背景技术
水工涵洞作为水利工程的重要组成部分,其结构和功能的完整是水利工程安全的重要保证。但是长期运行的水工涵洞普遍存在渗漏、衬砌裂损、衬砌变形、冲刷腐蚀、侵蚀、冻害、碳化、溶蚀等病害问题,因此目前水工涵洞的病害检测越来越受到重视。然而,传统的水工涵洞病害检测方法主要采取人工进入水工涵洞目视检查,存在效率低、精度差、安全风险高、病害难以跟踪的明显不足。为解决上述问题,一些先进的方法和设备已经逐渐应用到水工涵洞病害检测中。
其中,多波束探测技术通过在一定扇区范围内发射和接收多个波束,从而有效采集并存储开角扇区内完整的水体信息,是近年发展的一种探测新技术。由于多波束探测技术存在高效率、高精度、高分辨率、全覆盖的明显优势,可作为水工涵洞病害检测的重要手段进行推广和应用。然而,尽管多波束声呐技术已经逐渐开始应用于水下建筑物的检测之中,但应用场景多集中在闸门、坝体、消力池等水下建筑物的表面检测,对于水工涵洞的病害检测、尤其是水工涵洞内部的病害检测研究尚且较少,主要存在两方面的限制,第一,目前设计装置只能发现工程设施的表面情况,无法适配水工涵洞独特的环形结构,检查水工涵洞的内部缺陷;第二,在水体浑浊、表面附着物较多的条件下,尚未提出有效方法甄别裂缝、空洞等常见病害,或精确测量病害长度、宽度、深度的具体尺寸。因此,为拓宽水工建筑物病害检测范围,亟需开发一种适用于水工涵洞环境的多波声呐扫描装置与方法,全面直观地了解水工涵洞内部现状,满足日益增长的水工涵洞病害检测的需要。
发明内容
针对现有技术存在的问题,本发明的目的在于提供水工工程涵洞环境的360°多波束声呐扫描装置及方法,以解决水工涵洞检测效果较差的问题。
本发明提供了水工工程涵洞环境的360°多波束声呐扫描装置,包括声呐基阵、搭载机器人,声呐基阵是声呐收发一体基阵,声呐基阵由声呐基元等距均匀的以圆周阵列的方式排布于搭载机器人上,以匹配水工涵洞的内部环形结构。
进一步地,声呐基阵分为圆形基阵和弧形基阵。
进一步地,声呐基元是收发一体的压电陶瓷声呐基元,声呐基元能够在电场的作用下发生伸缩的压电效应。
进一步地,搭载机器人包括推进器、浮力材料、电子机舱,推进器设置于电子机舱外,用于推动搭载机器人移动;浮力材料设置于电子机舱上,浮力材料用于控制搭载机器人沉浮;电子机舱的内壁覆盖声呐基阵。
进一步地,搭载机器人还包括定位信标,定位信标设置于电子机舱的前进方向的前侧,定位信标用于实时发送扫描装置标识信息的定位系统。
进一步地,水工工程涵洞环境的360°多波束声呐扫描装置还包括辅助设备,辅助设备包括电源设备、控制系统、连接电缆、电缆盘,连接电缆缠绕于电缆盘上,使用时,电源设备和控制系统布置于水工涵洞外测,通过连接电缆将电力和控制信号传送到水工涵洞内侧的扫描装置,同时接收扫描装置上传的数据信号;连接电缆连接涵洞内的扫描装置、涵洞外的电源设备和控制系统,可通过调节长度释放和回收扫描装置。
本发明还提供了水工工程涵洞环境的360°多波束声呐扫描方法,水工工程涵洞环境的360°多波束声呐扫描方法采用上述的水工工程涵洞环境的360°多波束声呐扫描装置,水工工程涵洞环境的360°多波束声呐扫描方法包括:步骤S1:释放扫描装置,开启水工涵洞阀门,将扫描装置入水并开启搭载机器人上的推进器,辅助设备上的电缆盘随扫描装置前进逐步释放辅助设备上的连接电缆,辅助设备上的电源设备输入工作电压,经变压器升压,由连接电缆传输到涵洞内的扫描装置;步骤S2:环形扫描涵洞,根据水工涵洞水流形态的不同调整扫描装置的安装结构和运行方式,采用环形绸带式渐进扫描涵洞,经由连接电缆实时将数据信号上传到涵洞外的辅助设备的控制系统;步骤S3:回收扫描装置,在扫描完成后,反向启动搭载机器人的推进器,电缆盘配合转动逐步回收连接电缆;步骤S4:解析采集数据,基于水工涵洞三维设计模型,解析扫描装置的采集数据,针对水工涵洞典型病害问题进行定位和诊断。
进一步地,步骤S4包括:步骤S41:图像获取,通过运行多波束声呐扫描装置,完成水工涵洞内部全方位的数据采集;步骤S42:坐标建立,建立统一坐标系下的地理编码模型,根据定位信标数据,赋予声呐图像像素点位置信息;步骤S43:图像处理,将获取的数字图像进行灰度化、滤波、直方图均衡化等处理,以突出图像的有用信息;步骤S44:特征选择,基于分析处理后的图像,通过辨别灰度结果、提取轮廓线条、对比设计尺寸等方法,精确识别水工涵洞渗水、裂缝、淤积等病害问题的典型特征,并结合已建立的地理编码模型准确定位病害的发生位置;步骤S45:病害诊断,借助评价指标量化病害问题,最终输出病害类型、病害严重程度和病害坐标信息的综合诊断结果。
采用本发明中的水工工程涵洞环境的360°多波束声呐扫描装置及方法有如下技术效果:
一、声呐基阵是声呐收发一体基阵,声呐基阵由声呐基元等距均匀的以圆周阵列的方式排布于搭载机器人上,以匹配水工涵洞的内部环形结构,多波束声呐探测技术弥补了多波束声纳扫描技术在水工涵洞病害检测应用的空白,能够有效应用于水工涵洞及其他水工建筑物病害的问题定位和量化诊断。
二、根据水工涵洞水流形态的不同,有针对性地调整扫描装置的构造并设计相对应的扫描方法,使装置使用范围涵盖全面,增强了本发明的通用性。
三、多波束声呐扫描装置通过360°环形扫描的方式与水工涵洞内部结构相匹配,测量方法快速简便,数据解析准确高效,生成的三维结构数字图像直观清晰,通过全方位、多角度的实时动态观测,为水工结构的病害检测提供重要的技术手段,具有广阔的应用前景。
附图说明
图1为本发明实施例的360°多波束声呐扫描装置整体组成框图;
图2为本发明实施例的360°多波束声呐扫描装置工作模式示意图;
图3为本发明实施例的360°多波束声呐扫描装置立体示意图;
图4为本发明实施例的多波束声呐波束形成示意图;
图5为本发明实施例的360°多波束声呐扫描装置检测病害示意图;
图6为本发明实施例的360°多波束声呐扫描装置在涵洞内的示意图;
1、涵洞;3、连接电缆;4、声呐基元;5、滚轮;6、推进器;7、电子机舱;8、透声罩;9、锥形导流罩;10、密封圈;11、基阵轴;12、渗水病害;13、裂缝病害;14、剖面淤积淤积线;15、淤积病害;16、剖面原始轮廓线。
具体实施方式
为清楚地说明本发明的设计思想,下面结合示例对本发明进行说明。
为了使本领域的技术人员更好地理解本发明的方案,下面结合本发明示例中的附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的示例仅仅是本发明的一部分示例,而不是全部的示例。基于本发明的示例,本领域的普通技术人员在没有做出创造性劳动的前提下,所获得的所有其他实施方式都应当属于本发明保护的范围。
在本实施方式的描述中,术语“上”、“下”、“左”、“右”等指示的方位或位置关系均为基于附图所示的方位或位置关系,仅仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于区别类似的对象,而不能理解为特定的顺序或先后次序,应该理解这样的使用在适当情况下可以互换。
本发明提供水工工程涵洞环境的360°多波束声呐扫描装置及方法,以解决水工涵洞检测效果较差的问题。
如图1至图6所示,水工工程涵洞环境的360°多波束声呐扫描装置包括声呐基阵、搭载机器人,声呐基阵是声呐收发一体基阵,声呐基阵由声呐基元4等距均匀的以圆周阵列的方式排布于搭载机器人上,以匹配水工涵洞的内部环形结构。声呐基阵分为圆形基阵和弧形基阵。声呐基元4是收发一体的压电陶瓷声呐基元,声呐基元4能够在电场的作用下发生伸缩的压电效应。由水密装置、压电陶瓷、导电涂层、加强背板和电连接线组成,在电性上彼此相互独立,并通过电连接线、连接电缆3与电源设备连接。本实施例中,声呐基元4绕基阵轴11布置。
如图3所示,搭载机器人包括推进器6、浮力材料、电子机舱7,推进器6设置于电子机舱7外,用于推动搭载机器人移动;浮力材料设置于电子机舱上,浮力材料用于控制搭载机器人沉浮;电子机舱7的内壁覆盖声呐基阵。搭载机器人还包括定位信标,定位信标设置于电子机舱7的前进方向的前侧,定位信标用于实时发送扫描装置标识信息的定位系统。
本实施例中,根据水工涵洞水流形态的不同有针对性地调整扫描装置的安装结构和运行方式,满足扫描装置在扫描过程中方向锁定、位置记录和快速移动的需要,提高装置检测水工涵洞病害的作业能力。搭载机器人还包括框架,框架用于连接水下机器人和多波束声呐扫描装置。浮力材料用于控制载荷的大小,当扫描装置扫描有压式水工涵洞时,扫描装置需完全浸没于水面;当扫描装置扫描半有压式水工涵洞时,扫描装置需浮于水面。推进器6包括滚轮、螺旋桨、导流罩、连接架,包括水平方向和垂直方向的推进器6,用于控制扫描装置的移动,包括前进、后退、上升、下潜和停留。电子机舱7由高强度耐压材料制成,整体呈圆柱形,前端与锥形导流罩9连接,内壁覆盖声呐基阵,外壁覆盖透声罩8,中心连接连接电缆3,内部充气平衡维持电子机舱7气压,同时连接处由密封圈10环形固定,以达到隔水的目的。定位信标是实时发送扫描装置标识信息的定位系统,安装于水下机器人行进方向前侧。
如3所示,水工工程涵洞环境的360°多波束声呐扫描装置还包括辅助设备,辅助设备包括电源设备、控制系统、连接电缆、电缆盘,连接电缆缠绕于电缆盘上,使用时,电源设备和控制系统布置于水工涵洞外测,通过连接电缆3将电力和控制信号传送到水工涵洞内侧的扫描装置,同时接收扫描装置上传的数据信号;连接电缆3连接涵洞内的扫描装置、涵洞1外的电源设备和控制系统,可通过调节长度释放和回收扫描装置。
本实施例中,辅助设备,还包括增音机和锥形导流罩9。电源设备和控制系统布置于涵洞1外测,通过连接电缆将电力和控制信号传送到涵洞内的扫描装置,同时接收扫描装置上传的数据信号,包括图像数据和基元数据。连接电缆3起始端为电缆盘,末尾段为扫描装置,布置于扫描装置的轴心位置。电缆盘布置于涵洞1外测,通过调节连接电缆3的长度释放和回收扫描装置。增音机用于增强线路传输衰减的信号。采用轻质耐压材料制成,通过密封圈10与扫描装置行进方向的前端紧密贴合,通过调节装置表面水流达到减少流体阻力和水动噪声的目的,同时能够保护装置作业时免遭破坏。
本发明还提供了水工工程涵洞环境的360°多波束声呐扫描方法,水工工程涵洞环境的360°多波束声呐扫描方法采用上述的水工工程涵洞环境的360°多波束声呐扫描装置,水工工程涵洞环境的360°多波束声呐扫描方法包括:
步骤S1:释放扫描装置,开启水工涵洞阀门,将扫描装置入水并开启搭载机器人上的推进器,辅助设备上的电缆盘随扫描装置前进逐步释放辅助设备上的连接电缆3,辅助设备上的电源设备输入工作电压,经变压器升压,由连接电缆传输到涵洞内的扫描装置;
步骤S2:环形扫描涵洞,根据水工涵洞水流形态的不同调整扫描装置的安装结构和运行方式,采用环形绸带式渐进扫描涵洞,经由连接电缆实时将数据信号上传到涵洞外的辅助设备的控制系统;
步骤S3:回收扫描装置,在扫描完成后,反向启动搭载机器人的推进器6,电缆盘配合转动逐步回收连接电缆;
步骤S4:解析采集数据,基于水工涵洞三维设计模型,解析扫描装置的采集数据,针对水工涵洞典型病害问题进行定位和诊断。
其中步骤S4包括:
步骤S41:图像获取,通过运行多波束声呐扫描装置,完成水工涵洞内部全方位的数据采集;
步骤S42:坐标建立,建立统一坐标系下的地理编码模型,根据定位信标数据,赋予声呐图像像素点位置信息;
步骤S43:图像处理,将获取的数字图像进行灰度化、滤波、直方图均衡化等处理,以突出图像的有用信息;
步骤S44:特征选择,基于分析处理后的图像,通过辨别灰度结果、提取轮廓线条、对比设计尺寸等方法,精确识别水工涵洞渗水、裂缝、淤积等病害问题的典型特征,并结合已建立的地理编码模型准确定位病害的发生位置;
步骤S45:病害诊断,借助评价指标量化病害问题,最终输出病害类型、病害严重程度和病害坐标信息的综合诊断结果。
如图3和图4所示,等距均匀圆阵作为具有360°全向搜索能力的阵形,其空间指向性能一致,具有方位角和俯仰角两维估计能力,相比等距均匀线阵,圆阵波束主瓣宽度在各方向一样,不随波束预成方向变化而变化,且每个方位角对应唯一相应向量,不存在方位模糊,圆(弧)形基阵由M个相同的换能基元等间距排列在角度α的圆弧上,α∈{π,2π},波束角θ=α/M,基阵长度为D,D=N·λ/2,M和N均为大于1的整数。为保证声呐作业效果,需保证相邻基元间隔为λ/2,根据波长λ=c/F,及时通过调节声呐工作频率达到不同波束叠加形成相长干涉的目的。
圆形基阵:
Figure BDA0002733839290000061
弧形基阵:
Figure BDA0002733839290000062
式中:c为声音传播的速度,当声音在空气中传播时,声速为1500m/s,当声音在水中传播时,c=(331.45+0.61T)-1;T为温度,单位℃;F为工作频率,单位Hz;单位m/s。
根据水工涵洞水流形态的不同调整扫描装置的安装结构和运行方式,以下结合无压式、半有压式、有压式涵洞的实例进行详细说明。
如图2中的第一幅图所示,当360°多波束声呐扫描装置扫描无压式水工涵洞时,声呐基阵布置成圆形换能器阵,搭载机器人为无人爬行机器人,底部安装滚轮5,接触涵洞1内壁爬行前进。
如图2中第二幅图所示,当360°多波束声呐扫描装置扫描半有压式水工涵洞时,多波束扫描装置通过云台与搭载水下机器人连接,通过调节搭载水下机器人的浮力材料,使声纳扫描装置整体浮于水面。声呐基元4布置成弧形换能器阵,等距均匀地分布多个阵元,根据水和空气两个介质的传播特性不同分开扫描,使用时依靠云台±180°的旋转实现涵洞1内部的360°全方位扫描。
如图2中第三幅图所示,当360°多波束声呐扫描装置扫描有压式水工涵洞时,所搭载的水下机器人通过调节浮力材料的载荷大小,使声纳扫描装置完全浸没水面,其电子机舱7呈圆柱形,通过充压和密封圈连接的方式实现隔水目的,内部封装接线盒,外部覆盖声呐基阵。多波束声呐基元在圆周方向和轴向等距均匀布置,形成柱形换能器阵,均匀覆盖在电子机舱外侧。
通过解析扫描装置生成的数字图像,可以检测和识别水工涵洞的病害问题,以下结合图5,对常见的渗水病害、裂缝病害、淤积病害进行详细说明。
当多波束声呐扫描装置检测渗水病害12时,如图5中的第一幅图所示,对多波束声呐扫描装置生成的数字图像进行灰度化处理,设空间中存在坐标为(x,y)的点,f(x,y)为检测生成的RGB图像,将图像中的三分量平均值作为灰度值,即可获得病害检测的灰度化结果图。
Figure BDA0002733839290000071
进一步对灰度化结果图进行渗水区域的提取,计算局部区域的图像灰度n,
Figure BDA0002733839290000072
式中:rk为灰度级;nk为图像中灰度级为rk的像素个数;s为局部区域的面积;n表征局部区域的灰度程度。
建立图像灰度n对应渗水强度k的评价指标体系,根据评价指标体系精确识别渗水强度k超过设定阈值kmin的局部区域,以达到水工涵洞渗水病害12检测的目的。
当360°多波束声呐扫描装置检测裂缝病害13时,如图5中第二幅图所示,首先基于360°多波束声呐扫描装置生成的数字图像,提取数字图像的剖面图轮廓线,通过对比剖面轮廓线和剖面原始轮廓线,识别存在于轮廓线边缘的裂缝病害13;同时,结合设计图纸标注的水工涵洞设计尺寸,运用扫描装置所提供的量化数据,进一步并运用裂缝走向、裂缝宽度L1和裂缝长度L2等参数描述裂缝性态。
当360°多波束声呐扫描装置检测淤积病害15时,如图5中第三幅图所示,运用360°多波束声呐扫描装置扫描一个半径为R的水工涵洞并生成数字图像,通过提取数字图像的剖面图轮廓线,获得剖面的淤泥淤积线14,从而有效水工涵洞内部的淤积形态;同时,运用扫描装置所提供的量化数据,结合设计图纸标注的水工涵洞设计尺寸,即为剖面的原始轮廓线16,精确计出当前剖面的淤积深度L3,并由此推算整个水工涵洞的淤积总量。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语"包含"和/或"包括"时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
最后,可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域普通技术人员而言,在不脱离本发明的原理和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (8)

1.水工工程涵洞环境的360°多波束声呐扫描装置,其特征在于,包括声呐基阵、搭载机器人,所述声呐基阵是声呐收发一体基阵,所述声呐基阵由声呐基元等距均匀的以圆周阵列的方式排布于所述搭载机器人上,以匹配水工涵洞的内部环形结构。
2.根据权利要求1所述的水工工程涵洞环境的360°多波束声呐扫描装置,其特征在于,所述声呐基阵分为圆形基阵和弧形基阵。
3.根据权利要求1所述的水工工程涵洞环境的360°多波束声呐扫描装置,其特征在于,所述声呐基元是收发一体的压电陶瓷声呐基元,所述声呐基元能够在电场的作用下发生伸缩的压电效应。
4.根据权利要求1所述的水工工程涵洞环境的360°多波束声呐扫描装置,其特征在于,所述搭载机器人包括推进器、浮力材料、电子机舱,所述推进器设置于所述电子机舱外,用于推动所述搭载机器人移动;所述浮力材料设置于所述电子机舱上,所述浮力材料用于控制所述搭载机器人沉浮;所述电子机舱的内壁覆盖所述声呐基阵。
5.根据权利要求4所述的水工工程涵洞环境的360°多波束声呐扫描装置,其特征在于,所述搭载机器人还包括定位信标,所述定位信标设置于所述电子机舱的前进方向的前侧,所述定位信标用于实时发送扫描装置标识信息的定位系统。
6.根据权利要求4所述的水工工程涵洞环境的360°多波束声呐扫描装置,其特征在于,所述水工工程涵洞环境的360°多波束声呐扫描装置还包括辅助设备,所述辅助设备包括电源设备、控制系统、连接电缆、电缆盘,所述连接电缆缠绕于所述电缆盘上,使用时,所述电源设备和控制系统布置于水工涵洞外测,通过连接电缆将电力和控制信号传送到水工涵洞内侧的扫描装置,同时接收扫描装置上传的数据信号;所述连接电缆连接涵洞内的扫描装置、涵洞外的电源设备和控制系统,可通过调节长度释放和回收扫描装置。
7.水工工程涵洞环境的360°多波束声呐扫描方法,其特征在于,所述水工工程涵洞环境的360°多波束声呐扫描方法采用权利要求1至6中任一项所述的水工工程涵洞环境的360°多波束声呐扫描装置,所述水工工程涵洞环境的360°多波束声呐扫描方法包括:
步骤S1:释放扫描装置,开启水工涵洞阀门,将所述扫描装置入水并开启搭载机器人上的推进器,辅助设备上的电缆盘随扫描装置前进逐步释放所述辅助设备上的连接电缆,辅助设备上的电源设备输入工作电压,经变压器升压,由连接电缆传输到涵洞内的扫描装置;
步骤S2:环形扫描涵洞,根据水工涵洞水流形态的不同调整扫描装置的安装结构和运行方式,采用环形绸带式渐进扫描涵洞,经由连接电缆实时将数据信号上传到涵洞外的辅助设备的控制系统;
步骤S3:回收扫描装置,在扫描完成后,反向启动搭载机器人的推进器,电缆盘配合转动逐步回收连接电缆;
步骤S4:解析采集数据,基于水工涵洞三维设计模型,解析扫描装置的采集数据,针对水工涵洞典型病害问题进行定位和诊断。
8.根据权利要求7所述的水工工程涵洞环境的360°多波束声呐扫描方法,其特征在于,步骤S4包括:
步骤S41:图像获取,通过运行多波束声呐扫描装置,完成水工涵洞内部全方位的数据采集;
步骤S42:坐标建立,建立统一坐标系下的地理编码模型,根据定位信标数据,赋予声呐图像像素点位置信息;
步骤S43:图像处理,将获取的数字图像进行灰度化、滤波、直方图均衡化等处理,以突出图像的有用信息;
步骤S44:特征选择,基于分析处理后的图像,通过辨别灰度结果、提取轮廓线条、对比设计尺寸等方法,精确识别水工涵洞渗水、裂缝、淤积等病害问题的典型特征,并结合已建立的地理编码模型准确定位病害的发生位置;
步骤S45:病害诊断,借助评价指标量化病害问题,最终输出病害类型、病害严重程度和病害坐标信息的综合诊断结果。
CN202011126684.1A 2020-10-20 2020-10-20 水工工程涵洞环境的360°多波束声呐扫描装置及方法 Pending CN112285682A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011126684.1A CN112285682A (zh) 2020-10-20 2020-10-20 水工工程涵洞环境的360°多波束声呐扫描装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011126684.1A CN112285682A (zh) 2020-10-20 2020-10-20 水工工程涵洞环境的360°多波束声呐扫描装置及方法

Publications (1)

Publication Number Publication Date
CN112285682A true CN112285682A (zh) 2021-01-29

Family

ID=74423904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011126684.1A Pending CN112285682A (zh) 2020-10-20 2020-10-20 水工工程涵洞环境的360°多波束声呐扫描装置及方法

Country Status (1)

Country Link
CN (1) CN112285682A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376639A (zh) * 2021-07-19 2021-09-10 福州大学 基于扫描声呐成像的桥墩基础冲刷区地形三维重构方法
CN113866748A (zh) * 2021-09-26 2021-12-31 中国水产科学研究院渔业机械仪器研究所 全向多波束探鱼仪发射探测信号扫描发射方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1584584A (zh) * 2004-05-28 2005-02-23 哈尔滨工程大学 堤坝隐患检测水下机器人系统及检测方法
CN101907707A (zh) * 2010-07-02 2010-12-08 哈尔滨工程大学 用于多波束合成孔径声呐的组合声基阵
DE102016111238A1 (de) * 2016-06-20 2017-12-21 Ocean Maps GmbH Abtastvorrichtung zum Abtasten vom Grund von Gewässern und Verfahren zum Erzeugen von Unterwasserkarten
CN107764833A (zh) * 2017-11-17 2018-03-06 上海遨拓深水装备技术开发有限公司 一种用于大坝水下垂直面冲刷缺陷检测的装置和方法
CN108061577A (zh) * 2017-12-29 2018-05-22 浙江省水利水电勘测设计院 一种有压输水隧洞智能探测装置
WO2019148529A1 (zh) * 2018-01-30 2019-08-08 岭东核电有限公司 隧洞贴壁穿梭平台及隧洞监测装置
CN209311678U (zh) * 2018-09-14 2019-08-27 天津海之星水下机器人有限公司 多功能水下综合探测机器人系统
CN111127399A (zh) * 2019-11-28 2020-05-08 东南大学 一种基于深度学习与声呐成像的水下桥墩病害识别方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1584584A (zh) * 2004-05-28 2005-02-23 哈尔滨工程大学 堤坝隐患检测水下机器人系统及检测方法
CN101907707A (zh) * 2010-07-02 2010-12-08 哈尔滨工程大学 用于多波束合成孔径声呐的组合声基阵
DE102016111238A1 (de) * 2016-06-20 2017-12-21 Ocean Maps GmbH Abtastvorrichtung zum Abtasten vom Grund von Gewässern und Verfahren zum Erzeugen von Unterwasserkarten
CN107764833A (zh) * 2017-11-17 2018-03-06 上海遨拓深水装备技术开发有限公司 一种用于大坝水下垂直面冲刷缺陷检测的装置和方法
CN108061577A (zh) * 2017-12-29 2018-05-22 浙江省水利水电勘测设计院 一种有压输水隧洞智能探测装置
WO2019148529A1 (zh) * 2018-01-30 2019-08-08 岭东核电有限公司 隧洞贴壁穿梭平台及隧洞监测装置
CN209311678U (zh) * 2018-09-14 2019-08-27 天津海之星水下机器人有限公司 多功能水下综合探测机器人系统
CN111127399A (zh) * 2019-11-28 2020-05-08 东南大学 一种基于深度学习与声呐成像的水下桥墩病害识别方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376639A (zh) * 2021-07-19 2021-09-10 福州大学 基于扫描声呐成像的桥墩基础冲刷区地形三维重构方法
CN113376639B (zh) * 2021-07-19 2022-08-05 福州大学 基于扫描声呐成像的桥墩基础冲刷区地形三维重构方法
CN113866748A (zh) * 2021-09-26 2021-12-31 中国水产科学研究院渔业机械仪器研究所 全向多波束探鱼仪发射探测信号扫描发射方法及系统
CN113866748B (zh) * 2021-09-26 2022-07-01 中国水产科学研究院渔业机械仪器研究所 全向多波束探鱼仪发射探测信号扫描发射方法及系统

Similar Documents

Publication Publication Date Title
CN112285682A (zh) 水工工程涵洞环境的360°多波束声呐扫描装置及方法
RU2463203C2 (ru) Буксируемый подводный аппарат, оснащенный гидроакустической аппаратурой для обнаружения заиленных объектов и трубопроводов
JP5223532B2 (ja) 水柱観測装置及び水柱観測方法
CN103852792A (zh) 头浮子及方法
CN107764833A (zh) 一种用于大坝水下垂直面冲刷缺陷检测的装置和方法
CN107554694B (zh) 一种水面无人艇水下三维地形探测系统
US20220171056A1 (en) Techniques for sonar data processing
CN108267717A (zh) 一种水声信标搜寻定位方法及系统
CN105629307A (zh) 一种海底管线探测与测量声学系统与方法
CN107632305B (zh) 一种基于剖面声纳扫测技术的海底局部地形自主感知方法及装置
CN106093949A (zh) 光电探测组件及集成式光电探测作业装置
CN113702978B (zh) 一种基于前视声呐的海底管道检测定位方法及系统
CN207875928U (zh) 被动式声学锚泊系统和海底观测系统
CN111550682A (zh) 用于小通径高压充水管道内部的检测装置和检测方法
CN207423824U (zh) 一种用于水下垂直面冲刷缺陷检测的装置
CN110879396A (zh) 一种基于多基地声纳的蛙人和水下航行器探测装置
Mitson et al. Shipboard installation and trials of an electronic sector scanning sonar
CN108766412A (zh) 一种耐压型水声圆柱换能器基阵
Wawrzyniak et al. Detecting small moving underwater objects using scanning sonar in waterside surveillance and complex security solutions
CN109342569B (zh) 一种淤泥质海底航道边坡稳定性实时监测方法
CN111694072A (zh) 多平台与多传感器研制系统集成和数据处理平台
CN111504253A (zh) 一种波浪滑翔机的水下三维声学立体阵确定方法
CN115341592B (zh) 一种基于水下机器人的海上风电桩基冲刷检测方法和系统
CN211741599U (zh) 一种拖曳式可控源电磁和水声复合水下目标探测系统
CN116523822A (zh) 一种基于侧扫声呐的海缆检测识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination