CN112270347A - 一种基于改进ssd的医疗废弃物分类检测方法 - Google Patents

一种基于改进ssd的医疗废弃物分类检测方法 Download PDF

Info

Publication number
CN112270347A
CN112270347A CN202011127578.5A CN202011127578A CN112270347A CN 112270347 A CN112270347 A CN 112270347A CN 202011127578 A CN202011127578 A CN 202011127578A CN 112270347 A CN112270347 A CN 112270347A
Authority
CN
China
Prior art keywords
layer
feature
improved ssd
layers
medical waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011127578.5A
Other languages
English (en)
Inventor
管声启
倪奕棋
卫艳芳
王俊强
常江
胡璐萍
王琪璇
张潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Wanzhida Technology Co ltd
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202011127578.5A priority Critical patent/CN112270347A/zh
Publication of CN112270347A publication Critical patent/CN112270347A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Abstract

本发明公开了一种基于改进SSD的医疗废弃物分类检测方法,包括:采集图像样本,对图像样本进行预处理;对预处理后的每张图像样本进行标注,建立图像数据集,并将图像数据集分为训练集、验证集、测试集;将SSD模型中的VGG‑16网络替换为MobileNetV3‑Large网络,去除平均池化层,并使用多尺度特征提取网络代替末端的1×1卷积层,将每个多特征倒残差层与其前、后一层或者多层倒残差层输出特征输入特征融合模块;将四个3×3卷积层的输出特征分别输入卷积注意力模块;建立目标损失函数,设置训练参数,将训练集输入改进SSD模型进行训练,得到改进SSD模型;利用验证集、测试集对改进SSD模型进行验证、测试,得到图像样本的分类检测结果。

Description

一种基于改进SSD的医疗废弃物分类检测方法
技术领域
本发明属于检测方法技术领域,涉及一种基于改进SSD的医疗废弃物分类检测方法。
背景技术
医疗废弃物种类繁多,对医疗废弃物进行精准的快速识别与定位也成为了智能医疗的关键技术之一。医疗废弃物回收过程中,利用机器人视觉传感技术对医疗废弃物进行分类识别与抓取,将有利于减少回收过程中的二次感染风险,从而提高医疗废弃物分拣的精度和效率。在计算机视觉领域,有诸多方法可以用于医疗废弃物的目标检测,传统的目标检测方法基于SIFT、HOG等特征,并采用了SVM、Adaboot等分类器进行分类。然而,医疗废弃物种类繁多,依靠传统的图像检测技术,检测效率较低。随着深度学习在图像分类领域的优异表现,卷积神经网络在计算机视觉的各领域开始得到了广泛使用。在目标检测领域中使用深度学习实现目标检测成为一个新的方向。现有的SSD目标检测算法相对于YOLO算法,检测精度有所提升,相对于Faster-RCNN算法,检测速度得到了提升。但是SSD目标检测算法在网络的浅层提取的特征图的表征能力不够强,对于小目标的检测不具备鲁棒性,容易出现误检和漏检。并且原有的SSD目标检测算法以VGG16为主干特征提取网络,需要训练的特征数量较大。
发明内容
本发明的目的是提供一种基于改进SSD的医疗废弃物分类检测方法,解决了现有技术中存在的小目标检测精度较低和模型参数量大的问题。
本发明所采用的技术方案是,一种基于改进SSD的医疗废弃物分类检测方法,包括以下步骤:
步骤1、采集图像样本,对图像样本进行预处理;
步骤2、对预处理后的每张图像样本进行标注,建立图像数据集,并将图像数据集分为训练集、验证集、测试集;
步骤3、构建改进SSD模型;
将SSD模型中的VGG-16网络替换为MobileNetV3-Large网络,去除MobileNetV3-Large网络中平均池化层,并使用多尺度特征提取网络代替MobileNetV3-Large网络末端的1×1卷积层,多尺度特征提取网络包括依次层叠的3×3卷积层Conv8、1×1卷积层Conv9_1、3×3卷积层Conv9_2、1×1卷积层Conv10_1、3×3卷积层Conv10_2、1×1卷积层Conv11_1、3×3卷积层Conv11_2;
将MobileNetV3-Large网络中每个多特征倒残差层与其前、后一层或者多层倒残差层输出特征输入特征融合模块,得到融合特征,将融合特征作为分类和回归网络的输入;
将多尺度特征提取网络中3×3卷积层Conv8、3×3卷积层Conv9_2、3×3卷积层Conv10_2、3×3卷积层Conv11_2的输出特征分别输入卷积注意力模块,输出特征图作为分类和回归网络的输入;
步骤4、建立改进SSD模型的目标损失函数,设置训练参数,将训练集输入改进SSD模型进行训练,得到改进SSD模型;
步骤5、利用验证集、测试集对改进SSD模型进行验证、测试,并通过模型评价指标对改进SSD模型进行评估,得到图像样本的分类检测结果。
本发明的特点还在于:
步骤1中预处理过程为:先对图像样本进行滤波处理,再采用二维伽马函数消除光照不均的影响。
步骤2中标注过程为:先对预处理后的每张图像样本进行名称、尺寸、类别、位置的标注,并生成对应XML文件,再将图像样本和对应XML文件存放在文件夹中。
特征融合模块的融合方法为:将多特征倒残差层前一层或多层倒残差层输出特征经过降维、卷积,得到与多特征倒残差层维度相同的第一特征图层,将多特征倒残差层后一层或多层倒残差层输出特征经过升维、双线性插值,得到与多特征倒残差层维度相同的第二特征图层,然后将多特征倒残差层与第一特征图层、第二特征图层进行逐元素相加,完成融合。
步骤3中多特征倒残差层包括倒残差层Bneck4、倒残差层Bneck6,对应融合特征为第一融合特征、第二融合特征。
在步骤4之前,对训练集中的图像样本进行数据增强处理。
改进SSD模型的目标损失函数为:
Figure BDA0002734119600000031
上式中,N为与真实框相匹配的默认边界框的个数,l为预测框,g为真实框,c为预测框类别为p的置信度。
本发明的有益效果是:
本发明一种基于改进SSD的医疗废弃物分类检测方法,将原VGG16主干特征提取网络替换成MobileNetV3,减少了网络的参数量;对MobileNetV3主干网络中的Bneck4和Bneck6分别进行特征融合得到融合特征,提高了对于小目标检测的精度;将四个卷积核大小为3×3的卷积层输出特征输入卷积注意力模块,用于提高网络的注意力,通过上述处理减少先验框数量,进而降低计算量,实现医疗废弃物的检测,提高了检测的准确率及效率。
附图说明
图1是本发明一种基于改进SSD的医疗废弃物分类检测方法中改进SSD的结构示意图;
图2是本发明一种基于改进SSD的医疗废弃物分类检测方法中倒残差层的流程图;
图3是本发明一种基于改进SSD的医疗废弃物分类检测方法中特征融合模块的流程图;
图4是本发明一种基于改进SSD的医疗废弃物分类检测方法中卷积注意力模块流程图;
图5是本发明一种基于改进SSD的医疗废弃物分类检测方法中通道注意力模块流程图;
图6是本发明一种基于改进SSD的医疗废弃物分类检测方法中空间注意力模块流程图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
一种基于改进SSD的医疗废弃物分类检测方法,包括以下步骤:
步骤1、采集图像样本,对图像样本进行预处理;
采集如下十种常见的医疗废弃物样本:药盒、口罩、针头、针筒、吊瓶、棉签、酒精棉、纱布、过期药品、医疗器具。并从不同的角度、光照强度、遮挡的情况下进行采集,每一种医疗废弃物图像采集了1000张,对于各类医疗废弃物混合的情况,又采集了5000张图像,总共采集了15000张图像样本。
先采用高斯滤波对图像样本进行滤波处理,消除图像样本中的高斯噪声;再采用二维伽马函数消除光照不均对图像的影响,校正后的图像可以加快模型的收敛和训练时间。二维伽马函数对光照不均的医疗废弃物图像进行校正,降低光照过强区域的亮度值,提高光照过低区域的亮度值,可以利用医疗废弃物图像的光照分量的分布特性自适应地调整二维伽马函数的参数,如下公式:
Figure BDA0002734119600000051
其中,O(x,y)为校正后的输出图像的亮度值,γ为用于亮度增强的指数值,其中包含了图像的光照分量特性,m为光照分量的亮度均值,I(x,y)为光照分量;F(x,y)为输入图像。
步骤2、对预处理后的每张图像样本进行标注,建立图像数据集,并将图像数据集分为训练集、验证集、测试集;
先利用图片标注工具labelimg对预处理后的每张图像样本进行名称、尺寸、类别、位置(包括xmin、ymin、xmax、ymax共四个坐标值)的标注,并生成对应XML文件,再将图像样本和对应XML文件存放在文件夹中,得到15000个文件夹;再按照7:2:1的比例对数据集进行划分,其中训练集(train)共计10500张,验证集(val)共计3000张,测试集(test)共计1500张。
步骤3、如图1所示,构建改进SSD模型;MobileNetV3是综合了MobileNetV1的深度可分离卷积、MobileNetV2的具有线性瓶颈的逆残差结构和基于SENet结构的轻量级注意力模型三种模型的思想。
步骤3.1、将SSD模型中的VGG-16网络替换为MobileNetV3-Large网络,去除MobileNetV3-Large网络中平均池化层,并使用多尺度特征提取网络代替MobileNetV3-Large网络末端的1×1卷积层,多尺度特征提取网络包括依次层叠的3×3卷积层Conv8、1×1卷积层Conv9_1、3×3卷积层Conv9_2、1×1卷积层Conv10_1、3×3卷积层Conv10_2、1×1卷积层Conv11_1、3×3卷积层Conv11_2;
改进SSD模型的特征提取过程为:输入图像大小为224×224×3,经过Conv1,特征大小变为112×112×16;经过包含1个bneck结构的Bneck2,特征大小变为112×112×16;经过包含2个bneck结构的Bneck3,特征大小变为56×56×24;经过包含3个bneck结构的Bneck4,特征大小变为28×28×40;经过包含4个bneck结构的Bneck5,特征大小变为14×14×80;经过包含2个bneck结构的Bneck6,特征大小变为14×14×112;经过包含3个bneck结构的Bneck7,特征大小变为7×7×160;经过Conv8,特征大小变为7×7×960;经过Conv9_1进行降维,特征大小变为7×7×256;经过Conv9_2,特征大小变为4×4×512;经过Conv10_1进行降维,特征大小变为4×4×128;经过Conv10_2,特征大小变为2×2×256;经过Conv11_1进行降维,特征大小变为2×2×64;经过Conv11_2,特征大小变为1×1×128。
如图2所示,倒残差层bneck的处理过程为:先将图像样本经过1×1卷积进行升维,然后经过3×3的深度可分离卷积(DW Conv)后,判断是否使用SE模块;如果使用SE模块,先进行平均池化下采样,然后经过两个1×1的卷积,并分别使用Relu6和h-swish激活函数,调整每个通道的权重,然后与特征图进行逐元素相乘,进行尺度融合;若不使用SE模块,直接通过1×1卷积融合成新的特征图,之后判断是否使用倒残差结构,当stride=1,使用倒残差结构,否则直接输出特征。
利用h-swish激活函数,减少运算量,提高性能,h-swish激活函数公式为:
Figure BDA0002734119600000071
步骤3.2、将MobileNetV3-Large网络中每个多特征倒残差层与其前、后一层或者多层倒残差层输出特征输入特征融合模块,得到融合特征,将融合特征作为分类和回归网络的输入;
多特征倒残差层包括倒残差层Bneck4、倒残差层Bneck6,对应融合特征为第一融合特征、第二融合特征。如图3所示,特征融合模块的融合方法为:将多特征倒残差层前一层或多层倒残差层输出特征经过降维、卷积,得到与多特征倒残差层维度相同的第一特征图层,将多特征倒残差层后一层或多层倒残差层输出特征经过升维、双线性插值,得到与多特征倒残差层维度相同的第二特征图层,然后将多特征倒残差层与第一特征图层、第二特征图层进行逐元素相加,完成融合。
步骤3.3、将多尺度特征提取网络中3×3卷积层Conv8、3×3卷积层Conv9_2、3×3卷积层Conv10_2、3×3卷积层Conv11_2的输出特征分别输入卷积注意力模块,输出特征图作为分类和回归网络的输入。
MobileNetV3主干网络中的Bneck4和Bneck6经过特征融合后输出的第一融合特征、第二融合特征与多尺度特征提取网络中的Conv8、Conv9_2、Conv10_2、Conv11_2经过CBAM模块输出的特征图用于预测,对应尺寸为(28,28),(14,14),(7,7),(4,4),(2,2),(1,1)。在进行模型训练时,会保存这六层的输出特征图,用作模型的分类和回归预测,获得了先验框,根据分类和回归预测结果,获得预测框。总共生成4722个先验框实现对应不同大小物体的检测,与生成8732个先验框的原SSD算法相比,计算量大幅度降低。
如图4所示,卷积注意力模块是一种结合了空间(Spatial)和通道(Channel)的注意力机制模块。先将Conv8层的输出特征作为输入经过一个通道注意力模块,然后将通道注意力模块输出与输入特征进行逐元素相乘,将加权后的结果作为空间注意力模块的输入,然后经过空间注意力模块,再进行加权操作,得到CBAM模块的输出结果。
如图5所示,通道注意力模块(Channel Attention Module)主要是将特征图在空间维度上进行压缩,得到一个一维矢量后再进行操作。对于输入的特征图,先分别经过最大池化(MaxPool)和平均池化(AvgPool),然后再输入共享全连接层(Shared MLP);将共享全连接层的输出特征进行逐元素加和操作,之后经过sigmoid激活函数得到最终的通道注意力特征。将所得到的通道注意力特征与最开始的输入特征进行逐元素相乘,就可以获得空间注意力模块所需的输入特征。
如图6所示,空间注意力模块(Spatial Attention Module)将通道注意力模块的输出特征作为输入,首先经过基于通道的最大池化和平均池化,然后将两个结果进行拼接(concat)操作,其次经过卷积操作进行降维,降维成1个通道,最后经过sigmoid激活函数生成通道注意力特征。将通道注意力模块的输出特征与输入特征逐元素相乘,最终得到了CBAM模块的输出。
步骤4、设置训练参数,建立改进SSD模型的目标损失函数,将训练集输入改进SSD模型进行训练,得到改进SSD模型;
步骤4.1、提取训练集的XML文件中位置信息,并保存至txt文件中,txt文件包括标签信息和位置信息,txt文件用于后续模型训练时众多先验框的生成、与真实框的匹配以及损失的计算;
步骤4.2、对训练集中的图像样本进行数据增强处理;
为了增强模型的泛化能力,在训练前,通常数据增强方法。具体的,对训练集中的四张图像样本同时进行归一化,再分别对每张图像样本进行翻转、旋转、裁剪、缩放及平移,然后将每张图像样本与对应的真实框进行组合;
步骤4.3、建立改进SSD模型的目标损失函数:
Figure BDA0002734119600000091
上式中,N为与真实框相匹配的默认边界框的个数,l为预测框,g为真实框,c为预测框类别为p的置信度。
步骤4.4,设置训练参数,如学习率、迭代次数、优化器等训练参数,将步骤4.2处理后的训练集输入模型进行训练,得到改进SSD模型。
步骤5、利用验证集、测试集对改进SSD模型进行验证、测试,并通过模型评价指标对改进SSD模型进行评估,得到图像样本的分类检测结果。
由于在训练过程中产生多个预测框,为了获得效果最优的预测框,在测试过程中,利用Soft-NMS(柔性非极大抑制),去除冗余的边框,同时考虑得分和重合程度,得到与目标真实框最为贴合的预测框。
模型评价指标由精确率和召回率两部分组成,精确率表示预测结果正确的数量,召回率表示找出的正确结果的数量,模型评价指标AP的计算公式如下:
Figure BDA0002734119600000101
其中,P(R)表示Precision-Recall(精确率-召回率)曲线;
AP即Average Precision,指的是平均精确度。AP的值越高则证明模型检测物体的准确率越高,即模型越好。mAP是多个类别AP的平均值,mAP越高,模型效果越好。
通过以上方式,本发明一种基于改进SSD的医疗废弃物分类检测方法,将原VGG16主干特征提取网络替换成MobileNetV3,减少了网络的参数量;对MobileNetV3主干网络中的Bneck4和Bneck6分别进行特征融合得到融合特征,提高了对于小目标检测的精度;将四个卷积核大小为3×3的卷积层输出特征输入卷积注意力模块,用于提高网络的注意力,通过上述处理减少先验框数量,进而降低计算量,实现医疗废弃物的检测,提高了检测的准确率及效率。

Claims (7)

1.一种基于改进SSD的医疗废弃物分类检测方法,其特征在于,包括以下步骤:
步骤1、采集图像样本,对所述图像样本进行预处理;
步骤2、对预处理后的每张所述图像样本进行标注,建立图像数据集,并将所述图像数据集分为训练集、验证集、测试集;
步骤3、构建改进SSD模型;
将SSD模型中的VGG-16网络替换为MobileNetV3-Large网络,去除所述MobileNetV3-Large网络中平均池化层,并使用多尺度特征提取网络代替所述MobileNetV3-Large网络末端的1×1卷积层,所述多尺度特征提取网络包括依次层叠的3×3卷积层Conv8、1×1卷积层Conv9_1、3×3卷积层Conv9_2、1×1卷积层Conv10_1、3×3卷积层Conv10_2、1×1卷积层Conv11_1、3×3卷积层Conv11_2;
将所述MobileNetV3-Large网络中每个多特征倒残差层与其前、后一层或者多层倒残差层输出特征输入特征融合模块,得到融合特征,将所述融合特征作为分类和回归网络的输入;
将所述多尺度特征提取网络中3×3卷积层Conv8、3×3卷积层Conv9_2、3×3卷积层Conv10_2、3×3卷积层Conv11_2的输出特征分别输入卷积注意力模块,输出特征图作为分类和回归网络的输入;
步骤4、建立所述改进SSD模型的目标损失函数,设置训练参数,将所述训练集输入改进SSD模型进行训练,得到改进SSD模型;
步骤5、利用所述验证集、测试集对所述改进SSD模型进行验证、测试,并通过模型评价指标对所述改进SSD模型进行评估,得到所述图像样本的分类检测结果。
2.根据权利要求1所述的一种基于改进SSD的医疗废弃物分类检测方法,其特征在于,步骤1中所述预处理过程为:先对图像样本进行滤波处理,再采用二维伽马函数消除光照不均的影响。
3.根据权利要求1所述的一种基于改进SSD的医疗废弃物分类检测方法,其特征在于,步骤2中所述标注过程为:先对预处理后的每张所述图像样本进行名称、尺寸、类别、位置的标注,并生成对应XML文件,再将所述图像样本和对应XML文件存放在文件夹中。
4.根据权利要求1所述的一种基于改进SSD的医疗废弃物分类检测方法,其特征在于,所述特征融合模块的融合方法为:将所述多特征倒残差层前一层或多层倒残差层输出特征经过降维、卷积,得到与多特征倒残差层维度相同的第一特征图层,将所述多特征倒残差层后一层或多层倒残差层输出特征经过升维、双线性插值,得到与多特征倒残差层维度相同的第二特征图层,然后将所述多特征倒残差层与第一特征图层、第二特征图层进行逐元素相加,完成融合。
5.根据权利要求1或4所述的一种基于改进SSD的医疗废弃物分类检测方法,其特征在于,步骤3中所述多特征倒残差层包括倒残差层Bneck4、倒残差层Bneck6,对应所述融合特征为第一融合特征、第二融合特征。
6.根据权利要求1所述的一种基于改进SSD的医疗废弃物分类检测方法,其特征在于,在步骤4之前,对所述训练集中的图像样本进行数据增强处理。
7.根据权利要求1所述的一种基于改进SSD的医疗废弃物分类检测方法,其特征在于,所述改进SSD模型的目标损失函数为:
Figure FDA0002734119590000031
上式中,N为与真实框相匹配的默认边界框的个数,l为预测框,g为真实框,c为预测框类别为p的置信度。
CN202011127578.5A 2020-10-20 2020-10-20 一种基于改进ssd的医疗废弃物分类检测方法 Pending CN112270347A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011127578.5A CN112270347A (zh) 2020-10-20 2020-10-20 一种基于改进ssd的医疗废弃物分类检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011127578.5A CN112270347A (zh) 2020-10-20 2020-10-20 一种基于改进ssd的医疗废弃物分类检测方法

Publications (1)

Publication Number Publication Date
CN112270347A true CN112270347A (zh) 2021-01-26

Family

ID=74342316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011127578.5A Pending CN112270347A (zh) 2020-10-20 2020-10-20 一种基于改进ssd的医疗废弃物分类检测方法

Country Status (1)

Country Link
CN (1) CN112270347A (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112686888A (zh) * 2021-01-27 2021-04-20 上海电气集团股份有限公司 混凝土轨枕裂纹的检测方法、系统、设备和介质
CN112967276A (zh) * 2021-03-31 2021-06-15 杭州海康威视数字技术股份有限公司 对象检测方法、装置、内窥镜系统、电子设备及存储介质
CN113313032A (zh) * 2021-05-31 2021-08-27 广东电网有限责任公司 一种输电线路外力破坏异常目标的检测算法及相关装置
CN113327227A (zh) * 2021-05-10 2021-08-31 桂林理工大学 一种基于MobilenetV3的小麦头快速检测方法
CN113496260A (zh) * 2021-07-06 2021-10-12 浙江大学 基于改进YOLOv3算法的粮库人员不规范作业检测法
CN113807291A (zh) * 2021-09-24 2021-12-17 南京莱斯电子设备有限公司 基于特征融合注意力网络的机场跑道异物检测识别方法
CN113920067A (zh) * 2021-09-24 2022-01-11 电子科技大学 基于卷积神经网络的ct图像目标检测方法、装置及设备
CN114005020A (zh) * 2021-11-05 2022-02-01 河北工业大学 一种基于M3-YOLOv5的指定移动目标检测方法
CN114092819A (zh) * 2022-01-19 2022-02-25 成都四方伟业软件股份有限公司 一种图像分类方法及装置
CN114266980A (zh) * 2022-03-03 2022-04-01 科大天工智能装备技术(天津)有限公司 一种城市井盖破损检测方法及系统
CN114445767A (zh) * 2021-11-08 2022-05-06 山东科技大学 一种传输带传输异物检测方法及系统
CN114596335A (zh) * 2022-03-01 2022-06-07 广东工业大学 一种无人艇目标检测追踪方法及系统
CN114612770A (zh) * 2022-03-21 2022-06-10 贵州大学 基于卷积神经网络的物品检测方法
TWI768841B (zh) * 2021-04-22 2022-06-21 亞東學校財團法人亞東科技大學 醫療廢棄物分類系統及方法
CN114821486A (zh) * 2022-06-29 2022-07-29 武汉纺织大学 一种电力作业场景下人员识别方法
CN115049926A (zh) * 2022-06-10 2022-09-13 安徽农业大学 一种基于深度学习的小麦倒伏损失评估方法和装置
CN115908964A (zh) * 2022-09-20 2023-04-04 国药(武汉)医学实验室有限公司 一种医学图像分类方法、系统、终端以及存储介质
CN116619420A (zh) * 2023-07-10 2023-08-22 国网江苏省电力有限公司南通供电分公司 一种线路辅助施工机器人
CN117830800A (zh) * 2024-03-04 2024-04-05 广州市仪美医用家具科技股份有限公司 一种基于yolo算法的衣物检测回收方法、系统、介质和设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110059558A (zh) * 2019-03-15 2019-07-26 江苏大学 一种基于改进ssd网络的果园障碍物实时检测方法
CN110263819A (zh) * 2019-05-28 2019-09-20 中国农业大学 一种用于贝类图像的目标检测方法及装置
CN110490252A (zh) * 2019-08-19 2019-11-22 西安工业大学 一种基于深度学习的室内人数检测方法及系统
CN110647810A (zh) * 2019-08-16 2020-01-03 西北大学 一种无线电信号图像识别模型构建、识别方法及装置
CN110647817A (zh) * 2019-08-27 2020-01-03 江南大学 基于MobileNet V3的实时人脸检测方法
CN111178236A (zh) * 2019-12-27 2020-05-19 清华大学苏州汽车研究院(吴江) 一种基于深度学习的车位检测方法
CN111339858A (zh) * 2020-02-17 2020-06-26 电子科技大学 一种基于神经网络的油气管道标志物识别方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110059558A (zh) * 2019-03-15 2019-07-26 江苏大学 一种基于改进ssd网络的果园障碍物实时检测方法
CN110263819A (zh) * 2019-05-28 2019-09-20 中国农业大学 一种用于贝类图像的目标检测方法及装置
CN110647810A (zh) * 2019-08-16 2020-01-03 西北大学 一种无线电信号图像识别模型构建、识别方法及装置
CN110490252A (zh) * 2019-08-19 2019-11-22 西安工业大学 一种基于深度学习的室内人数检测方法及系统
CN110647817A (zh) * 2019-08-27 2020-01-03 江南大学 基于MobileNet V3的实时人脸检测方法
CN111178236A (zh) * 2019-12-27 2020-05-19 清华大学苏州汽车研究院(吴江) 一种基于深度学习的车位检测方法
CN111339858A (zh) * 2020-02-17 2020-06-26 电子科技大学 一种基于神经网络的油气管道标志物识别方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DEBOJIT BISWAS 等: "An automatic traffic density estimation using Single Shot Detection (SSD) and MobileNet-SSD", 《PHYSICS AND CHEMISTRY OF THE EARTH》, pages 176 - 184 *
XUDONG ZHANG: "Automatic recognition of dairy cow mastitis from thermal images by a deep learning detector", 《COMPUTERS AND ELECTRONICS IN AGRICULTURE》, vol. 178, pages 1 - 11 *
倪奕棋 等: "基于改进的SSD深度学习算法的双目视觉纱筒识别定位", 《纺织高校基础科学学报》, vol. 34, no. 2, pages 59 - 66 *
朱德利 等: "基于MF-SSD卷积神经网络的玉米穗丝目标检测方法", 《华南农业大学学报》, vol. 41, no. 6, pages 109 - 118 *
李兰 等: "基于改进SSD模型的工件表面缺陷识别算法", 《计算机工程与科学》, vol. 42, no. 9, pages 1608 - 1615 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112686888A (zh) * 2021-01-27 2021-04-20 上海电气集团股份有限公司 混凝土轨枕裂纹的检测方法、系统、设备和介质
CN112967276A (zh) * 2021-03-31 2021-06-15 杭州海康威视数字技术股份有限公司 对象检测方法、装置、内窥镜系统、电子设备及存储介质
CN112967276B (zh) * 2021-03-31 2023-09-05 杭州海康威视数字技术股份有限公司 对象检测方法、装置、内窥镜系统、电子设备及存储介质
TWI768841B (zh) * 2021-04-22 2022-06-21 亞東學校財團法人亞東科技大學 醫療廢棄物分類系統及方法
CN113327227A (zh) * 2021-05-10 2021-08-31 桂林理工大学 一种基于MobilenetV3的小麦头快速检测方法
CN113313032A (zh) * 2021-05-31 2021-08-27 广东电网有限责任公司 一种输电线路外力破坏异常目标的检测算法及相关装置
CN113496260A (zh) * 2021-07-06 2021-10-12 浙江大学 基于改进YOLOv3算法的粮库人员不规范作业检测法
CN113496260B (zh) * 2021-07-06 2024-01-30 浙江大学 基于改进YOLOv3算法的粮库人员不规范作业检测法
CN113807291A (zh) * 2021-09-24 2021-12-17 南京莱斯电子设备有限公司 基于特征融合注意力网络的机场跑道异物检测识别方法
CN113920067A (zh) * 2021-09-24 2022-01-11 电子科技大学 基于卷积神经网络的ct图像目标检测方法、装置及设备
CN113807291B (zh) * 2021-09-24 2024-04-26 南京莱斯电子设备有限公司 基于特征融合注意力网络的机场跑道异物检测识别方法
CN114005020A (zh) * 2021-11-05 2022-02-01 河北工业大学 一种基于M3-YOLOv5的指定移动目标检测方法
CN114005020B (zh) * 2021-11-05 2024-04-26 河北工业大学 一种基于M3-YOLOv5的指定移动目标检测方法
CN114445767A (zh) * 2021-11-08 2022-05-06 山东科技大学 一种传输带传输异物检测方法及系统
CN114445767B (zh) * 2021-11-08 2024-02-20 山东科技大学 一种传输带传输异物检测方法及系统
CN114092819B (zh) * 2022-01-19 2022-04-19 成都四方伟业软件股份有限公司 一种图像分类方法及装置
CN114092819A (zh) * 2022-01-19 2022-02-25 成都四方伟业软件股份有限公司 一种图像分类方法及装置
CN114596335A (zh) * 2022-03-01 2022-06-07 广东工业大学 一种无人艇目标检测追踪方法及系统
CN114596335B (zh) * 2022-03-01 2023-10-31 广东工业大学 一种无人艇目标检测追踪方法及系统
CN114266980A (zh) * 2022-03-03 2022-04-01 科大天工智能装备技术(天津)有限公司 一种城市井盖破损检测方法及系统
CN114612770B (zh) * 2022-03-21 2024-02-20 贵州大学 基于卷积神经网络的物品检测方法
CN114612770A (zh) * 2022-03-21 2022-06-10 贵州大学 基于卷积神经网络的物品检测方法
CN115049926B (zh) * 2022-06-10 2023-10-24 安徽农业大学 一种基于深度学习的小麦倒伏损失评估方法和装置
CN115049926A (zh) * 2022-06-10 2022-09-13 安徽农业大学 一种基于深度学习的小麦倒伏损失评估方法和装置
CN114821486B (zh) * 2022-06-29 2022-10-11 武汉纺织大学 一种电力作业场景下人员识别方法
CN114821486A (zh) * 2022-06-29 2022-07-29 武汉纺织大学 一种电力作业场景下人员识别方法
CN115908964A (zh) * 2022-09-20 2023-04-04 国药(武汉)医学实验室有限公司 一种医学图像分类方法、系统、终端以及存储介质
CN115908964B (zh) * 2022-09-20 2023-12-12 国药(武汉)医学实验室有限公司 一种医学图像分类方法、系统、终端以及存储介质
CN116619420A (zh) * 2023-07-10 2023-08-22 国网江苏省电力有限公司南通供电分公司 一种线路辅助施工机器人
CN117830800A (zh) * 2024-03-04 2024-04-05 广州市仪美医用家具科技股份有限公司 一种基于yolo算法的衣物检测回收方法、系统、介质和设备

Similar Documents

Publication Publication Date Title
CN112270347A (zh) 一种基于改进ssd的医疗废弃物分类检测方法
CN110298266B (zh) 基于多尺度感受野特征融合的深度神经网络目标检测方法
Marzougui et al. A deep CNN approach for plant disease detection
CN111898432B (zh) 一种基于改进YOLOv3算法的行人检测系统及方法
CN111612008A (zh) 基于卷积网络的图像分割方法
CN109902609A (zh) 一种基于YOLOv3的交通标志检测与识别方法
CN112819748B (zh) 一种带钢表面缺陷识别模型的训练方法及装置
CN112801146A (zh) 一种目标检测方法及系统
CN114972208B (zh) 一种基于YOLOv4的轻量化小麦赤霉病检测方法
CN111767860A (zh) 一种通过卷积神经网络实现图像识别的方法及终端
CN109086765B (zh) 车牌识别方法、装置、介质、服务器和行车记录仪
CN114492634A (zh) 一种细粒度装备图片分类识别方法及系统
CN111582057B (zh) 一种基于局部感受野的人脸验证方法
CN116977844A (zh) 一种轻量级水下目标实时检测方法
CN112991281A (zh) 视觉检测方法、系统、电子设备及介质
CN117132910A (zh) 一种用于无人机的车辆检测方法、装置及存储介质
CN116977725A (zh) 一种基于改进卷积神经网络的异常行为识别方法及装置
CN116740516A (zh) 基于多尺度融合特征提取的目标检测方法及系统
CN116092179A (zh) 一种改进的yolox跌倒检测系统
CN115761667A (zh) 一种基于改进fcos算法的无人车辆搭载摄像头目标检测方法
CN112668668A (zh) 一种术后医学影像评估方法、装置、计算机设备及存储介质
CN110796112A (zh) 一种基于matlab的车内人脸识别系统
CN117765482B (zh) 基于深度学习的海岸带垃圾富集区的垃圾识别方法及系统
CN116416672B (zh) 一种基于GhostNetV2的轻量化人脸与人脸关键点检测方法
CN115881265B (zh) 电子病历智能病案质控方法、系统、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20240129

Address after: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Applicant after: Shenzhen Wanzhida Technology Co.,Ltd.

Country or region after: China

Address before: 710048 Shaanxi province Xi'an Beilin District Jinhua Road No. 19

Applicant before: XI'AN POLYTECHNIC University

Country or region before: China