CN112280722B - Recombinant bacterium for producing optically pure 1, 3-butanediol and application thereof - Google Patents

Recombinant bacterium for producing optically pure 1, 3-butanediol and application thereof Download PDF

Info

Publication number
CN112280722B
CN112280722B CN201910664906.6A CN201910664906A CN112280722B CN 112280722 B CN112280722 B CN 112280722B CN 201910664906 A CN201910664906 A CN 201910664906A CN 112280722 B CN112280722 B CN 112280722B
Authority
CN
China
Prior art keywords
ala
leu
val
gly
ile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910664906.6A
Other languages
Chinese (zh)
Other versions
CN112280722A (en
Inventor
陈振
刘德华
刘煜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Tsinghua Smart Biotech Co ltd
Tsinghua University
Original Assignee
Guangdong Tsinghua Smart Biotech Co ltd
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Tsinghua Smart Biotech Co ltd, Tsinghua University filed Critical Guangdong Tsinghua Smart Biotech Co ltd
Priority to CN201910664906.6A priority Critical patent/CN112280722B/en
Publication of CN112280722A publication Critical patent/CN112280722A/en
Application granted granted Critical
Publication of CN112280722B publication Critical patent/CN112280722B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/0113-Oxoacyl-[acyl-carrier-protein] reductase (1.1.1.100)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01057Butanal dehydrogenase (1.2.1.57)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01016Acetyl-CoA C-acyltransferase (2.3.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Abstract

The invention provides a recombinant bacterium for producing optically pure 1, 3-butanediol and application thereof. The recombinant strain is formed by introducing phaA, phaB, bld and yqhD genes into a microorganism through plasmids or integrating the genes on a microorganism chromosome through a genetic engineering means. The escherichia coli engineering bacteria are used for fermenting cheap organic carbon sources such as glucose, sucrose or glycerol under the condition of micro-oxygen, the yield of the 1, 3-butanediol relative to a substrate can reach more than 0.4g/g, the purity of the R-type 1, 3-butanediol reaches more than 99 percent, and the escherichia coli engineering bacteria have important industrial application potential.

Description

Recombinant bacterium for producing optically pure 1, 3-butanediol and application thereof
Technical Field
The invention belongs to the technical field of biochemical engineering, and particularly relates to a recombinant bacterium for producing optically pure 1, 3-butanediol and application thereof.
Background
1, 3-butanediol is a diol of great industrial applicability and can be used as a solvent for cosmetics and at the same time as a monomer for the synthesis of polyesters, polyurethanes and bioplasticizers. Meanwhile, the optically pure 1, 3-butanediol can be used as a medical intermediate to synthesize a plurality of medicines. However, 1, 3-butanediol synthesized by the chemical method is a racemate and cannot be directly used as a medical intermediate. Therefore, the biological method for producing the optically pure 1, 3-butanediol has important application value.
Cn201610481598.x and cn201080029715.x disclose two methods for the production of 1, 3-butanediol, respectively, essentially expressing at least one exogenous nucleic acid encoding a 1,3-BDO pathway enzyme expressed in a sufficient amount to produce 1, 3-butanediol under anaerobic conditions. However, the process has low production efficiency, and the highest yield of 1, 3-butanediol is lower than 2mM, so that the process is not industrially feasible.
Disclosure of Invention
The invention aims to provide a recombinant bacterium for producing optically pure 1, 3-butanediol and application thereof.
The invention has the following conception: provided is a recombinant E.coli which can greatly increase the intracellular NADPH gene to satisfy the NADPH reducing power required for the synthesis pathway of 1, 3-butanediol by up-regulating the pntAB gene of E.coli and simultaneously down-regulating the sthA gene, thereby increasing the yield of 1, 3-butanediol. The invention constructs butyraldehyde dehydrogenase mutant of Clostridium saccharoperbutylacetonicum by enzyme design, which is formed by mutating leucine at 273 bit of butyraldehyde dehydrogenase into threonine, and the mutant can greatly improve the yield of 1, 3-butanediol by expressing in escherichia coli. According to the invention, the adhE gene, ldhA gene, pta gene and ackA gene are knocked out, so that the metabolic flux of acetyl-CoA flowing to a 1, 3-butanediol synthesis pathway is improved, and the yield of 1, 3-butanediol is further improved.
In order to achieve the object of the present invention, in a first aspect, the present invention provides a recombinant bacterium for producing optically pure 1, 3-butanediol, which is obtained by introducing phaA, phaB, bld and yqhD genes into a microorganism through a plasmid or integrating the genes into a chromosome of the microorganism through genetic engineering means.
Wherein the phaA gene is acetyl CoA acyltransferase gene, is derived from cupriavidius necator, and is a gene coding the following protein (a) or (b):
(a) a protein consisting of the amino acid sequence shown in SEQ ID NO. 3;
(b) 3, protein which is derived from (a) and has the same function by substituting, deleting or adding one or more amino acids in the sequence shown in SEQ ID NO. 3.
The phaB gene is a 3-oxoacyl- (acyl carrier protein) reductase gene derived from cupriavidius necator, which is a gene encoding the following protein (c) or (d):
(c) a protein consisting of an amino acid sequence shown as SEQ ID NO. 4;
(d) 4, protein which is derived from (c) and has the same function by substituting, deleting or adding one or more amino acids in the sequence shown in SEQ ID NO. 4.
The bld gene is derived from Clostridium saccharoperbutylacetonicum, and the amino acid sequence of the coded protein is shown as SEQ ID NO. 1 or 2.
The yqhD gene is an alcohol dehydrogenase gene, is derived from Escherichia coli (Escherichia coli), and is a gene encoding the following protein (e) or (f):
(e) a protein consisting of an amino acid sequence shown as SEQ ID NO. 6;
(f) and (b) protein which is derived from (e) and has the same function and is obtained by substituting, deleting or adding one or more amino acids in the sequence shown in SEQ ID NO. 6.
The microorganism is selected from the species in the genus Escherichia (Escherichia), Klebsiella (Klebsiella), Corynebacterium (Corynebacterium), Brevibacterium (Brevibacterium), etc.; escherichia coli is preferred.
The recombinant strain can be constructed by the following method: after the phaA and phaB genes are optimized by a codon, the genes are constructed on an expression vector together with bld and yqhD genes, the recombinant vector is used for transforming escherichia coli, and positive transformants are screened.
Preferably, the sequence of the codon-optimized phaA-phaB operon is shown in SEQ ID NO 5.
More preferably, the recombinant bacterium is constructed as follows: the phaAB-bld2-yqhD tandem gene expression cassette is constructed on ptrc99a plasmid, and Escherichia coli (such as W3110) is transformed with the recombinant plasmid, and positive transformants are selected.
Wherein, the sequences of the bld-yqhD-phaAB tandem gene expression cassettes are shown in SEQ ID NO. 9 and 10.
In a second aspect, the invention provides a recombinant escherichia coli for producing optically pure 1, 3-butanediol, wherein the recombinant escherichia coli is an engineering bacterium with enhanced intracellular NADPH supply, which is obtained by taking the recombinant bacterium as an initial strain and modifying the initial strain by using a genetic engineering means. The method comprises the following scheme:
scheme I: the supply of intracellular NADPH is increased by enhancing genes involved in the NADPH biosynthetic pathway in the starting strain.
Preferably, the gene associated with NADPH biosynthetic pathway is pntAB gene, and the nucleotide sequence is as follows:
i) the nucleotide sequence shown as SEQ ID NO. 7;
ii) a nucleotide sequence which is obtained by substituting, deleting and/or adding one or more nucleotides into the nucleotide sequence shown in SEQ ID NO. 7 and expresses the same functional protein;
iii) a nucleotide sequence which hybridizes with the sequence shown in SEQ ID NO. 7 under stringent conditions in a 0.1 XSSPE containing 0.1% SDS or a 0.1 XSSC solution containing 0.1% SDS at 65 ℃ and washing the membrane with the solution and expresses the same functional protein; or
iv) a nucleotide sequence which has more than 90% homology with the nucleotide sequence of i), ii) or iii) and expresses the same functional protein.
In the present invention, the enhanced pathway is selected from the following 1) to 6), or an optional combination:
1) enhanced by introduction of a plasmid having the gene;
2) enhanced by increasing the copy number of the gene on the chromosome;
3) enhanced by altering the promoter sequence of the gene on the chromosome;
4) enhanced by operably linking a strong promoter to the gene;
5) enhanced by the introduction of enhancers;
6) enhanced by using genes or alleles having the corresponding enzymes or proteins which encode high activities.
Scheme II: weakening sthA gene in original strain to increase supply of NADPH in cell;
the nucleotide sequence of sthA gene is as follows:
i) the nucleotide sequence shown as SEQ ID NO. 8;
ii) a nucleotide sequence which is obtained by substituting, deleting and/or adding one or more nucleotides into the nucleotide sequence shown in SEQ ID NO. 8 and expresses the same functional protein;
iii) a nucleotide sequence which hybridizes to the sequence shown in SEQ ID NO. 8 under stringent conditions in which hybridization is performed at 65 ℃ in a 0.1 XSSPE containing 0.1% SDS or a 0.1 XSSC containing 0.1% SDS solution and the membrane is washed with the solution and expresses the same functional protein; or
iv) a nucleotide sequence which has more than 90% homology with the nucleotide sequence of i), ii) or iii) and expresses the same functional protein.
In the present invention, the attenuation includes knocking out or reducing the expression of the gene.
Scheme III: the intracellular supply of NADPH was increased by enhancing the pntAB gene in the starting strain (E.coli) and attenuating the sthA gene.
In a third aspect, the invention provides an engineering bacterium for high yield of 1, 3-butanediol, wherein the engineering bacterium is an engineering bacterium obtained by further modifying an original strain by using the recombinant bacterium or the recombinant escherichia coli as the original strain by using a genetic engineering means and enhancing the metabolic flux of intracellular acetyl CoA flowing to a 1, 3-butanediol synthesis pathway.
Preferably, at least one of the adhE, ldhA, pta, ackA genes in the original strain is attenuated to increase the metabolic flux of intracellular acetyl CoA towards the 1, 3-butanediol synthesis pathway; the attenuation includes knocking out or reducing expression of the gene.
The amino acid sequences of the proteins coded by the adhE, ldhA, pta and ackA genes are respectively shown in SEQ ID NO. 11-14.
Preferably, the adhE, ldhA, pta and ackA genes in the original strain (E.coli) are attenuated to increase the metabolic flux of intracellular acetyl CoA to the 1, 3-butanediol synthesis pathway.
In a fourth aspect, the invention provides a butyraldehyde dehydrogenase mutant, which is obtained by mutating the 273 rd leucine of butyraldehyde dehydrogenase (SEQ ID NO:1) into threonine, wherein the amino acid sequence of the mutant is shown as SEQ ID NO: 2.
In a fifth aspect, the invention provides a biological material containing the butyraldehyde dehydrogenase mutant encoding gene, wherein the biological material comprises recombinant DNA, an expression cassette, a transposon, a plasmid vector, a phage vector, a viral vector or an engineering bacterium.
In a sixth aspect, the invention provides the use of the above mentioned biological material in the microbial fermentation production of 1, 3-butanediol.
In a seventh aspect, the invention provides the recombinant bacterium, the recombinant escherichia coli, or the engineering bacterium for use in fermentation production of 1, 3-butanediol.
In an eighth aspect, the present invention provides a method for producing optically pure 1, 3-butanediol, comprising culturing the above recombinant bacterium, or the above recombinant Escherichia coli, or the above engineered bacterium in a fermentation medium to produce 1, 3-butanediol.
Optionally, the fermentation medium is M9Y: glucose 20g/L, Na2HPO4 6g/L,KH2PO4 3g/L,NaCl 0.5g/L,NH4Cl 1g/L,MgSO4 0.5g/L,CaCl215mg/L, 2g/L yeast powder, 100mg/L ampicillin and water.
The culture conditions were: the dissolved oxygen was controlled to be less than 10% of the saturated dissolved oxygen value at 30 ℃ and 200 rpm.
The escherichia coli engineering bacteria are used for fermenting cheap organic carbon sources such as glucose, sucrose or glycerol under the micro-aerobic condition, the yield of the 1, 3-butanediol relative to a substrate can reach more than 0.4g/g, the purity of the R-type 1, 3-butanediol reaches more than 99 percent, and the escherichia coli engineering bacteria have important industrial application potential.
Drawings
FIG. 1 is a map of plasmid ptrc99a-bld2-yqhD-phaAB of the present invention.
FIG. 2 is a map of plasmid ptrc99a-bld-yqhD-phaAB of the present invention.
FIG. 3 is a map of plasmid ptrc99a-pduP-yqhD-phaAB of the present invention.
FIG. 4 is a map of plasmid ptrc99a-eutE-yqhD-phaAB of the present invention.
FIG. 5 is a map of plasmid ptrc99a-bld (L273T) -yqhD-phaAB of the present invention.
FIG. 6 is a map of plasmid ptrc99a-bld (L273T) -yqhD-phaAB-pntAB according to the present invention.
Detailed Description
The specific implementation mode of the invention comprises the following steps: (1) constructing 1, 3-butanediol synthetic plasmid; (2) enhancing the supply of NADPH; (3) synthesis of knock-out by-products.
The following examples are intended to illustrate the invention but are not intended to limit the scope of the invention. Unless otherwise indicated, the examples follow conventional experimental conditions, such as the Molecular Cloning handbook, Sambrook et al (Sambrook J & Russell DW, Molecular Cloning: a Laboratory Manual,2001), or the conditions as recommended by the manufacturer's instructions.
Example 1 construction of biosynthetic pathway for 1, 3-butanediol in E.coli
The escherichia coli can not directly synthesize the 1, 3-butanediol, in order to introduce a synthesis way of the 1, 3-butanediol, the invention carries out a great deal of screening and transformation on key genes in the synthesis process of the 1, 3-butanediol, and the yield of the optimized 1, 3-butanediol expression module is greatly improved.
First, a plasmid ptrc99a-bld2-yqhD-phaAB comprising phaA and phaB genes derived from cupriavidius necator, an aldehyde dehydrogenase gene bld2 gene (gene No. Q9X681 in uniprot) derived from Clostridium beijerinckii, and a yqhD gene (SEQ ID NO:6) derived from Escherichia coli was constructed. The codon-optimized phaA-phaB operon (SEQ ID NO:5) was synthesized artificially based on the amino acid sequences of phaA (SEQ ID NO:3) and phaB (SEQ ID NO: 4). Ptrc99a (purchased from Addgene) was double-digested with EcoRI/XbaI, and the artificially synthesized phaA-phaB operon, bld2 gene, and yqhD gene were inserted between EcoRI/XbaI double-digested sites on the backbone of ptrc99a plasmid using Gibson's assembly kit, and the resulting plasmid was named ptrc99a-bld2-yqhD-phaAB (plasmid map is shown in FIG. 1).
Accordingly, ptrc99a (available from Addgene) was double-digested with EcoRI/XbaI, and the synthetic phaA-phaB operon, aldehyde dehydrogenase gene bld gene derived from Clostridium saccharoperbutylacetonicum (amino acid sequence of encoded protein is shown in SEQ ID NO:1), yqhD gene were inserted between EcoRI/XbaI double-digestion sites on the backbone of ptrc99a using Gibson assembly kit, and the resulting plasmid was named ptrc99a-bld-yqhD-phaAB (plasmid map is shown in FIG. 2).
Accordingly, ptrc99a (purchased from Addge company) was double-digested with EcoRI/XbaI, and the artificially synthesized phaA-phaB operon, the pduP gene of the aldehyde dehydrogenase gene derived from Klebsiella pneumoniae (gene No. B5XUS 2in uniprot), and the yqhD gene were inserted between EcoRI/XbaI double-digested sites on the plasmid backbone of ptrc99a using a Gibson assembly kit, and the resulting plasmid was named ptrc99a-pduP-yqhD-phaAB (plasmid map is shown in FIG. 3).
Accordingly, ptrc99a (purchased from Addge Inc.) was double-digested with EcoRI/XbaI, and the artificially synthesized phaA-phaB operon, the aldehyde dehydrogenase gene eutE gene derived from Salmonella typhimurium (gene No. P41793 in uniprot), and the yqhD gene were inserted between EcoRI/XbaI double-cleavage sites on the plasmid backbone of ptrc99a using the Gibson assembly kit, and the resulting plasmid was named ptrc99a-eutE-yqhD-phaAB (plasmid map is shown in FIG. 4).
The four plasmids are respectively transformed into Escherichia coli W3110, and the obtained recombinant bacteria are named as E.coli/ptrc99a-bld2-yqhD-phaAB, E.coli/ptrc99a-bld-yqhD-phaAB, E.coli/ptrc99a-pduP-yqhD-phaAB, and E.coli/ptrc99 a-eutE-yqhD-phaAB. The four strains were cultured in 500mL baffleless shake flasks in 200mL of medium M9Y (glucose 20g/L, Na)2HPO4 6g/L,KH2PO4 3g/L,NaCl 0.5g/L,NH4Cl 1g/L,MgSO4 0.5g/L,CaCl215mg/L, 2g/L yeast powder, 100mg/L ampicillin), the culture temperature is 30 ℃, the rotation speed is 200rpm, and the OD of the bacterial liquid is600When the concentration is 0.6, 1mM IPTG is added for induction, sampling is carried out when fermentation is carried out for 72h, and the condition that four strains produce 1, 3-butanediol is detected by high performance liquid chromatography. The results showed that only E.coli/ptrc99a-bld-yqhD-phaAB produced 0.3g/L of 1, 3-butanediol, while the other three strains did not produce 1, 3-butanediol. It is shown that the screening of key enzymes in the 1, 3-butanediol pathway is crucial for the synthesis of 1, 3-butanediol.
Further, the present invention finds that aldehyde dehydrogenase is a key limiting factor affecting the synthesis of 1, 3-butanediol. Therefore, the invention carries out a great deal of protein engineering modification, and finally discovers that the 273 site amino acid of the bld gene is mutated from leucine to threonine (SEQ ID NO:2) by using a gene mutation kit of Biorad by taking ptrc99a-bld-yqhD-phaAB as a template to obtain a plasmid ptrc99a-bld (L273T) -yqhD-phaAB (a plasmid map is shown in figure 5). The plasmid was transformed into E.coli W3110, and the resulting recombinant strain was named E.coli/ptrc99a-bld (L273T) -yqhD-phaAB. The strain is cultured in an M9Y culture medium under the same culture conditions, sampling is carried out at 72 hours, and the yield of the 1, 3-butanediol is detected by using high performance liquid chromatography. The results showed that the yield of 1, 3-butanediol of E.coli/ptrc99a-bld (L273T) -yqhD-phaAB reached 2.2 g/L.
Therefore, the invention finds that the selection of the 1, 3-butanediol synthetic pathway enzyme is crucial to the production of 1, 3-butanediol, and the 1, 3-butanediol yield is greatly improved by systematically optimizing the pathway of 1, 3-butanediol.
Example 2 increase in 1, 3-butanediol production by enhancing NADPH Synthesis
The invention creatively discovers that the overexpression of the pntAB gene and the knockout of the sthA gene of escherichia coli can obviously improve the yield of 1, 3-butanediol of cells.
The ptrc99a-bld (L273T) -yqhD-phaAB was digested simultaneously with SbfI, and the pntAB gene of E.coli (SEQ ID NO:7) was inserted into the plasmid backbone ptrc99a-bld (L273T) -yqhD-phaAB using the Gibson assembly kit, and the resulting plasmid was named ptrc99a-bld (L273T) -yqhD-phaAB-pntAB (plasmid map is shown in FIG. 6). The plasmid was transformed into E.coli W3110, and the resulting recombinant strain was named E.coli/ptrc99a-bld (L273T) -yqhD-phaAB-pntAB. The strain is cultured in an M9Y culture medium, the fermentation conditions are the same as the above, sampling is carried out at 72h, and the yield of the 1, 3-butanediol is detected by utilizing high performance liquid chromatography. The results showed that E.coli/ptrc99a-bld (L273T) -yqhD-phaAB-pntAB yields 1, 3-butanediol of 4.8 g/L. The detection of the intracellular NADPH content of the strain shows that the NADPH content of the strain is improved by 1.8 times compared with that of E.coli/ptrc99a-bld (L273T) -yqhD-phaAB.
Further, the sthA gene (SEQ ID NO:8) of E.coli W3110 was knocked out to enhance the supply of NADPH and to increase the production of 1, 3-butanediol. The specific method is characterized in that the method is implemented by taking Escherichia coli MG1655 delta sthA: : kan (purchased from Yale university CGSC E.coli mutant library, see Baba et al, Construction of Escherichia coli K-12in-frame, Single-gene knock-out variants: the Keio collection, Mol Syst biol.2006,2:2006.0008.) prepared P1 phage lysates, the lysates were mixed with fresh E.coli W3110 cultures for 30 minutes, 1ml LB medium containing 0.2M sodium citrate was added, incubated at 37 ℃ for 1 hour, plated on LB plates containing 50mg/L kanamycin resistance, and recombinant strains with resistance were selected. Further, a plasmid pCP20 (purchased from the CGSC E.coli mutant library of Yale university, see Datsenko & Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc Natl Acad Sci USA.2000,97(12): 6640. sup. su. 6645.) carrying Flp enzyme was transferred into this strain, and the strain from which the kanamycin resistance marker was removed was obtained was designated E.coli. DELTA. sthA. The plasmid ptrc99a-bld (L273T) -yqhD-phaAB-pntAB was transformed into E.coli W3110, and the resulting recombinant strain was named E.coli. DELTA. sthA/ptrc99a-bld (L273T) -yqhD-phaAB-pntAB. The strain is cultured in an M9Y culture medium, the fermentation conditions are the same as the above, sampling is carried out at 72h, and the yield of the 1, 3-butanediol is detected by utilizing high performance liquid chromatography. The results showed that the yield of 1, 3-butanediol of E.coli. DELTA.sthA/ptrc 99a-bld (L273T) -yqhD-phaAB-pntAB reached 5.8 g/L. The detection of the intracellular NADPH content of the strain shows that the NADPH content of the strain is improved by 2.3 times compared with that of E.coli/ptrc99a-bld (L273T) -yqhD-phaAB.
Therefore, the invention finds that the content of NADPH in Escherichia coli is important for the synthesis of 1, 3-butanediol, and the yield of 1, 3-butanediol is greatly improved by strengthening the content of NADPH in the system.
Example 3 enhancing acetyl-CoA supply to increase 1, 3-butanediol production
The metabolic precursor of the 1, 3-butanediol synthetic pathway is acetyl-CoA, and the present inventors have found that the yield of 1, 3-butanediol can be further increased by reducing the flow of acetyl-CoA to other metabolic branches. The ethanol synthesis gene adhE, the lactate synthesis gene ldhA, and the acetate synthesis genes pta and ackA of E.coli Δ sthA were further knocked out by transfection with P1 phage lysate. Wherein the amino acid sequences of the proteins coded by the adhE, ldhA, pta and ackA genes are respectively shown in SEQ ID NO. 11-14. The obtained strains were designated E.coli. DELTA. sthA. DELTA. adhE, E.coli. DELTA. sthA. DELTA. ldhA, and E.coli. DELTA. sthA. DELTA. pta-ackA, respectively. Meanwhile, a strain containing the three gene mutations is constructed by a method of transfecting a P1 phage lysate and named as E. Plasmids ptrc99a-bld (L273T) -yqhD-phaAB-pntAB were transformed into these four strains, and the obtained strains were named E.coli. DELTA. sthA. DELTA. adhE/ptrc99a-bld (L273T) -yqhD-phaAB-pntAB, E.coli. DELTA. sthA. DELTA. ldhA/ptrc99a-bld (L273T) -yqhD-phaAB-pntAB, E.coli. DELTA.sthA. DELTA. pta-ackA/ptrc99a-bld (L273T) -yqhD-phaAB-pntAB, E.coli. DELTA. sthA. DELTA. adhA. DELTA. qpta-qpcA/pt 99 AB 99a-bld (L273T) -yhD-pntAB, respectively. The strain is cultured in an M9Y culture medium, the fermentation conditions are the same as the above, sampling is carried out at 72h, and the yield of the 1, 3-butanediol is detected by utilizing high performance liquid chromatography. The results showed that yields of 1, 3-butanediol for E.coli. DELTA. sthA. DELTA. adhE/ptrc99a-bld (L273T) -yqhD-phaAB-pntAB, E.coli. DELTA. sthA. DELTA. ldhA/ptrc99a-bld (L273T) -yqhD-phaAB-pntAB, E.coli. DELTA. sthA. DELTA. pta-ackA/ptrc99a-bld (L273T) -yqhD-phaAB-pntAB, E.coli. DELTA. sthA. adhA. DELTA. ldhA. pta-ackA/ptrc99a-bld (L273T) -yqhD-phaAB-pntAB reached 6.1g/L,6.2g/L,6.8g/L,8.1g/L, respectively.
The optical chromatography detection shows that the 1, 3-butanediol produced by the strain is all in R configuration, and the purity is over 99 percent.
Therefore, the invention obtains the high-yield strain of the 1, 3-butanediol through systematic transformation, the yield of the 1, 3-butanediol to a substrate can reach more than 0.4g/g, and the purity of the R type 1, 3-butanediol reaches more than 99 percent, thereby having important industrial application potential.
EXAMPLE 4 production of 1, 3-butanediol by recombinant E.coli Using other carbon sources
The recombinant strain E.coli. DELTA. sthA. DELTA. adhE. DELTA. ldhA. DELTA. pta-ackA/ptrc99a-bld (L273T) -yqhD-phaAB-pntAB was further tested for the production of 1, 3-butanediol using other carbon sources. Using glycerol as carbon source, and using fermentation medium M9Y-G (20G/L glycerol, Na)2HPO4 6g/L,KH2PO4 3g/L,NaCl 0.5g/L,NH4Cl 1g/L,MgSO40.5g/L,CaCl215mg/L, 2g/L yeast powder, ampicillin100mg/L of mycin) at the temperature of 30 ℃ and the rotation speed of 200rpm, and culturing until the bacterial liquid OD600When the yield of the 1, 3-butanediol produced by the strain is 0.6, adding 1mM IPTG (isopropyl-beta-thiogalactoside) for induction, sampling when fermenting for 72h, and detecting the condition of producing the 1, 3-butanediol by using high performance liquid chromatography, wherein the yield of the 1, 3-butanediol reaches 8.3g/L, which shows that the recombinant strain constructed by the invention can also efficiently utilize glycerol to produce the 1, 3-butanediol at high yield.
Although the invention has been described in detail hereinabove with respect to a general description and specific embodiments thereof, it will be apparent to those skilled in the art that modifications or improvements may be made thereto based on the invention. Accordingly, such modifications and improvements are intended to be within the scope of the invention as claimed.
Sequence listing
<110> Guangdong Qingzhixing Biotech Co., Ltd, Qinghua university
<120> recombinant bacterium for producing optically pure 1, 3-butanediol and application thereof
<130> KHP191113543.8
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 468
<212> PRT
<213> Clostridium saccharoperbutylacetonicum
<400> 1
Met Ile Lys Asp Thr Leu Val Ser Ile Thr Lys Asp Leu Lys Leu Lys
1 5 10 15
Thr Asn Val Glu Asn Ala Asn Leu Lys Asn Tyr Lys Asp Asp Ser Ser
20 25 30
Cys Phe Gly Val Phe Glu Asn Val Glu Asn Ala Ile Ser Asn Ala Val
35 40 45
His Ala Gln Lys Ile Leu Ser Leu His Tyr Thr Lys Glu Gln Arg Glu
50 55 60
Lys Ile Ile Thr Glu Ile Arg Lys Ala Ala Leu Glu Asn Lys Glu Ile
65 70 75 80
Leu Ala Thr Met Ile Leu Glu Glu Thr His Met Gly Arg Tyr Glu Asp
85 90 95
Lys Ile Leu Lys His Glu Leu Val Ala Lys Tyr Thr Pro Gly Thr Glu
100 105 110
Asp Leu Thr Thr Thr Ala Trp Ser Gly Asp Asn Gly Leu Thr Val Val
115 120 125
Glu Met Ser Pro Tyr Gly Val Ile Gly Ala Ile Thr Pro Ser Thr Asn
130 135 140
Pro Thr Glu Thr Val Ile Cys Asn Ser Ile Gly Met Ile Ala Ala Gly
145 150 155 160
Asn Thr Val Val Phe Asn Gly His Pro Gly Ala Lys Lys Cys Val Ala
165 170 175
Phe Ala Val Glu Met Ile Asn Lys Ala Ile Ile Ser Cys Gly Gly Pro
180 185 190
Glu Asn Leu Val Thr Thr Ile Lys Asn Pro Thr Met Asp Ser Leu Asp
195 200 205
Ala Ile Ile Lys His Pro Ser Ile Lys Leu Leu Cys Gly Thr Gly Gly
210 215 220
Pro Gly Met Val Lys Thr Leu Leu Asn Ser Gly Lys Lys Ala Ile Gly
225 230 235 240
Ala Gly Ala Gly Asn Pro Pro Val Ile Val Asp Asp Thr Ala Asp Ile
245 250 255
Glu Lys Ala Gly Lys Ser Ile Ile Glu Gly Cys Ser Phe Asp Asn Asn
260 265 270
Leu Pro Cys Ile Ala Glu Lys Glu Val Phe Val Phe Glu Asn Val Ala
275 280 285
Asp Asp Leu Ile Ser Asn Met Leu Lys Asn Asn Ala Val Ile Ile Asn
290 295 300
Glu Asp Gln Val Ser Lys Leu Ile Asp Leu Val Leu Gln Lys Asn Asn
305 310 315 320
Glu Thr Gln Glu Tyr Ser Ile Asn Lys Lys Trp Val Gly Lys Asp Ala
325 330 335
Lys Leu Phe Leu Asp Glu Ile Asp Val Glu Ser Pro Ser Ser Val Lys
340 345 350
Cys Ile Ile Cys Glu Val Ser Ala Arg His Pro Phe Val Met Thr Glu
355 360 365
Leu Met Met Pro Ile Leu Pro Ile Val Arg Val Lys Asp Ile Asp Glu
370 375 380
Ala Ile Glu Tyr Ala Lys Ile Ala Glu Gln Asn Arg Lys His Ser Ala
385 390 395 400
Tyr Ile Tyr Ser Lys Asn Ile Asp Asn Leu Asn Arg Phe Glu Arg Glu
405 410 415
Ile Asp Thr Thr Ile Phe Val Lys Asn Ala Lys Ser Phe Ala Gly Val
420 425 430
Gly Tyr Glu Ala Glu Gly Phe Thr Thr Phe Thr Ile Ala Gly Ser Thr
435 440 445
Gly Glu Gly Ile Thr Ser Ala Arg Asn Phe Thr Arg Gln Arg Arg Cys
450 455 460
Val Leu Ala Gly
465
<210> 2
<211> 468
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 2
Met Ile Lys Asp Thr Leu Val Ser Ile Thr Lys Asp Leu Lys Leu Lys
1 5 10 15
Thr Asn Val Glu Asn Ala Asn Leu Lys Asn Tyr Lys Asp Asp Ser Ser
20 25 30
Cys Phe Gly Val Phe Glu Asn Val Glu Asn Ala Ile Ser Asn Ala Val
35 40 45
His Ala Gln Lys Ile Leu Ser Leu His Tyr Thr Lys Glu Gln Arg Glu
50 55 60
Lys Ile Ile Thr Glu Ile Arg Lys Ala Ala Leu Glu Asn Lys Glu Ile
65 70 75 80
Leu Ala Thr Met Ile Leu Glu Glu Thr His Met Gly Arg Tyr Glu Asp
85 90 95
Lys Ile Leu Lys His Glu Leu Val Ala Lys Tyr Thr Pro Gly Thr Glu
100 105 110
Asp Leu Thr Thr Thr Ala Trp Ser Gly Asp Asn Gly Leu Thr Val Val
115 120 125
Glu Met Ser Pro Tyr Gly Val Ile Gly Ala Ile Thr Pro Ser Thr Asn
130 135 140
Pro Thr Glu Thr Val Ile Cys Asn Ser Ile Gly Met Ile Ala Ala Gly
145 150 155 160
Asn Thr Val Val Phe Asn Gly His Pro Gly Ala Lys Lys Cys Val Ala
165 170 175
Phe Ala Val Glu Met Ile Asn Lys Ala Ile Ile Ser Cys Gly Gly Pro
180 185 190
Glu Asn Leu Val Thr Thr Ile Lys Asn Pro Thr Met Asp Ser Leu Asp
195 200 205
Ala Ile Ile Lys His Pro Ser Ile Lys Leu Leu Cys Gly Thr Gly Gly
210 215 220
Pro Gly Met Val Lys Thr Leu Leu Asn Ser Gly Lys Lys Ala Ile Gly
225 230 235 240
Ala Gly Ala Gly Asn Pro Pro Val Ile Val Asp Asp Thr Ala Asp Ile
245 250 255
Glu Lys Ala Gly Lys Ser Ile Ile Glu Gly Cys Ser Phe Asp Asn Asn
260 265 270
Thr Pro Cys Ile Ala Glu Lys Glu Val Phe Val Phe Glu Asn Val Ala
275 280 285
Asp Asp Leu Ile Ser Asn Met Leu Lys Asn Asn Ala Val Ile Ile Asn
290 295 300
Glu Asp Gln Val Ser Lys Leu Ile Asp Leu Val Leu Gln Lys Asn Asn
305 310 315 320
Glu Thr Gln Glu Tyr Ser Ile Asn Lys Lys Trp Val Gly Lys Asp Ala
325 330 335
Lys Leu Phe Leu Asp Glu Ile Asp Val Glu Ser Pro Ser Ser Val Lys
340 345 350
Cys Ile Ile Cys Glu Val Ser Ala Arg His Pro Phe Val Met Thr Glu
355 360 365
Leu Met Met Pro Ile Leu Pro Ile Val Arg Val Lys Asp Ile Asp Glu
370 375 380
Ala Ile Glu Tyr Ala Lys Ile Ala Glu Gln Asn Arg Lys His Ser Ala
385 390 395 400
Tyr Ile Tyr Ser Lys Asn Ile Asp Asn Leu Asn Arg Phe Glu Arg Glu
405 410 415
Ile Asp Thr Thr Ile Phe Val Lys Asn Ala Lys Ser Phe Ala Gly Val
420 425 430
Gly Tyr Glu Ala Glu Gly Phe Thr Thr Phe Thr Ile Ala Gly Ser Thr
435 440 445
Gly Glu Gly Ile Thr Ser Ala Arg Asn Phe Thr Arg Gln Arg Arg Cys
450 455 460
Val Leu Ala Gly
465
<210> 3
<211> 393
<212> PRT
<213> Cupriavidus necator
<400> 3
Met Thr Asp Val Val Ile Val Ser Ala Ala Arg Thr Ala Val Gly Lys
1 5 10 15
Phe Gly Gly Ser Leu Ala Lys Ile Pro Ala Pro Glu Leu Gly Ala Val
20 25 30
Val Ile Lys Ala Ala Leu Glu Arg Ala Gly Val Lys Pro Glu Gln Val
35 40 45
Ser Glu Val Ile Met Gly Gln Val Leu Thr Ala Gly Ser Gly Gln Asn
50 55 60
Pro Ala Arg Gln Ala Ala Ile Lys Ala Gly Leu Pro Ala Met Val Pro
65 70 75 80
Ala Met Thr Ile Asn Lys Val Cys Gly Ser Gly Leu Lys Ala Val Met
85 90 95
Leu Ala Ala Asn Ala Ile Met Ala Gly Asp Ala Glu Ile Val Val Ala
100 105 110
Gly Gly Gln Glu Asn Met Ser Ala Ala Pro His Val Leu Pro Gly Ser
115 120 125
Arg Asp Gly Phe Arg Met Gly Asp Ala Lys Leu Val Asp Thr Met Ile
130 135 140
Val Asp Gly Leu Trp Asp Val Tyr Asn Gln Tyr His Met Gly Ile Thr
145 150 155 160
Ala Glu Asn Val Ala Lys Glu Tyr Gly Ile Thr Arg Glu Ala Gln Asp
165 170 175
Glu Phe Ala Val Gly Ser Gln Asn Lys Ala Glu Ala Ala Gln Lys Ala
180 185 190
Gly Lys Phe Asp Glu Glu Ile Val Pro Val Leu Ile Pro Gln Arg Lys
195 200 205
Gly Asp Pro Val Ala Phe Lys Thr Asp Glu Phe Val Arg Gln Gly Ala
210 215 220
Thr Leu Asp Ser Met Ser Gly Leu Lys Pro Ala Phe Asp Lys Ala Gly
225 230 235 240
Thr Val Thr Ala Ala Asn Ala Ser Gly Leu Asn Asp Gly Ala Ala Ala
245 250 255
Val Val Val Met Ser Ala Ala Lys Ala Lys Glu Leu Gly Leu Thr Pro
260 265 270
Leu Ala Thr Ile Lys Ser Tyr Ala Asn Ala Gly Val Asp Pro Lys Val
275 280 285
Met Gly Met Gly Pro Val Pro Ala Ser Lys Arg Ala Leu Ser Arg Ala
290 295 300
Glu Trp Thr Pro Gln Asp Leu Asp Leu Met Glu Ile Asn Glu Ala Phe
305 310 315 320
Ala Ala Gln Ala Leu Ala Val His Gln Gln Met Gly Trp Asp Thr Ser
325 330 335
Lys Val Asn Val Asn Gly Gly Ala Ile Ala Ile Gly His Pro Ile Gly
340 345 350
Ala Ser Gly Cys Arg Ile Leu Val Thr Leu Leu His Glu Met Lys Arg
355 360 365
Arg Asp Ala Lys Lys Gly Leu Ala Ser Leu Cys Ile Gly Gly Gly Met
370 375 380
Gly Val Ala Leu Ala Val Glu Arg Lys
385 390
<210> 4
<211> 246
<212> PRT
<213> Cupriavidus necator
<400> 4
Met Thr Gln Arg Ile Ala Tyr Val Thr Gly Gly Met Gly Gly Ile Gly
1 5 10 15
Thr Ala Ile Cys Gln Arg Leu Ala Lys Asp Gly Phe Arg Val Val Ala
20 25 30
Gly Cys Gly Pro Asn Ser Pro Arg Arg Glu Lys Trp Leu Glu Gln Gln
35 40 45
Lys Ala Leu Gly Phe Asp Phe Ile Ala Ser Glu Gly Asn Val Ala Asp
50 55 60
Trp Asp Ser Thr Lys Thr Ala Phe Asp Lys Val Lys Ser Glu Val Gly
65 70 75 80
Glu Val Asp Val Leu Ile Asn Asn Ala Gly Ile Thr Arg Asp Val Val
85 90 95
Phe Arg Lys Met Thr Arg Ala Asp Trp Asp Ala Val Ile Asp Thr Asn
100 105 110
Leu Thr Ser Leu Phe Asn Val Thr Lys Gln Val Ile Asp Gly Met Ala
115 120 125
Asp Arg Gly Trp Gly Arg Ile Val Asn Ile Ser Ser Val Asn Gly Gln
130 135 140
Lys Gly Gln Phe Gly Gln Thr Asn Tyr Ser Thr Ala Lys Ala Gly Leu
145 150 155 160
His Gly Phe Thr Met Ala Leu Ala Gln Glu Val Ala Thr Lys Gly Val
165 170 175
Thr Val Asn Thr Val Ser Pro Gly Tyr Ile Ala Thr Asp Met Val Lys
180 185 190
Ala Ile Arg Gln Asp Val Leu Asp Lys Ile Val Ala Thr Ile Pro Val
195 200 205
Lys Arg Leu Gly Leu Pro Glu Glu Ile Ala Ser Ile Cys Ala Trp Leu
210 215 220
Ser Ser Glu Glu Ser Gly Phe Ser Thr Gly Ala Asp Phe Ser Leu Asn
225 230 235 240
Gly Gly Leu His Met Gly
245
<210> 5
<211> 1974
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
attgaaagga ctacacaatg actgacgttg tcatcgtatc cgccgcccgc accgcggtcg 60
gcaagtttgg cggctcgctg gccaagatcc cggcaccgga actgggtgcc gtggtcatca 120
aggccgcgct ggagcgcgcc ggcgtcaagc cggagcaggt gagcgaagtc atcatgggcc 180
aggtgctgac cgccggttcg ggccagaacc ccgcacgcca ggccgcgatc aaggccggcc 240
tgccggcgat ggtgccggcc atgaccatca acaaggtgtg cggctcgggc ctgaaggccg 300
tgatgctggc cgccaacgcg atcatggcgg gcgacgccga gatcgtggtg gccggcggcc 360
aggaaaacat gagcgccgcc ccgcacgtgc tgccgggctc gcgcgatggt ttccgcatgg 420
gcgatgccaa gctggtcgac accatgatcg tcgacggcct gtgggacgtg tacaaccagt 480
accacatggg catcaccgcc gagaacgtgg ccaaggaata cggcatcaca cgcgaggcgc 540
aggatgagtt cgccgtcggc tcgcagaaca aggccgaagc cgcgcagaag gccggcaagt 600
ttgacgaaga gatcgtcccg gtgctgatcc cgcagcgcaa gggcgacccg gtggccttca 660
agaccgacga gttcgtgcgc cagggcgcca cgctggacag catgtccggc ctcaagcccg 720
ccttcgacaa ggccggcacg gtgaccgcgg ccaacgcctc gggcctgaac gacggcgccg 780
ccgcggtggt ggtgatgtcg gcggccaagg ccaaggaact gggcctgacc ccgctggcca 840
cgatcaagag ctatgccaac gccggtgtcg atcccaaggt gatgggcatg ggcccggtgc 900
cggcctccaa gcgcgccctg tcgcgcgccg agtggacccc gcaagacctg gacctgatgg 960
agatcaacga ggcctttgcc gcgcaggcgc tggcggtgca ccagcagatg ggctgggaca 1020
cctccaaggt caatgtgaac ggcggcgcca tcgccatcgg ccacccgatc ggcgcgtcgg 1080
gctgccgtat cctggtgacg ctgctgcacg agatgaagcg ccgtgacgcg aagaagggcc 1140
tggcctcgct gtgcatcggc ggcggcatgg gcgtggcgct ggcagtcgag cgcaaataac 1200
ggcgacgata acgaagccaa tcaaggagtg gacatgactc agcgcattgc gtatgtgacc 1260
ggcggcatgg gtggtatcgg aaccgccatt tgccagcggc tggccaagga tggctttcgt 1320
gtggtggccg gttgcggccc caactcgccg cgccgcgaaa agtggctgga gcagcagaag 1380
gccctgggct tcgatttcat tgcctcggaa ggcaatgtgg ctgactggga ctcgaccaag 1440
accgcattcg acaaggtcaa gtccgaggtc ggcgaggttg atgtgctgat caacaacgcc 1500
ggtatcaccc gcgacgtggt gttccgcaag atgacccgcg ccgactggga tgcggtgatc 1560
gacaccaacc tgacctcgct gttcaacgtc accaagcagg tgatcgacgg catggccgac 1620
cgtggctggg gccgcatcgt caacatctcg tcggtgaacg ggcagaaggg ccagttcggc 1680
cagaccaact actccaccgc caaggccggc ctgcatggct tcaccatggc actggcgcag 1740
gaagtggcga ccaagggcgt gaccgtcaac acggtctctc cgggctatat cgccaccgac 1800
atggtcaagg cgatccgcca ggacgtgctc gacaagatcg tcgcgacgat cccggtcaag 1860
cgcctgggcc tgccggaaga gatcgcctcg atctgcgcct ggttgtcgtc ggaggagtcc 1920
ggtttctcga ccggcgccga cttctcgctc aacggcggcc tgcatatggg ctga 1974
<210> 6
<211> 387
<212> PRT
<213> Escherichia coli (Escherichia coli)
<400> 6
Met Asn Asn Phe Asn Leu His Thr Pro Thr Arg Ile Leu Phe Gly Lys
1 5 10 15
Gly Ala Ile Ala Gly Leu Arg Glu Gln Ile Pro His Asp Ala Arg Val
20 25 30
Leu Ile Thr Tyr Gly Gly Gly Ser Val Lys Lys Thr Gly Val Leu Asp
35 40 45
Gln Val Leu Asp Ala Leu Lys Gly Met Asp Val Leu Glu Phe Gly Gly
50 55 60
Ile Glu Pro Asn Pro Ala Tyr Glu Thr Leu Met Asn Ala Val Lys Leu
65 70 75 80
Val Arg Glu Gln Lys Val Thr Phe Leu Leu Ala Val Gly Gly Gly Ser
85 90 95
Val Leu Asp Gly Thr Lys Phe Ile Ala Ala Ala Ala Asn Tyr Pro Glu
100 105 110
Asn Ile Asp Pro Trp His Ile Leu Gln Thr Gly Gly Lys Glu Ile Lys
115 120 125
Ser Ala Ile Pro Met Gly Cys Val Leu Thr Leu Pro Ala Thr Gly Ser
130 135 140
Glu Ser Asn Ala Gly Ala Val Ile Ser Arg Lys Thr Thr Gly Asp Lys
145 150 155 160
Gln Ala Phe His Ser Ala His Val Gln Pro Val Phe Ala Val Leu Asp
165 170 175
Pro Val Tyr Thr Tyr Thr Leu Pro Pro Arg Gln Val Ala Asn Gly Val
180 185 190
Val Asp Ala Phe Val His Thr Val Glu Gln Tyr Val Thr Lys Pro Val
195 200 205
Asp Ala Lys Ile Gln Asp Arg Phe Ala Glu Gly Ile Leu Leu Thr Leu
210 215 220
Ile Glu Asp Gly Pro Lys Ala Leu Lys Glu Pro Glu Asn Tyr Asp Val
225 230 235 240
Arg Ala Asn Val Met Trp Ala Ala Thr Gln Ala Leu Asn Gly Leu Ile
245 250 255
Gly Ala Gly Val Pro Gln Asp Trp Ala Thr His Met Leu Gly His Glu
260 265 270
Leu Thr Ala Met His Gly Leu Asp His Ala Gln Thr Leu Ala Ile Val
275 280 285
Leu Pro Ala Leu Trp Asn Glu Lys Arg Asp Thr Lys Arg Ala Lys Leu
290 295 300
Leu Gln Tyr Ala Glu Arg Val Trp Asn Ile Thr Glu Gly Ser Asp Asp
305 310 315 320
Glu Arg Ile Asp Ala Ala Ile Ala Ala Thr Arg Asn Phe Phe Glu Gln
325 330 335
Leu Gly Val Pro Thr His Leu Ser Asp Tyr Gly Leu Asp Gly Ser Ser
340 345 350
Ile Pro Ala Leu Leu Lys Lys Leu Glu Glu His Gly Met Thr Gln Leu
355 360 365
Gly Glu Asn His Asp Ile Thr Leu Asp Val Ser Arg Arg Ile Tyr Glu
370 375 380
Ala Ala Arg
385
<210> 7
<211> 2948
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 7
gatggaaggg aatatcatgc gaattggcat accaagagaa cggttaacca atgaaacccg 60
tgttgcagca acgccaaaaa cagtggaaca gctgctgaaa ctgggtttta ccgtcgcggt 120
agagagcggc gcgggtcaac tggcaagttt tgacgataaa gcgtttgtgc aagcgggcgc 180
tgaaattgta gaagggaata gcgtctggca gtcagagatc attctgaagg tcaatgcgcc 240
gttagatgat gaaattgcgt tactgaatcc tgggacaacg ctggtgagtt ttatctggcc 300
tgcgcagaat ccggaattaa tgcaaaaact tgcggaacgt aacgtgaccg tgatggcgat 360
ggactctgtg ccgcgtatct cacgcgcaca atcgctggac gcactaagct cgatggcgaa 420
catcgccggt tatcgcgcca ttgttgaagc ggcacatgaa tttgggcgct tctttaccgg 480
gcaaattact gcggccggga aagtgccacc ggcaaaagtg atggtgattg gtgcgggtgt 540
tgcaggtctg gccgccattg gcgcagcaaa cagtctcggc gcgattgtgc gtgcattcga 600
cacccgcccg gaagtgaaag aacaagttca aagtatgggc gcggaattcc tcgagctgga 660
ttttaaagag gaagctggca gcggcgatgg ctatgccaaa gtgatgtcgg acgcgttcat 720
caaagcggaa atggaactct ttgccgccca ggcaaaagag gtcgatatca ttgtcaccac 780
cgcgcttatt ccaggcaaac cagcgccgaa gctaattacc cgtgaaatgg ttgactccat 840
gaaggcgggc agtgtgattg tcgacctggc agcccaaaac ggcggcaact gtgaatacac 900
cgtgccgggt gaaatcttca ctacggaaaa tggtgtcaaa gtgattggtt ataccgatct 960
tccgggccgt ctgccgacgc aatcctcaca gctttacggc acaaacctcg ttaatctgct 1020
gaaactgttg tgcaaagaga aagacggcaa tatcactgtt gattttgatg atgtggtgat 1080
tcgcggcgtg accgtgatcc gtgcgggcga aattacctgg ccggcaccgc cgattcaggt 1140
atcagctcag ccgcaggcgg cacaaaaagc ggcaccggaa gtgaaaactg aggaaaaatg 1200
tacctgctca ccgtggcgta aatacgcgtt gatggcgctg gcaatcattc tttttggctg 1260
gatggcaagc gttgcgccga aagaattcct tgggcacttc accgttttcg cgctggcctg 1320
cgttgtcggt tattacgtgg tgtggaatgt atcgcacgcg ctgcatacac cgttgatgtc 1380
ggtcaccaac gcgatttcag ggattattgt tgtcggagca ctgttgcaga ttggccaggg 1440
cggctgggtt agcttcctta gttttatcgc ggtgcttata gccagcatta atattttcgg 1500
tggcttcacc gtgactcagc gcatgctgaa aatgttccgc aaaaattaag gggtaacata 1560
tgtctggagg attagttaca gctgcataca ttgttgccgc gatcctgttt atcttcagtc 1620
tggccggtct ttcgaaacat gaaacgtctc gccagggtaa caacttcggt atcgccggga 1680
tggcgattgc gttaatcgca accatttttg gaccggatac gggtaatgtt ggctggatct 1740
tgctggcgat ggtcattggt ggggcaattg gtatccgtct ggcgaagaaa gttgaaatga 1800
ccgaaatgcc agaactggtg gcgatcctgc atagcttcgt gggtctggcg gcagtgctgg 1860
ttggctttaa cagctatctg catcatgacg cgggaatggc accgattctg gtcaatattc 1920
acctgacgga agtgttcctc ggtatcttca tcggggcggt aacgttcacg ggttcggtgg 1980
tggcgttcgg caaactgtgt ggcaagattt cgtctaaacc attgatgctg ccaaaccgtc 2040
acaaaatgaa cctggcggct ctggtcgttt ccttcctgct gctgattgta tttgttcgca 2100
cggacagcgt cggcctgcaa gtgctggcat tgctgataat gaccgcaatt gcgctggtat 2160
tcggctggca tttagtcgcc tccatcggtg gtgcagatat gccagtggtg gtgtcgatgc 2220
tgaactcgta ctccggctgg gcggctgcgg ctgcgggctt tatgctcagc aacgacctgc 2280
tgattgtgac cggtgcgctg gtcggttctt cgggggctat cctttcttac attatgtgta 2340
aggcgatgaa ccgttccttt atcagcgtta ttgcgggtgg tttcggcacc gacggctctt 2400
ctactggcga tgatcaggaa gtgggtgagc accgcgaaat caccgcagaa gagacagcgg 2460
aactgctgaa aaactcccat tcagtgatca ttactccggg gtacggcatg gcagtcgcgc 2520
aggcgcaata tcctgtcgct gaaattactg agaaattgcg cgctcgtggt attaatgtgc 2580
gtttcggtat ccacccggtc gcggggcgtt tgcctggaca tatgaacgta ttgctggctg 2640
aagcaaaagt accgtatgac atcgtgctgg aaatggacga gatcaatgat gactttgctg 2700
ataccgatac cgtactggtg attggtgcta acgatacggt taacccggcg gcgcaggatg 2760
atccgaagag tccgattgct ggtatgcctg tgctggaagt gtggaaagcg cagaacgtga 2820
ttgtctttaa acgttcgatg aacactggct atgctggtgt gcaaaacccg ctgttcttca 2880
aggaaaacac ccacatgctg tttggtgacg ccaaagccag cgtggatgca atcctgaaag 2940
ctctgtaa 2948
<210> 8
<211> 1401
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 8
atgccacatt cctacgatta cgatgccata gtaataggtt ccggccccgg cggcgaaggc 60
gctgcaatgg gcctggttaa gcaaggtgcg cgcgtcgcag ttatcgagcg ttatcaaaat 120
gttggcggcg gttgcaccca ctggggcacc atcccgtcga aagctctccg tcacgccgtc 180
agccgcatta tagaattcaa tcaaaaccca ctttacagcg accattcccg actgctccgc 240
tcttcttttg ccgatatcct taaccatgcc gataacgtga ttaatcaaca aacgcgcatg 300
cgtcagggat tttacgaacg taatcactgt gaaatattgc agggaaacgc tcgctttgtt 360
gacgagcata cgttggcgct ggattgcccg gacggcagcg ttgaaacact aaccgctgaa 420
aaatttgtta ttgcctgcgg ctctcgtcca tatcatccaa cagatgttga tttcacccat 480
ccacgcattt acgacagcga ctcaattctc agcatgcacc acgaaccgcg ccatgtactt 540
atctatggtg ctggagtgat cggctgtgaa tatgcgtcga tcttccgcgg tatggatgta 600
aaagtggatc tgatcaacac ccgcgatcgc ctgctggcat ttctcgatca agagatgtca 660
gattctctct cctatcactt ctggaacagt ggcgtagtga ttcgtcacaa cgaagagtac 720
gagaagatcg aaggctgtga cgatggtgtg atcatgcatc tgaagtcggg taaaaaactg 780
aaagctgact gcctgctcta tgccaacggt cgcaccggta ataccgattc gctggcgtta 840
cagaacattg ggctagaaac tgacagccgc ggacagctga aggtcaacag catgtatcag 900
accgcacagc cacacgttta cgcggtgggc gacgtgattg gttatccgag cctggcgtcg 960
gcggcctatg accaggggcg cattgccgcg caggcgctgg taaaaggcga agccaccgca 1020
catctgattg aagatatccc taccggtatt tacaccatcc cggaaatcag ctctgtgggc 1080
aaaaccgaac agcagctgac cgcaatgaaa gtgccatatg aagtgggccg cgcccagttt 1140
aaacatctgg cacgcgcaca aatcgtcggc atgaacgtgg gcacgctgaa aattttgttc 1200
catcgggaaa caaaagagat tctgggtatt cactgctttg gcgagcgcgc tgccgaaatt 1260
attcatatcg gtcaggcgat tatggaacag aaaggtggcg gcaacactat tgagtacttc 1320
gtcaacacca cctttaacta cccgacgatg gcggaagcct atcgggtagc tgcgttaaac 1380
ggtttaaacc gcctgtttta a 1401
<210> 9
<211> 4627
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
atgaacaaag atactttaat cccgacgacc aaagatttaa aacttaaaac gaatgtcgaa 60
aatatcaatt tgaaaaatta taaagataat tcctcttgct ttggggtctt cgaaaatgtg 120
gaaaatgcga ttaatagcgc agttcacgct caaaaaatcc tttcgttgca ttacaccaag 180
gaacagcgtg agaaaattat caccgaaatt cgtaaagctg cacttgagaa taaggaggtg 240
cttgctacta tgattttgga ggaaacacat atgggccgct acgaagacaa aatccttaaa 300
catgaactgg ttgcgaaata taccccggga accgaagacc ttacaaccac tgcgtggagt 360
ggtgacaacg gcttgactgt tgtagagatg tcgccctatg gggtaattgg ggcgattacc 420
ccgtctacca acccgacgga gaccgtgatc tgcaactcaa ttggaatgat tgctgcagga 480
aatgcagtcg tattcaacgg ccacccgggt gccaaaaagt gcgttgcatt cgcgattgaa 540
atgattaata aggcgattat ttcttgcggt ggtccggaaa atctggtcac cacgatcaag 600
aacccgacaa tggaaagtct ggatgcgatc atcaaacacc ctttgattaa gcttctttgc 660
gggacgggtg gaccgggtat ggttaagact ttgctgaact caggtaagaa agcgattggt 720
gctggcgcag gtaacccgcc tgtgatcgtc gacgatactg ccgacatcga gaaagcaggg 780
aagtccatta ttgaaggatg tagctttgac aacaatttgc cttgcatcgc agagaaagag 840
gtattcgttt ttgagaacgt cgcggacgat ctgattagta acatgctgaa gaacaacgca 900
gtcattatta acgaggatca ggtgtccaaa ctgatcgact tggtgttgca aaaaaataat 960
gaaactcagg agtacttcat caacaagaaa tgggttggaa aggatgccaa gttattcagt 1020
gatgaaattg atgttgaatc gccctcgaac attaagtgta ttgtctgtga ggtcaacgct 1080
aaccatccat ttgttatgac cgaattaatg atgcctattc tgcccatcgt tcgcgtgaag 1140
gacattgatg aagctgtaaa gtataccaaa atcgcggaac aaaaccgtaa gcacagcgca 1200
tacatctaca gtaaaaacat tgacaacctt aaccgttttg agcgcgaaat tgatacgacg 1260
attttcgtta agaacgcaaa aagtttcgct ggggtagggt atgaggcaga aggatttaca 1320
acttttacaa ttgcgggatc tacgggagaa gggattacct ccgcacgcaa tttcacgcgc 1380
caacgtcgtt gtgtgttggc ggggtgaaac tttaagaagg agatatacat gaacaacttt 1440
aatctgcaca ccccaacccg cattctgttt ggtaaaggcg caatcgctgg tttacgcgaa 1500
caaattcctc acgatgctcg cgtattgatt acctacggcg gcggcagcgt gaaaaaaacc 1560
ggcgttctcg atcaagttct ggatgccctg aaaggcatgg acgtgctgga atttggcggt 1620
attgagccaa acccggctta tgaaacgctg atgaacgccg tgaaactggt tcgcgaacag 1680
aaagtgactt tcctgctggc ggttggcggc ggttctgtac tggacggcac caaatttatc 1740
gccgcagcgg ctaactatcc ggaaaatatc gatccgtggc acattctgca aacgggcggt 1800
aaagagatta aaagcgccat cccgatgggc tgtgtgctga cgctgccagc aaccggttca 1860
gaatccaacg caggcgcggt gatctcccgt aaaaccacag gcgacaagca ggcgttccat 1920
tctgcccatg ttcagccggt atttgccgtg ctcgatccgg tttataccta caccctgccg 1980
ccgcgtcagg tggctaacgg cgtagtggac gcctttgtac acaccgtgga acagtatgtt 2040
accaaaccgg ttgatgccaa aattcaggac cgtttcgcag aaggcatttt gctgacgcta 2100
atcgaagatg gtccgaaagc cctgaaagag ccagaaaact acgatgtgcg cgccaacgtc 2160
atgtgggcgg cgactcaggc gctgaacggt ttgattggcg ctggcgtacc gcaggactgg 2220
gcaacgcata tgctgggcca cgaactgact gcgatgcacg gtctggatca cgcgcaaaca 2280
ctggctatcg tcctgcctgc actgtggaat gaaaaacgcg ataccaagcg cgctaagctg 2340
ctgcaatatg ctgaacgcgt ctggaacatc actgaaggtt ccgatgatga gcgtattgac 2400
gccgcgattg ccgcaacccg caatttcttt gagcaattag gcgtgccgac ccacctctcc 2460
gactacggtc tggacggcag ctccatcccg gctttgctga aaaaactgga agagcacggc 2520
atgacccaac tgggcgaaaa tcatgacatt acgttggatg tcagccgccg tatatacgaa 2580
gccgcccgct aattgacaat taatcatcgg ctcgtataat gtgtggaatt gtgagcggat 2640
aacaatttca cccattgaaa ggactacaca atgactgacg ttgtcatcgt atccgccgcc 2700
cgcaccgcgg tcggcaagtt tggcggctcg ctggccaaga tcccggcacc ggaactgggt 2760
gccgtggtca tcaaggccgc gctggagcgc gccggcgtca agccggagca ggtgagcgaa 2820
gtcatcatgg gccaggtgct gaccgccggt tcgggccaga accccgcacg ccaggccgcg 2880
atcaaggccg gcctgccggc gatggtgccg gccatgacca tcaacaaggt gtgcggctcg 2940
ggcctgaagg ccgtgatgct ggccgccaac gcgatcatgg cgggcgacgc cgagatcgtg 3000
gtggccggcg gccaggaaaa catgagcgcc gccccgcacg tgctgccggg ctcgcgcgat 3060
ggtttccgca tgggcgatgc caagctggtc gacaccatga tcgtcgacgg cctgtgggac 3120
gtgtacaacc agtaccacat gggcatcacc gccgagaacg tggccaagga atacggcatc 3180
acacgcgagg cgcaggatga gttcgccgtc ggctcgcaga acaaggccga agccgcgcag 3240
aaggccggca agtttgacga agagatcgtc ccggtgctga tcccgcagcg caagggcgac 3300
ccggtggcct tcaagaccga cgagttcgtg cgccagggcg ccacgctgga cagcatgtcc 3360
ggcctcaagc ccgccttcga caaggccggc acggtgaccg cggccaacgc ctcgggcctg 3420
aacgacggcg ccgccgcggt ggtggtgatg tcggcggcca aggccaagga actgggcctg 3480
accccgctgg ccacgatcaa gagctatgcc aacgccggtg tcgatcccaa ggtgatgggc 3540
atgggcccgg tgccggcctc caagcgcgcc ctgtcgcgcg ccgagtggac cccgcaagac 3600
ctggacctga tggagatcaa cgaggccttt gccgcgcagg cgctggcggt gcaccagcag 3660
atgggctggg acacctccaa ggtcaatgtg aacggcggcg ccatcgccat cggccacccg 3720
atcggcgcgt cgggctgccg tatcctggtg acgctgctgc acgagatgaa gcgccgtgac 3780
gcgaagaagg gcctggcctc gctgtgcatc ggcggcggca tgggcgtggc gctggcagtc 3840
gagcgcaaat aacggcgacg ataacgaagc caatcaagga gtggacatga ctcagcgcat 3900
tgcgtatgtg accggcggca tgggtggtat cggaaccgcc atttgccagc ggctggccaa 3960
ggatggcttt cgtgtggtgg ccggttgcgg ccccaactcg ccgcgccgcg aaaagtggct 4020
ggagcagcag aaggccctgg gcttcgattt cattgcctcg gaaggcaatg tggctgactg 4080
ggactcgacc aagaccgcat tcgacaaggt caagtccgag gtcggcgagg ttgatgtgct 4140
gatcaacaac gccggtatca cccgcgacgt ggtgttccgc aagatgaccc gcgccgactg 4200
ggatgcggtg atcgacacca acctgacctc gctgttcaac gtcaccaagc aggtgatcga 4260
cggcatggcc gaccgtggct ggggccgcat cgtcaacatc tcgtcggtga acgggcagaa 4320
gggccagttc ggccagacca actactccac cgccaaggcc ggcctgcatg gcttcaccat 4380
ggcactggcg caggaagtgg cgaccaaggg cgtgaccgtc aacacggtct ctccgggcta 4440
tatcgccacc gacatggtca aggcgatccg ccaggacgtg ctcgacaaga tcgtcgcgac 4500
gatcccggtc aagcgcctgg gcctgccgga agagatcgcc tcgatctgcg cctggttgtc 4560
gtcggaggag tccggtttct cgaccggcgc cgacttctcg ctcaacggcg gcctgcatat 4620
gggctga 4627
<210> 10
<211> 4627
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
atgatcaagg acaccctggt ttcgattaca aaagacttaa agttgaaaac aaacgtagaa 60
aacgccaacc ttaaaaacta taaagatgac tcgtcttgct tcggggtgtt tgagaacgtg 120
gaaaatgcga tttcgaacgc agtccacgcc cagaagattt tatcgcttca ctacactaag 180
gagcagcgcg aaaagattat cacggagatt cgtaaagctg cacttgagaa caaagagatt 240
ttggcaacca tgatcttgga ggagactcat atggggcgtt atgaagataa aattttaaag 300
catgaacttg tcgctaaata cactccaggg actgaagact taacgaccac ggcatggagc 360
ggagataatg ggcttactgt tgttgaaatg agcccctacg gggtgattgg ggcaatcact 420
cccagcacaa atcctaccga gactgtgatt tgtaattcta ttggcatgat tgcggctggc 480
aatacggtgg tcttcaatgg acatccgggg gccaagaagt gtgttgcatt tgctgttgag 540
atgatcaaca aagccattat ttcatgtggt gggcccgaga atttggttac aaccattaag 600
aatccaacta tggactctct ggacgctatt attaaacacc cgtcgattaa acttttatgc 660
ggaaccggag gaccgggaat ggtgaaaacc cttctgaatt ccgggaaaaa ggcgatcggt 720
gcgggtgccg gcaacccacc tgtcattgtt gatgacacag cagacattga aaaggcgggc 780
aagagcatca tcgagggctg tagttttgat aacaacacgc cctgcattgc tgaaaaggaa 840
gttttcgtct tcgagaatgt tgcggacgac cttatttcca atatgcttaa gaacaacgcg 900
gtaatcatta acgaagacca agtatcaaag ttaatcgatt tggtcctgca gaagaacaat 960
gagactcaag agtatagcat taataaaaaa tgggttggga aggacgcaaa attgtttctt 1020
gatgagatcg atgtggaatc cccttcctct gtcaaatgca tcatttgcga agtatctgcg 1080
cgtcacccat tcgtcatgac agagctgatg atgcccattc tgcctattgt acgcgttaaa 1140
gatatcgacg aagctattga atatgcgaaa atcgccgagc agaaccgtaa gcactcagcg 1200
tatatttatt ccaaaaatat cgataactta aatcgttttg agcgcgaaat cgatacaact 1260
atcttcgtca agaacgccaa aagctttgct ggcgtgggct atgaagctga agggtttacc 1320
acgttcacca tcgcagggag caccggcgaa gggattacaa gtgcgcgcaa tttcactcgt 1380
caacgtcgct gcgtgttagc cggttaaaac tttaagaagg agatatacat gaacaacttt 1440
aatctgcaca ccccaacccg cattctgttt ggtaaaggcg caatcgctgg tttacgcgaa 1500
caaattcctc acgatgctcg cgtattgatt acctacggcg gcggcagcgt gaaaaaaacc 1560
ggcgttctcg atcaagttct ggatgccctg aaaggcatgg acgtgctgga atttggcggt 1620
attgagccaa acccggctta tgaaacgctg atgaacgccg tgaaactggt tcgcgaacag 1680
aaagtgactt tcctgctggc ggttggcggc ggttctgtac tggacggcac caaatttatc 1740
gccgcagcgg ctaactatcc ggaaaatatc gatccgtggc acattctgca aacgggcggt 1800
aaagagatta aaagcgccat cccgatgggc tgtgtgctga cgctgccagc aaccggttca 1860
gaatccaacg caggcgcggt gatctcccgt aaaaccacag gcgacaagca ggcgttccat 1920
tctgcccatg ttcagccggt atttgccgtg ctcgatccgg tttataccta caccctgccg 1980
ccgcgtcagg tggctaacgg cgtagtggac gcctttgtac acaccgtgga acagtatgtt 2040
accaaaccgg ttgatgccaa aattcaggac cgtttcgcag aaggcatttt gctgacgcta 2100
atcgaagatg gtccgaaagc cctgaaagag ccagaaaact acgatgtgcg cgccaacgtc 2160
atgtgggcgg cgactcaggc gctgaacggt ttgattggcg ctggcgtacc gcaggactgg 2220
gcaacgcata tgctgggcca cgaactgact gcgatgcacg gtctggatca cgcgcaaaca 2280
ctggctatcg tcctgcctgc actgtggaat gaaaaacgcg ataccaagcg cgctaagctg 2340
ctgcaatatg ctgaacgcgt ctggaacatc actgaaggtt ccgatgatga gcgtattgac 2400
gccgcgattg ccgcaacccg caatttcttt gagcaattag gcgtgccgac ccacctctcc 2460
gactacggtc tggacggcag ctccatcccg gctttgctga aaaaactgga agagcacggc 2520
atgacccaac tgggcgaaaa tcatgacatt acgttggatg tcagccgccg tatatacgaa 2580
gccgcccgct aattgacaat taatcatcgg ctcgtataat gtgtggaatt gtgagcggat 2640
aacaatttca cccattgaaa ggactacaca atgactgacg ttgtcatcgt atccgccgcc 2700
cgcaccgcgg tcggcaagtt tggcggctcg ctggccaaga tcccggcacc ggaactgggt 2760
gccgtggtca tcaaggccgc gctggagcgc gccggcgtca agccggagca ggtgagcgaa 2820
gtcatcatgg gccaggtgct gaccgccggt tcgggccaga accccgcacg ccaggccgcg 2880
atcaaggccg gcctgccggc gatggtgccg gccatgacca tcaacaaggt gtgcggctcg 2940
ggcctgaagg ccgtgatgct ggccgccaac gcgatcatgg cgggcgacgc cgagatcgtg 3000
gtggccggcg gccaggaaaa catgagcgcc gccccgcacg tgctgccggg ctcgcgcgat 3060
ggtttccgca tgggcgatgc caagctggtc gacaccatga tcgtcgacgg cctgtgggac 3120
gtgtacaacc agtaccacat gggcatcacc gccgagaacg tggccaagga atacggcatc 3180
acacgcgagg cgcaggatga gttcgccgtc ggctcgcaga acaaggccga agccgcgcag 3240
aaggccggca agtttgacga agagatcgtc ccggtgctga tcccgcagcg caagggcgac 3300
ccggtggcct tcaagaccga cgagttcgtg cgccagggcg ccacgctgga cagcatgtcc 3360
ggcctcaagc ccgccttcga caaggccggc acggtgaccg cggccaacgc ctcgggcctg 3420
aacgacggcg ccgccgcggt ggtggtgatg tcggcggcca aggccaagga actgggcctg 3480
accccgctgg ccacgatcaa gagctatgcc aacgccggtg tcgatcccaa ggtgatgggc 3540
atgggcccgg tgccggcctc caagcgcgcc ctgtcgcgcg ccgagtggac cccgcaagac 3600
ctggacctga tggagatcaa cgaggccttt gccgcgcagg cgctggcggt gcaccagcag 3660
atgggctggg acacctccaa ggtcaatgtg aacggcggcg ccatcgccat cggccacccg 3720
atcggcgcgt cgggctgccg tatcctggtg acgctgctgc acgagatgaa gcgccgtgac 3780
gcgaagaagg gcctggcctc gctgtgcatc ggcggcggca tgggcgtggc gctggcagtc 3840
gagcgcaaat aacggcgacg ataacgaagc caatcaagga gtggacatga ctcagcgcat 3900
tgcgtatgtg accggcggca tgggtggtat cggaaccgcc atttgccagc ggctggccaa 3960
ggatggcttt cgtgtggtgg ccggttgcgg ccccaactcg ccgcgccgcg aaaagtggct 4020
ggagcagcag aaggccctgg gcttcgattt cattgcctcg gaaggcaatg tggctgactg 4080
ggactcgacc aagaccgcat tcgacaaggt caagtccgag gtcggcgagg ttgatgtgct 4140
gatcaacaac gccggtatca cccgcgacgt ggtgttccgc aagatgaccc gcgccgactg 4200
ggatgcggtg atcgacacca acctgacctc gctgttcaac gtcaccaagc aggtgatcga 4260
cggcatggcc gaccgtggct ggggccgcat cgtcaacatc tcgtcggtga acgggcagaa 4320
gggccagttc ggccagacca actactccac cgccaaggcc ggcctgcatg gcttcaccat 4380
ggcactggcg caggaagtgg cgaccaaggg cgtgaccgtc aacacggtct ctccgggcta 4440
tatcgccacc gacatggtca aggcgatccg ccaggacgtg ctcgacaaga tcgtcgcgac 4500
gatcccggtc aagcgcctgg gcctgccgga agagatcgcc tcgatctgcg cctggttgtc 4560
gtcggaggag tccggtttct cgaccggcgc cgacttctcg ctcaacggcg gcctgcatat 4620
gggctga 4627
<210> 11
<211> 891
<212> PRT
<213> Escherichia coli (Escherichia coli)
<400> 11
Met Ala Val Thr Asn Val Ala Glu Leu Asn Ala Leu Val Glu Arg Val
1 5 10 15
Lys Lys Ala Gln Arg Glu Tyr Ala Ser Phe Thr Gln Glu Gln Val Asp
20 25 30
Lys Ile Phe Arg Ala Ala Ala Leu Ala Ala Ala Asp Ala Arg Ile Pro
35 40 45
Leu Ala Lys Met Ala Val Ala Glu Ser Gly Met Gly Ile Val Glu Asp
50 55 60
Lys Val Ile Lys Asn His Phe Ala Ser Glu Tyr Ile Tyr Asn Ala Tyr
65 70 75 80
Lys Asp Glu Lys Thr Cys Gly Val Leu Ser Glu Asp Asp Thr Phe Gly
85 90 95
Thr Ile Thr Ile Ala Glu Pro Ile Gly Ile Ile Cys Gly Ile Val Pro
100 105 110
Thr Thr Asn Pro Thr Ser Thr Ala Ile Phe Lys Ser Leu Ile Ser Leu
115 120 125
Lys Thr Arg Asn Ala Ile Ile Phe Ser Pro His Pro Arg Ala Lys Asp
130 135 140
Ala Thr Asn Lys Ala Ala Asp Ile Val Leu Gln Ala Ala Ile Ala Ala
145 150 155 160
Gly Ala Pro Lys Asp Leu Ile Gly Trp Ile Asp Gln Pro Ser Val Glu
165 170 175
Leu Ser Asn Ala Leu Met His His Pro Asp Ile Asn Leu Ile Leu Ala
180 185 190
Thr Gly Gly Pro Gly Met Val Lys Ala Ala Tyr Ser Ser Gly Lys Pro
195 200 205
Ala Ile Gly Val Gly Ala Gly Asn Thr Pro Val Val Ile Asp Glu Thr
210 215 220
Ala Asp Ile Lys Arg Ala Val Ala Ser Val Leu Met Ser Lys Thr Phe
225 230 235 240
Asp Asn Gly Val Ile Cys Ala Ser Glu Gln Ser Val Val Val Val Asp
245 250 255
Ser Val Tyr Asp Ala Val Arg Glu Arg Phe Ala Thr His Gly Gly Tyr
260 265 270
Leu Leu Gln Gly Lys Glu Leu Lys Ala Val Gln Asp Val Ile Leu Lys
275 280 285
Asn Gly Ala Leu Asn Ala Ala Ile Val Gly Gln Pro Ala Tyr Lys Ile
290 295 300
Ala Glu Leu Ala Gly Phe Ser Val Pro Glu Asn Thr Lys Ile Leu Ile
305 310 315 320
Gly Glu Val Thr Val Val Asp Glu Ser Glu Pro Phe Ala His Glu Lys
325 330 335
Leu Ser Pro Thr Leu Ala Met Tyr Arg Ala Lys Asp Phe Glu Asp Ala
340 345 350
Val Glu Lys Ala Glu Lys Leu Val Ala Met Gly Gly Ile Gly His Thr
355 360 365
Ser Cys Leu Tyr Thr Asp Gln Asp Asn Gln Pro Ala Arg Val Ser Tyr
370 375 380
Phe Gly Gln Lys Met Lys Thr Ala Arg Ile Leu Ile Asn Thr Pro Ala
385 390 395 400
Ser Gln Gly Gly Ile Gly Asp Leu Tyr Asn Phe Lys Leu Ala Pro Ser
405 410 415
Leu Thr Leu Gly Cys Gly Ser Trp Gly Gly Asn Ser Ile Ser Glu Asn
420 425 430
Val Gly Pro Lys His Leu Ile Asn Lys Lys Thr Val Ala Lys Arg Ala
435 440 445
Glu Asn Met Leu Trp His Lys Leu Pro Lys Ser Ile Tyr Phe Arg Arg
450 455 460
Gly Ser Leu Pro Ile Ala Leu Asp Glu Val Ile Thr Asp Gly His Lys
465 470 475 480
Arg Ala Leu Ile Val Thr Asp Arg Phe Leu Phe Asn Asn Gly Tyr Ala
485 490 495
Asp Gln Ile Thr Ser Val Leu Lys Ala Ala Gly Val Glu Thr Glu Val
500 505 510
Phe Phe Glu Val Glu Ala Asp Pro Thr Leu Ser Ile Val Arg Lys Gly
515 520 525
Ala Glu Leu Ala Asn Ser Phe Lys Pro Asp Val Ile Ile Ala Leu Gly
530 535 540
Gly Gly Ser Pro Met Asp Ala Ala Lys Ile Met Trp Val Met Tyr Glu
545 550 555 560
His Pro Glu Thr His Phe Glu Glu Leu Ala Leu Arg Phe Met Asp Ile
565 570 575
Arg Lys Arg Ile Tyr Lys Phe Pro Lys Met Gly Val Lys Ala Lys Met
580 585 590
Ile Ala Val Thr Thr Thr Ser Gly Thr Gly Ser Glu Val Thr Pro Phe
595 600 605
Ala Val Val Thr Asp Asp Ala Thr Gly Gln Lys Tyr Pro Leu Ala Asp
610 615 620
Tyr Ala Leu Thr Pro Asp Met Ala Ile Val Asp Ala Asn Leu Val Met
625 630 635 640
Asp Met Pro Lys Ser Leu Cys Ala Phe Gly Gly Leu Asp Ala Val Thr
645 650 655
His Ala Met Glu Ala Tyr Val Ser Val Leu Ala Ser Glu Phe Ser Asp
660 665 670
Gly Gln Ala Leu Gln Ala Leu Lys Leu Leu Lys Glu Tyr Leu Pro Ala
675 680 685
Ser Tyr His Glu Gly Ser Lys Asn Pro Val Ala Arg Glu Arg Val His
690 695 700
Ser Ala Ala Thr Ile Ala Gly Ile Ala Phe Ala Asn Ala Phe Leu Gly
705 710 715 720
Val Cys His Ser Met Ala His Lys Leu Gly Ser Gln Phe His Ile Pro
725 730 735
His Gly Leu Ala Asn Ala Leu Leu Ile Cys Asn Val Ile Arg Tyr Asn
740 745 750
Ala Asn Asp Asn Pro Thr Lys Gln Thr Ala Phe Ser Gln Tyr Asp Arg
755 760 765
Pro Gln Ala Arg Arg Arg Tyr Ala Glu Ile Ala Asp His Leu Gly Leu
770 775 780
Ser Ala Pro Gly Asp Arg Thr Ala Ala Lys Ile Glu Lys Leu Leu Ala
785 790 795 800
Trp Leu Glu Thr Leu Lys Ala Glu Leu Gly Ile Pro Lys Ser Ile Arg
805 810 815
Glu Ala Gly Val Gln Glu Ala Asp Phe Leu Ala Asn Val Asp Lys Leu
820 825 830
Ser Glu Asp Ala Phe Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Tyr
835 840 845
Pro Leu Ile Ser Glu Leu Lys Gln Ile Leu Leu Asp Thr Tyr Tyr Gly
850 855 860
Arg Asp Tyr Val Glu Gly Glu Thr Ala Ala Lys Lys Glu Ala Ala Pro
865 870 875 880
Ala Lys Ala Glu Lys Lys Ala Lys Lys Ser Ala
885 890
<210> 12
<211> 329
<212> PRT
<213> Escherichia coli (Escherichia coli)
<400> 12
Met Lys Leu Ala Val Tyr Ser Thr Lys Gln Tyr Asp Lys Lys Tyr Leu
1 5 10 15
Gln Gln Val Asn Glu Ser Phe Gly Phe Glu Leu Glu Phe Phe Asp Phe
20 25 30
Leu Leu Thr Glu Lys Thr Ala Lys Thr Ala Asn Gly Cys Glu Ala Val
35 40 45
Cys Ile Phe Val Asn Asp Asp Gly Ser Arg Pro Val Leu Glu Glu Leu
50 55 60
Lys Lys His Gly Val Lys Tyr Ile Ala Leu Arg Cys Ala Gly Phe Asn
65 70 75 80
Asn Val Asp Leu Asp Ala Ala Lys Glu Leu Gly Leu Lys Val Val Arg
85 90 95
Val Pro Ala Tyr Asp Pro Glu Ala Val Ala Glu His Ala Ile Gly Met
100 105 110
Met Met Thr Leu Asn Arg Arg Ile His Arg Ala Tyr Gln Arg Thr Arg
115 120 125
Asp Ala Asn Phe Ser Leu Glu Gly Leu Thr Gly Phe Thr Met Tyr Gly
130 135 140
Lys Thr Ala Gly Val Ile Gly Thr Gly Lys Ile Gly Val Ala Met Leu
145 150 155 160
Arg Ile Leu Lys Gly Phe Gly Met Arg Leu Leu Ala Phe Asp Pro Tyr
165 170 175
Pro Ser Ala Ala Ala Leu Glu Leu Gly Val Glu Tyr Val Asp Leu Pro
180 185 190
Thr Leu Phe Ser Glu Ser Asp Val Ile Ser Leu His Cys Pro Leu Thr
195 200 205
Pro Glu Asn Tyr His Leu Leu Asn Glu Ala Ala Phe Glu Gln Met Lys
210 215 220
Asn Gly Val Met Ile Val Asn Thr Ser Arg Gly Ala Leu Ile Asp Ser
225 230 235 240
Gln Ala Ala Ile Glu Ala Leu Lys Asn Gln Lys Ile Gly Ser Leu Gly
245 250 255
Met Asp Val Tyr Glu Asn Glu Arg Asp Leu Phe Phe Glu Asp Lys Ser
260 265 270
Asn Asp Val Ile Gln Asp Asp Val Phe Arg Arg Leu Ser Ala Cys His
275 280 285
Asn Val Leu Phe Thr Gly His Gln Ala Phe Leu Thr Ala Glu Ala Leu
290 295 300
Thr Ser Ile Ser Gln Thr Thr Leu Gln Asn Leu Ser Asn Leu Glu Lys
305 310 315 320
Gly Glu Thr Cys Pro Asn Glu Leu Val
325
<210> 13
<211> 714
<212> PRT
<213> Escherichia coli (Escherichia coli)
<400> 13
Met Ser Arg Ile Ile Met Leu Ile Pro Thr Gly Thr Ser Val Gly Leu
1 5 10 15
Thr Ser Val Ser Leu Gly Val Ile Arg Ala Met Glu Arg Lys Gly Val
20 25 30
Arg Leu Ser Val Phe Lys Pro Ile Ala Gln Pro Arg Thr Gly Gly Asp
35 40 45
Ala Pro Asp Gln Thr Thr Thr Ile Val Arg Ala Asn Ser Ser Thr Thr
50 55 60
Thr Ala Ala Glu Pro Leu Lys Met Ser Tyr Val Glu Gly Leu Leu Ser
65 70 75 80
Ser Asn Gln Lys Asp Val Leu Met Glu Glu Ile Val Ala Asn Tyr His
85 90 95
Ala Asn Thr Lys Asp Ala Glu Val Val Leu Val Glu Gly Leu Val Pro
100 105 110
Thr Arg Lys His Gln Phe Ala Gln Ser Leu Asn Tyr Glu Ile Ala Lys
115 120 125
Thr Leu Asn Ala Glu Ile Val Phe Val Met Ser Gln Gly Thr Asp Thr
130 135 140
Pro Glu Gln Leu Lys Glu Arg Ile Glu Leu Thr Arg Asn Ser Phe Gly
145 150 155 160
Gly Ala Lys Asn Thr Asn Ile Thr Gly Val Ile Val Asn Lys Leu Asn
165 170 175
Ala Pro Val Asp Glu Gln Gly Arg Thr Arg Pro Asp Leu Ser Glu Ile
180 185 190
Phe Asp Asp Ser Ser Lys Ala Lys Val Asn Asn Val Asp Pro Ala Lys
195 200 205
Leu Gln Glu Ser Ser Pro Leu Pro Val Leu Gly Ala Val Pro Trp Ser
210 215 220
Phe Asp Leu Ile Ala Thr Arg Ala Ile Asp Met Ala Arg His Leu Asn
225 230 235 240
Ala Thr Ile Ile Asn Glu Gly Asp Ile Asn Thr Arg Arg Val Lys Ser
245 250 255
Val Thr Phe Cys Ala Arg Ser Ile Pro His Met Leu Glu His Phe Arg
260 265 270
Ala Gly Ser Leu Leu Val Thr Ser Ala Asp Arg Pro Asp Val Leu Val
275 280 285
Ala Ala Cys Leu Ala Ala Met Asn Gly Val Glu Ile Gly Ala Leu Leu
290 295 300
Leu Thr Gly Gly Tyr Glu Met Asp Ala Arg Ile Ser Lys Leu Cys Glu
305 310 315 320
Arg Ala Phe Ala Thr Gly Leu Pro Val Phe Met Val Asn Thr Asn Thr
325 330 335
Trp Gln Thr Ser Leu Ser Leu Gln Ser Phe Asn Leu Glu Val Pro Val
340 345 350
Asp Asp His Glu Arg Ile Glu Lys Val Gln Glu Tyr Val Ala Asn Tyr
355 360 365
Ile Asn Ala Asp Trp Ile Glu Ser Leu Thr Ala Thr Ser Glu Arg Ser
370 375 380
Arg Arg Leu Ser Pro Pro Ala Phe Arg Tyr Gln Leu Thr Glu Leu Ala
385 390 395 400
Arg Lys Ala Gly Lys Arg Ile Val Leu Pro Glu Gly Asp Glu Pro Arg
405 410 415
Thr Val Lys Ala Ala Ala Ile Cys Ala Glu Arg Gly Ile Ala Thr Cys
420 425 430
Val Leu Leu Gly Asn Pro Ala Glu Ile Asn Arg Val Ala Ala Ser Gln
435 440 445
Gly Val Glu Leu Gly Ala Gly Ile Glu Ile Val Asp Pro Glu Val Val
450 455 460
Arg Glu Ser Tyr Val Gly Arg Leu Val Glu Leu Arg Lys Asn Lys Gly
465 470 475 480
Met Thr Glu Thr Val Ala Arg Glu Gln Leu Glu Asp Asn Val Val Leu
485 490 495
Gly Thr Leu Met Leu Glu Gln Asp Glu Val Asp Gly Leu Val Ser Gly
500 505 510
Ala Val His Thr Thr Ala Asn Thr Ile Arg Pro Pro Leu Gln Leu Ile
515 520 525
Lys Thr Ala Pro Gly Ser Ser Leu Val Ser Ser Val Phe Phe Met Leu
530 535 540
Leu Pro Glu Gln Val Tyr Val Tyr Gly Asp Cys Ala Ile Asn Pro Asp
545 550 555 560
Pro Thr Ala Glu Gln Leu Ala Glu Ile Ala Ile Gln Ser Ala Asp Ser
565 570 575
Ala Ala Ala Phe Gly Ile Glu Pro Arg Val Ala Met Leu Ser Tyr Ser
580 585 590
Thr Gly Thr Ser Gly Ala Gly Ser Asp Val Glu Lys Val Arg Glu Ala
595 600 605
Thr Arg Leu Ala Gln Glu Lys Arg Pro Asp Leu Met Ile Asp Gly Pro
610 615 620
Leu Gln Tyr Asp Ala Ala Val Met Ala Asp Val Ala Lys Ser Lys Ala
625 630 635 640
Pro Asn Ser Pro Val Ala Gly Arg Ala Thr Val Phe Ile Phe Pro Asp
645 650 655
Leu Asn Thr Gly Asn Thr Thr Tyr Lys Ala Val Gln Arg Ser Ala Asp
660 665 670
Leu Ile Ser Ile Gly Pro Met Leu Gln Gly Met Arg Lys Pro Val Asn
675 680 685
Asp Leu Ser Arg Gly Ala Leu Val Asp Asp Ile Val Tyr Thr Ile Ala
690 695 700
Leu Thr Ala Ile Gln Ser Ala Gln Gln Gln
705 710
<210> 14
<211> 400
<212> PRT
<213> Escherichia coli (Escherichia coli)
<400> 14
Met Ser Ser Lys Leu Val Leu Val Leu Asn Cys Gly Ser Ser Ser Leu
1 5 10 15
Lys Phe Ala Ile Ile Asp Ala Val Asn Gly Glu Glu Tyr Leu Ser Gly
20 25 30
Leu Ala Glu Cys Phe His Leu Pro Glu Ala Arg Ile Lys Trp Lys Met
35 40 45
Asp Gly Asn Lys Gln Glu Ala Ala Leu Gly Ala Gly Ala Ala His Ser
50 55 60
Glu Ala Leu Asn Phe Ile Val Asn Thr Ile Leu Ala Gln Lys Pro Glu
65 70 75 80
Leu Ser Ala Gln Leu Thr Ala Ile Gly His Arg Ile Val His Gly Gly
85 90 95
Glu Lys Tyr Thr Ser Ser Val Val Ile Asp Glu Ser Val Ile Gln Gly
100 105 110
Ile Lys Asp Ala Ala Ser Phe Ala Pro Leu His Asn Pro Ala His Leu
115 120 125
Ile Gly Ile Glu Glu Ala Leu Lys Ser Phe Pro Gln Leu Lys Asp Lys
130 135 140
Asn Val Ala Val Phe Asp Thr Ala Phe His Gln Thr Met Pro Glu Glu
145 150 155 160
Ser Tyr Leu Tyr Ala Leu Pro Tyr Asn Leu Tyr Lys Glu His Gly Ile
165 170 175
Arg Arg Tyr Gly Ala His Gly Thr Ser His Phe Tyr Val Thr Gln Glu
180 185 190
Ala Ala Lys Met Leu Asn Lys Pro Val Glu Glu Leu Asn Ile Ile Thr
195 200 205
Cys His Leu Gly Asn Gly Gly Ser Val Ser Ala Ile Arg Asn Gly Lys
210 215 220
Cys Val Asp Thr Ser Met Gly Leu Thr Pro Leu Glu Gly Leu Val Met
225 230 235 240
Gly Thr Arg Ser Gly Asp Ile Asp Pro Ala Ile Ile Phe His Leu His
245 250 255
Asp Thr Leu Gly Met Ser Val Asp Ala Ile Asn Lys Leu Leu Thr Lys
260 265 270
Glu Ser Gly Leu Leu Gly Leu Thr Glu Val Thr Ser Asp Cys Arg Tyr
275 280 285
Val Glu Asp Asn Tyr Ala Thr Lys Glu Asp Ala Lys Arg Ala Met Asp
290 295 300
Val Tyr Cys His Arg Leu Ala Lys Tyr Ile Gly Ala Tyr Thr Ala Leu
305 310 315 320
Met Asp Gly Arg Leu Asp Ala Val Val Phe Thr Gly Gly Ile Gly Glu
325 330 335
Asn Ala Ala Met Val Arg Glu Leu Ser Leu Gly Lys Leu Gly Val Leu
340 345 350
Gly Phe Glu Val Asp His Glu Arg Asn Leu Ala Ala Arg Phe Gly Lys
355 360 365
Ser Gly Phe Ile Asn Lys Glu Gly Thr Arg Pro Ala Val Val Ile Pro
370 375 380
Thr Asn Glu Glu Leu Val Ile Ala Gln Asp Ala Ser Arg Leu Thr Ala
385 390 395 400

Claims (7)

1. The recombinant escherichia coli for producing the optically pure 1, 3-butanediol is characterized in that the recombinant escherichia coli takes a recombinant bacterium for producing the optically pure 1, 3-butanediol as an initial strain, the initial strain is modified by a genetic engineering means, and the obtained intracellular NADPH supply-enhanced engineering bacterium;
(1) increasing intracellular supply of NADPH by enhancing genes associated with NADPH biosynthetic pathway in the starting strain; the gene related to the NADPH biosynthetic pathway is pntAB gene, and the nucleotide sequence is shown as SEQ ID NO. 7; and
(2) the supply of NADPH in cells is improved by weakening sthA gene in an original strain; said attenuation comprises knocking out or reducing expression of the gene; the nucleotide sequence of sthA gene is shown in SEQ ID NO. 8;
the recombinant strain for producing the optically pure 1, 3-butanediol is formed by introducing phaA, phaB, bld and yqhD genes into escherichia coli through plasmids or integrating the genes on an escherichia coli chromosome through a genetic engineering means;
wherein the phaA gene is derived fromCupriavidus necatorIt is a gene of a protein shown as SEQ ID NO. 3:
the phaB gene is derived fromCupriavidus necatorIt is a gene of a protein shown as SEQ ID NO. 4:
the bld gene is a coding gene of butyraldehyde dehydrogenase mutant and is derived fromClostridium saccharoperbutylacetonicumThe amino acid sequence of the coded protein is shown as SEQ ID NO. 2;
the yqhD gene is derived from a large intestine rodBacteria (A), (B)Escherichia coli) It is the gene of the protein shown in SEQ ID NO. 6.
2. The recombinant Escherichia coli of claim 1, wherein the recombinant bacterium for producing optically pure 1, 3-butanediol is constructed as follows: after the phaA and phaB genes are optimized by a codon, the phaA and phaB genes and bld and yqhD genes are constructed on an expression vector, the recombinant vector is used for transforming escherichia coli, and a positive transformant is screened;
wherein, the sequence of the codon optimized phaA-phaB operon is shown as SEQ ID NO. 5.
3. The recombinant Escherichia coli of claim 2, wherein the recombinant bacterium for producing optically pure 1, 3-butanediol is constructed as follows: constructing an bld-yqhD-phaAB tandem gene expression cassette on ptrc99a plasmid, transforming escherichia coli by using recombinant plasmid, and screening positive transformants;
wherein, the sequences of the bld-yqhD-phaAB tandem gene expression cassettes are shown in SEQ ID NO. 9 and 10.
4. An engineering bacterium for high yield of 1, 3-butanediol, characterized in that the engineering bacterium is an engineering bacterium which is obtained by further modifying an original strain by using the recombinant escherichia coli of any one of claims 1 to 3 as the original strain by using a genetic engineering means and enhancing the metabolic flux of intracellular acetyl CoA flowing to a 1, 3-butanediol synthesis pathway;
weakening at least one gene of adhE, ldhA, pta and ackA genes in the original strain to improve the metabolic flux of the intracellular acetyl CoA flowing to a 1, 3-butanediol synthetic pathway; said attenuation comprises knocking out or reducing expression of the gene;
the amino acid sequences of the proteins coded by the adhE, ldhA, pta and ackA genes are respectively shown in SEQ ID NO. 11-14.
5. The engineered bacterium of claim 4, wherein the adhE, ldhA, pta, and ackA genes in the original strain are attenuated to increase the metabolic flux of intracellular acetyl CoA to the 1, 3-butanediol synthesis pathway.
6. Use of the recombinant E.coli of any one of claims 1 to 3, or the engineered bacterium of claim 4 or 5, for the fermentative production of 1, 3-butanediol.
7. The butyraldehyde dehydrogenase mutant is characterized in that the amino acid sequence of the butyraldehyde dehydrogenase mutant is shown as SEQ ID NO. 2.
CN201910664906.6A 2019-07-23 2019-07-23 Recombinant bacterium for producing optically pure 1, 3-butanediol and application thereof Active CN112280722B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910664906.6A CN112280722B (en) 2019-07-23 2019-07-23 Recombinant bacterium for producing optically pure 1, 3-butanediol and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910664906.6A CN112280722B (en) 2019-07-23 2019-07-23 Recombinant bacterium for producing optically pure 1, 3-butanediol and application thereof

Publications (2)

Publication Number Publication Date
CN112280722A CN112280722A (en) 2021-01-29
CN112280722B true CN112280722B (en) 2022-03-08

Family

ID=74419149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910664906.6A Active CN112280722B (en) 2019-07-23 2019-07-23 Recombinant bacterium for producing optically pure 1, 3-butanediol and application thereof

Country Status (1)

Country Link
CN (1) CN112280722B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107147B (en) * 2021-11-10 2023-12-29 清华大学 Recombinant microorganism capable of producing optically pure 1, 3-butanediol by utilizing methanol and application thereof
CN114350583B (en) * 2021-12-17 2023-07-25 清华大学 Method for producing 1, 2-butanediol by fermentation, recombinant microorganism and application thereof
WO2023182679A1 (en) * 2022-03-22 2023-09-28 주식회사 엑티브온 Recombinant e.coli strain producing 1,3-butanediol from glucose and method for producing 1,3-butanediol using same
CN117701489A (en) * 2024-02-05 2024-03-15 北京绿色康成生物技术有限公司 Method for improving production of 1, 3-butanediol by escherichia coli

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625846A (en) * 2009-04-30 2012-08-01 基因组股份公司 Organisms for the production of 1,3-butanediol
CN102686719A (en) * 2009-10-30 2012-09-19 株式会社大赛璐 Transgenic microorganism provided with the ability to produce 1,3-butanediol,and usage therefor
EP3050970A1 (en) * 2015-01-28 2016-08-03 Metabolic Explorer Modified microorganism for optimized production of 1,4-butanediol
CN108048494A (en) * 2017-12-29 2018-05-18 中国科学院天津工业生物技术研究所 A kind of method using biological enzymatic synthesis 1,3- propylene glycol
WO2018183664A1 (en) * 2017-03-31 2018-10-04 Genomatica, Inc. Aldehyde dehydrogenase variants and methods of use
CN108884467A (en) * 2015-10-13 2018-11-23 朗泽科技新西兰有限公司 Genetic engineering bacterium comprising production capacity fermentation approach

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016026164B1 (en) * 2014-05-12 2023-10-31 Metabolic Explorer NEW MICROORGANISM AND METHOD FOR THE PRODUCTION OF 1,2-PROPANEDIOL BASED ON NADPH-DEPENDENT ACETOL REDUCTASE AND IMPROVED NADPH SUPPLY

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625846A (en) * 2009-04-30 2012-08-01 基因组股份公司 Organisms for the production of 1,3-butanediol
CN106119113A (en) * 2009-04-30 2016-11-16 基因组股份公司 For producing the biology of 1,3 butanediols
CN102686719A (en) * 2009-10-30 2012-09-19 株式会社大赛璐 Transgenic microorganism provided with the ability to produce 1,3-butanediol,and usage therefor
EP3050970A1 (en) * 2015-01-28 2016-08-03 Metabolic Explorer Modified microorganism for optimized production of 1,4-butanediol
CN108884467A (en) * 2015-10-13 2018-11-23 朗泽科技新西兰有限公司 Genetic engineering bacterium comprising production capacity fermentation approach
WO2018183664A1 (en) * 2017-03-31 2018-10-04 Genomatica, Inc. Aldehyde dehydrogenase variants and methods of use
CN108048494A (en) * 2017-12-29 2018-05-18 中国科学院天津工业生物技术研究所 A kind of method using biological enzymatic synthesis 1,3- propylene glycol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Production of C2-C4 diols from renewable bioresources:new metabolic pathways and metabolic engineering strategies;Ye Zhang等;《Biotechnology for Biofuels》;20171213(第10期);1-20 *

Also Published As

Publication number Publication date
CN112280722A (en) 2021-01-29

Similar Documents

Publication Publication Date Title
CN112280722B (en) Recombinant bacterium for producing optically pure 1, 3-butanediol and application thereof
JP6899793B2 (en) Organisms for the production of 1,3-butanediol
EP1124979B1 (en) Production of 3-hydroxypropionic acid in recombinant organisms
JP2012525156A (en) Microorganisms for the production of isopropanol, n-butanol, and isobutanol
CN112662637B (en) Formate dehydrogenase mutant and preparation method and application thereof
AU2012214255A1 (en) Cells and methods for producing isobutyric acid
JP7317255B1 (en) Genetically modified bacterium with high PHA production and method for constructing the same
CN108359628B (en) Gene engineering bacterium for producing polyhydroxyalkanoate by using acetic acid and propionic acid and construction method and application thereof
JP2020516316A (en) Recombinant bacterium producing 3-hydroxypropionic acid, method for producing the same, and application thereof
CN111748535B (en) Alanine dehydrogenase mutant and application thereof in fermentation production of L-alanine
CN112280723B (en) Recombinant bacterium for co-production of 1, 3-propylene glycol and 1, 3-butanediol and application thereof
CN108085288B (en) Method for producing 1, 3-propylene glycol by utilizing recombinant microorganism fermentation
US10760100B2 (en) Polypeptide having ferredoxin-NADP+ reductase activity, polynucleotide encoding the same and uses thereof
CN101265474A (en) Method for producing clostridium perfringens glycerin anhydrase incitant gene and 1,3-propanediol thereof
CN111363713A (en) Construction method and application of genetic engineering escherichia coli for improving content of lactic acid component in polyhydroxybutyrate lactate
CN114107147B (en) Recombinant microorganism capable of producing optically pure 1, 3-butanediol by utilizing methanol and application thereof
KR20150035657A (en) Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same
CN113151204B (en) Catechol 1, 2-dioxygenase mutant and its use
CN114196609A (en) Escherichia coli engineering bacterium for synthesizing pure polylactic acid from lactic acid and preparation method and application thereof
CN113174375A (en) ARO3 protein mutant and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant