CN112274119B - 一种基于神经网络的脉搏波模型预测方法 - Google Patents

一种基于神经网络的脉搏波模型预测方法 Download PDF

Info

Publication number
CN112274119B
CN112274119B CN202011116425.0A CN202011116425A CN112274119B CN 112274119 B CN112274119 B CN 112274119B CN 202011116425 A CN202011116425 A CN 202011116425A CN 112274119 B CN112274119 B CN 112274119B
Authority
CN
China
Prior art keywords
pulse wave
data
cardiovascular
neural network
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011116425.0A
Other languages
English (en)
Other versions
CN112274119A (zh
Inventor
苏子美
张海啸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202011116425.0A priority Critical patent/CN112274119B/zh
Publication of CN112274119A publication Critical patent/CN112274119A/zh
Application granted granted Critical
Publication of CN112274119B publication Critical patent/CN112274119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Cardiology (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种基于神经网络的脉搏波模型预测方法,属于图像识别领域。一种基于神经网络的脉搏波模型预测方法,通过被监测者身上佩戴的智能穿戴设备具有的多种传感器获取信息;被监测者的智能手机将接收到的脉搏波数据和姿态数据进行数据预处理,之后进行本地存储,之后通过UI显示的同时,在软件后台将预处理后的数据再进行打包,上传至服务器端;服务器端根据对应的网络接口,对接收到的脉搏波数据和姿态数据进行解包和恢复,再将接收到的数据存入服务器数据库,最后利用神经网络进行脉搏波预测模型的训练,通过预测脉搏波模型,实时预测脉搏波数据。本发明通过融合脉搏波和加速度信息,设计了一种泛化能力好,实用性强的脉搏波预测方法。

Description

一种基于神经网络的脉搏波模型预测方法
技术领域
本发明涉及一种基于神经网络的脉搏波模型预测方法。
背景技术
随着社会和经济的发展,人们的生活节奏逐渐加快,随之而来的是日益凸显的亚健康问题。亚健康是一种处于健康与疾病之间的临界状态,虽然没有达到任何疾病的标准,却会出现各方面的负面状态,如精神状态、抵抗力、免疫力下降等症状。如果不能得到及时的发现并加以控制或改善,极易进一步引发更为严重的身心疾病,而其中以心血管病势态最为严峻。
我国人民亚健康问题的加重,心血管病的势态也日趋严峻,面临着高患病率,高死亡率,高致残率的困扰,亟待一种脉搏波预测方法为医生诊断病情作为依据。
发明内容
本发明的目的是为了解决现有的亟待一种脉搏波预测方法的问题,而提出一种基于神经网络的脉搏波模型预测方法。
一种基于神经网络的脉搏波模型预测方法,所述方法通过以下步骤实现:
步骤一、通过被监测者身上佩戴的智能穿戴设备具有的多种传感器获取信息;具体为:
智能穿戴设备具有的微处理器控制脉搏传感器实时获取被监测者的脉搏波信息,控制加速度传感器实时获取被监测者的姿态信息,最后将脉搏波数据和姿态数据按设定的数据格式打包,通过蓝牙模块发送至被监测者的智能手机;
步骤二、被监测者的智能手机将接收到的脉搏波数据和姿态数据进行数据预处理,之后进行本地存储,之后通过UI显示的同时,在软件后台将预处理后的数据再进行打包,上传至服务器端;
步骤三、服务器端根据对应的网络接口,对接收到的脉搏波数据和姿态数据进行解包和恢复,再将接收到的数据存入服务器数据库,最后利用神经网络进行脉搏波预测模型的训练,通过预测脉搏波模型,实时预测脉搏波数据。
本发明的有益效果为:
本发明通过融合脉搏波和加速度信息,设计了一种泛化能力好,实用性强的脉搏波预测方法,能为心血管疾病突发风险实时预测。该方法独特之处在于一人一个模型,不是学习不同风险等级的脉搏波的区分度大的特征,而是通过构建每个人不同稳定状态的脉搏波模型,进而通过判断新脉搏波相对标准模型的突变程度,衡量心血管疾病的突发风险。本发明的预测方法快速且准确。
脉搏波测量值和本发明定义的心血管疲劳状态的绝对值本身都是没有意义的,本文通过相对计算赋予其意义,这样自适应的因人建模,可以尽可能地避免个体的差异导致模型判断的不准确。
在判断被监测者的心血管疾病突发风险值时,考虑到了被监测者心血管系统的状态。由于人体脉搏波特征参数与被监测者心血管系统的疲状态有着密切的联系,因此,将被监测者心血管系统的状态作为被监测者的心血管疾病突发风险值的判断前提,有助于提高获得的被监测者的心血管疾病突发风险值的准确性与有效性。
通过采用对被监测者进行多状态建模的方式,即建立被监测者心血管系统的不同状态下的多个心血管疾病突发风险预测模型,来尽可能地避免因生物个体差异而造成获得的心血管疾病突发风险值不真实的问题,能够进一步地提升心血管疾病突发风险值的有效性。
附图说明
图1为本发明的流程图;
图2为本发明涉及的平滑先验法校正基线漂移示意图;
图3为本发明涉及的脉搏波峰值点示意图;
图4为本发明涉及的三状态运动综合标准差。
具体实施方式
具体实施方式一:
本实施方式的一种基于神经网络的脉搏波模型预测方法,如图1所示,所述方法通过以下步骤实现:
步骤一、通过被监测者身上佩戴的智能穿戴设备具有的多种传感器获取信息;具体为:
智能穿戴设备具有的微处理器控制脉搏传感器实时获取被监测者的脉搏波信息,控制加速度传感器实时获取被监测者的姿态信息,最后将脉搏波数据和姿态数据按设定的数据格式打包,通过蓝牙模块发送至被监测者的智能手机;
步骤二、被监测者的智能手机将接收到的脉搏波数据和姿态数据进行数据预处理,之后进行本地存储,之后通过UI显示的同时,在软件后台将预处理后的数据再进行打包,上传至服务器端;
步骤三、服务器端根据对应的网络接口,对接收到的脉搏波数据和姿态数据进行解包和恢复,再将接收到的数据存入服务器数据库,最后利用神经网络进行脉搏波预测模型的训练,通过预测脉搏波模型,实时预测脉搏波数据,医护工作者可根据预测到的脉搏波数据进行心血管病突发风险等级的预测,并保存一直等待下一次对应接口的访问;
步骤四、被监测者移动端、医师移动端、PC端通过不断访问风险等级的网络接口获取脉搏波数据,一旦获取的数据超出设定的阈值,即通知医师移动端;医师移动端根据获取的脉搏波数据确定心血管风险信息,一旦风险等级过高,医师进行紧急处理;
步骤二所述的数据预处理的步骤包括,采用平滑先验法校正脉搏波基线漂移,以及进行波形分割的同时去除运动伪迹;另外,将加速度信息转化为心血管状态值;
由于出现运动伪迹导致脉搏波部分或完全失真如下图2,需要识别出该部分波形并舍去,才能不让错误的波形影响判断
本文的处理方法是在分割波形的过程中,对波形是否有误进行判断,若有误则除去,通过此法进行波形分割的同时去除运动伪迹,具体的如下:
首先、标记所有的波峰点和波谷点如下图3,再对成对的波峰波谷点做差,通过阈值判断是否为主波的峰谷对(即一个完整脉搏波的起始点和主波波峰点),从而通过起始点划分波形;
然后、由于脉搏波时刻在变化,故主波峰谷的值之差的阈值范围也应随时调整,且由于脉搏波本身即使剧烈变化,正常波形也不会出现运动伪迹,即断崖式突变,故通过对峰谷值在处理过程中进行指数平滑,预测下一个峰谷差,并以此确定阈值范围;
最后、通过阈值范围判断:
当峰谷值之差小于最小阈值时则不是主波的峰谷对;
当介于最大和最小阈值之间时,即为主波峰谷对,然后根据指数平滑更新阈值;
当大于最大阈值时则为波形断崖,应当去除;
故通过上述方法即可划分波形,且去除波形断崖。
注:不能只凭峰谷对判断波形,因为每个人脉搏波形不一样,一般健康的人多为两个波(主波和次波),但是也有很多心血管患者为馒头波,即只有一个波,而有的人重搏波有好几个,即有多个次波。
步骤三所述的通过预测评价模型,实时预测心血管数据类型的过程包括:
首先、进行模型的训练,具体为:
先将脉搏波进行DBSCAN聚类,再以聚类的标签作为目标值,分别训练脉搏波和心血管状态的分类模型;
然后、进行实际预测,具体为:
先通过心血管状态值确定状态,再通过脉搏波符合对应状态的概率衡量脉搏波的突变程度进而预测脉搏波模型。
步骤一所述的控制加速度传感器实时获取被监测者的姿态信息的过程中,
本文并不需要完全识别出人体的姿态,不需要专门对六轴加速度做定量的分析,而只需要对其进行定性的分析,判定心血管疲劳程度等级即可。
进行人体运动剧烈程度估计:
首先、对人体的运动剧烈程度进行定性分析,通过六轴加速度传感器获取人体的姿态信息,实验采取以坐,走,跑作为运动剧烈程度为低,中,高的表现形式,进行数据采集,通过六轴加速度的综合标准差进行分析如图4,确定人体的运动状态;
综合标准差即为六轴的加速度的综合,即六轴的标准差的平方和的平方根。
可以看出综合标准差确实可以作为人体的运动剧烈程度定性分析的标准。比如小于1000的为低剧烈程度,1000-10000的为中,10000以上的为高。
与具体实施方式一、二或四不同的是,本实施方式的一种基于神经网络的脉搏波模型预测方法,所述的将加速度信息转化为心血管状态值的过程,心血管状态值估计具体为:
通过人体的运动剧烈程度加上时间维度,可以简单定性心血管的状态。借助指数平滑的滞后性,通过对综合标准差作高阶(1000次)指数平滑作为估计心血管状态值的标准;
其中高阶指数次数取决于设定的六轴加速度采样频率,采样频率越高,需要的高阶指数次数越高。
具体实施方式二:
与具体实施方式一不同的是,本实施方式的一种基于神经网络的脉搏波模型预测方法,所述的利用神经网络进行脉搏波预测模型的训练,通过预测脉搏波模型,实时预测脉搏波数据的过程为,
(1)、按照上节的数据预处理之后,可以得到经过去噪,分割后的脉搏波数据和心血管疲劳值,这两种数值的绝对数值并没有任何意义,但是其相对数值可以进行衡量脉搏波的突变程度和心血管的状态值;
(2)、首先进行数据采集,要求在心血管未发病时,采集一段时间的脉搏波数据和姿态信息,要求这段时间内尽可能的执行经常会发生的行为,包括静坐,慢走,爬楼梯等等;
(3)、然后经过预处理,得到去噪,分割后的脉搏波数据和我们自身定义的心血管疲劳值,再对脉搏波进行自动聚类分析,聚类数为需要划分的心血管状态的数量,假设为3类;
(4)、最后通过神经网络训练两个分类器,分别以脉搏波数据和心血管状态值作为特征量,以自动聚类的结果作为目标值训练分类器。
具体实施方式三:
与具体实施方式一或二不同的是,本实施方式的一种基于神经网络的脉搏波模型预测方法,所述的神经网络的结构选为一维卷积神经网络。
在经典的卷积神经网络——AlexNet网络基础上进行修改,先转换为一维卷积神经网络,再根据脉搏波形特点以及实际运行结果调整每层网络的大小、步长等。
预测方法实施例:
预测方法模型训练
1.按照上节的数据预处理之后,可以得到经过去噪,分割后的脉搏波数据和心血管疲劳值,这两种数值的绝对数值并没有任何意义,但是其相对数值可以进行衡量脉搏波的突变程度和心血管的状态值。
2.首先进行数据采集,要求在心血管未发病时,采集一段时间的脉搏波数据和姿态信息,要求这段时间内尽可能的执行经常会发生的行为,包括静坐,慢走,爬楼梯等等。
3.然后经过预处理,得到去噪,分割后的脉搏波数据和我们自身定义的心血管疲劳值,再对脉搏波进行自动聚类分析,聚类数为需要划分的心血管状态的数量,假设为3类。
4.最后训练两个分类器,分别以脉搏波数据和心血管状态值作为特征量,以自动聚类的结果作为目标值训练分类器。
预测方法预测流程
1.首先将预处理得到的心血管状态值输入心血管状态分类器进行分类,得到对应的心血管状态。
2.接着将预处理后的脉搏波数据输入脉搏波分类模型,得出对应心血管状态类型确定对应的脉搏波分类的概率
3.最后通过与对应脉搏波的相似概率,获得脉搏波的突变程度,最终得到心血管病突发风险等级。

Claims (3)

1.一种基于神经网络的脉搏波模型预测方法,其特征在于:所述方法通过以下步骤实现:
步骤一、通过被监测者身上佩戴的智能穿戴设备具有的多种传感器获取信息;具体为:
智能穿戴设备具有的微处理器控制脉搏传感器实时获取被监测者的脉搏波信息,控制加速度传感器实时获取被监测者的姿态信息,最后将脉搏波数据和姿态数据按设定的数据格式打包,通过蓝牙模块发送至被监测者的智能手机;
步骤二、被监测者的智能手机将接收到的脉搏波数据和姿态数据进行数据预处理,之后进行本地存储,之后通过UI显示的同时,在软件后台将预处理后的数据再进行打包,上传至服务器端;
步骤三、服务器端根据对应的网络接口,对接收到的脉搏波数据和姿态数据进行解包和恢复,再将接收到的数据存入服务器数据库,最后利用神经网络进行脉搏波预测模型的训练,通过脉搏波预测模型,实时预测脉搏波数据;
步骤二所述的数据预处理的步骤包括,采用平滑先验法校正脉搏波基线漂移,以及进行波形分割的同时去除运动伪迹;另外,将加速度信息转化为心血管状态值;
步骤三所述的通过脉搏波预测模型,实时预测心血管数据类型的过程包括:
首先、进行模型的训练,具体为:
先将脉搏波进行DBSCAN聚类,再以聚类的标签作为目标值,分别训练脉搏波和心血管状态的分类模型;
然后、进行实际预测,具体为:
先通过心血管状态值确定状态,再通过脉搏波符合对应状态的概率衡量脉搏波的突变程度进而预测脉搏波模型;
步骤一所述的控制加速度传感器实时获取被监测者的姿态信息的过程中,
进行人体运动剧烈程度估计:
首先、对人体的运动剧烈程度进行定性分析,通过六轴加速度传感器获取人体的姿态信息,实验采取以坐,走,跑作为运动剧烈程度为低,中,高的表现形式,进行数据采集,通过六轴加速度的综合标准差进行分析,确定人体的运动状态;
综合标准差即为六轴的加速度的综合,即六轴的标准差的平方和的平方根;
所述的将加速度信息转化为心血管状态值的过程,心血管状态值估计具体为:
借助指数平滑的滞后性,通过对综合标准差作高阶指数平滑作为估计心血管状态值的标准;
其中高阶指数次数取决于设定的六轴加速度采样频率,采样频率越高,需要的高阶指数次数越高。
2.根据权利要求1所述的一种基于神经网络的脉搏波模型预测方法,其特征在于:所述的利用神经网络进行脉搏波预测模型的训练,通过预测脉搏波模型,实时预测脉搏波数据的过程为,
(1)、按照上节的数据预处理之后,得到经过去噪,分割后的脉搏波数据和心血管疲劳值,这两种数值的绝对数值并没有任何意义,但是其相对数值可以进行衡量脉搏波的突变程度和心血管的状态值;
(2)、首先进行数据采集,要求在心血管未发病时,采集一段时间的脉搏波数据和姿态信息,要求这段时间内执行经常会发生的行为,包括静坐,慢走,爬楼梯;
(3)、然后经过预处理,得到去噪,分割后的脉搏波数据和我们自身定义的心血管疲劳值,再对脉搏波进行自动聚类分析,聚类数为需要划分的心血管状态的数量;
(4)、最后通过神经网络训练两个分类器,分别以脉搏波数据和心血管状态值作为特征量,以自动聚类的结果作为目标值训练分类器。
3.根据权利要求1或2所述的一种基于神经网络的脉搏波模型预测方法,其特征在于:所述的神经网络的结构选为一维卷积神经网络。
CN202011116425.0A 2020-10-19 2020-10-19 一种基于神经网络的脉搏波模型预测方法 Active CN112274119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011116425.0A CN112274119B (zh) 2020-10-19 2020-10-19 一种基于神经网络的脉搏波模型预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011116425.0A CN112274119B (zh) 2020-10-19 2020-10-19 一种基于神经网络的脉搏波模型预测方法

Publications (2)

Publication Number Publication Date
CN112274119A CN112274119A (zh) 2021-01-29
CN112274119B true CN112274119B (zh) 2024-04-05

Family

ID=74496422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011116425.0A Active CN112274119B (zh) 2020-10-19 2020-10-19 一种基于神经网络的脉搏波模型预测方法

Country Status (1)

Country Link
CN (1) CN112274119B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131276A1 (ko) * 2016-01-29 2017-08-03 동서대학교 산학협력단 스마트폰 기반의 착용형 기기를 이용한 영유아 안전 모니터링 시스템
CN107334466A (zh) * 2017-08-08 2017-11-10 西安交通大学 一种可穿戴的慢性病智能监控及预警的装置与方法
CN107361753A (zh) * 2017-08-29 2017-11-21 哈尔滨理工大学 基于脉搏波形特征点的人体健康状态监护方法
CN107427236A (zh) * 2015-05-22 2017-12-01 谷歌公司 用于心血管监测的心血管传感器同步
CN108618765A (zh) * 2018-05-04 2018-10-09 哈尔滨理工大学 基于脉搏波和人体三维姿态的心脑血管疾病突发风险实时监测系统及方法
CN109620198A (zh) * 2019-02-21 2019-04-16 天津惊帆科技有限公司 心血管指数检测、模型训练方法及装置
CN110037668A (zh) * 2019-04-10 2019-07-23 常熟理工学院 脉搏信号时空域结合模型判断年龄、健康状态及恶性心律失常识别的系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086071A1 (ja) * 2015-11-17 2017-05-26 株式会社村田製作所 脈波伝播時間計測装置、及び、生体状態推定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107427236A (zh) * 2015-05-22 2017-12-01 谷歌公司 用于心血管监测的心血管传感器同步
WO2017131276A1 (ko) * 2016-01-29 2017-08-03 동서대학교 산학협력단 스마트폰 기반의 착용형 기기를 이용한 영유아 안전 모니터링 시스템
CN107334466A (zh) * 2017-08-08 2017-11-10 西安交通大学 一种可穿戴的慢性病智能监控及预警的装置与方法
CN107361753A (zh) * 2017-08-29 2017-11-21 哈尔滨理工大学 基于脉搏波形特征点的人体健康状态监护方法
CN108618765A (zh) * 2018-05-04 2018-10-09 哈尔滨理工大学 基于脉搏波和人体三维姿态的心脑血管疾病突发风险实时监测系统及方法
CN109620198A (zh) * 2019-02-21 2019-04-16 天津惊帆科技有限公司 心血管指数检测、模型训练方法及装置
CN110037668A (zh) * 2019-04-10 2019-07-23 常熟理工学院 脉搏信号时空域结合模型判断年龄、健康状态及恶性心律失常识别的系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于卡尔曼滤波的动态脉搏波处理和脉率提取;蒋伟平;蒋平;朱劲;王晓年;;计算机与现代化(02);第84-88页 *
脉搏波的频域特征提取与自动识别技术;苏子美等;纳米技术与精密工程;第8卷(第1期);第70-74页 *

Also Published As

Publication number Publication date
CN112274119A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
Trabelsi et al. An unsupervised approach for automatic activity recognition based on hidden Markov model regression
CN106529442B (zh) 一种行人识别方法和装置
CN109009017B (zh) 一种智能健康监测系统及其数据处理方法
CN110363090B (zh) 智能心脏疾病检测方法、装置及计算机可读存储介质
US20160128638A1 (en) System and method for detecting and quantifying deviations from physiological signals normality
CN110659677A (zh) 一种基于可移动传感器组合设备的人体跌倒检测方法
CN111081379B (zh) 一种疾病概率决策方法及其系统
CN114512239B (zh) 基于迁移学习的脑卒中风险预测方法及系统
US7409373B2 (en) Pattern analysis system and method
CN111860188A (zh) 一种基于时间和通道双注意力的人体姿态识别方法
CN109767836A (zh) 一种医学诊断人工智能系统、装置及其自我学习方法
US20240062582A1 (en) Method and Device for Dynamic Recognition of Emotion Based on Facial Muscle Movement Monitoring
CN111000569A (zh) 一种异常血糖智能认知的监护系统
CN116269355B (zh) 一种基于人物姿态识别的安全监测系统
CN110916672A (zh) 一种基于一维卷积神经网络的老年人日常活动监测方法
CN112274119B (zh) 一种基于神经网络的脉搏波模型预测方法
CN114550299A (zh) 基于视频的老年人日常生活活动能力评估系统和方法
CN116844080B (zh) 疲劳程度多模态融合检测方法、电子设备及存储介质
US11564634B2 (en) Determining health state of individuals
CN115147768B (zh) 一种跌倒风险评估方法及系统
CN117064379A (zh) 一种基于tcn-gru网络的跌倒检测方法
CN117174314A (zh) 一种个人信息采集设备的边缘数据处理系统
CN116747495A (zh) 一种动作计数方法、装置、终端设备及可读存储介质
CN116115239A (zh) 基于多模态数据融合的建筑工人尴尬工作姿势识别方法
CN114170588A (zh) 基于眼部特征的铁路调度员不良状态识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant