CN112270081B - 一种基于并行Elman-NN的风力发电机故障检测方法 - Google Patents
一种基于并行Elman-NN的风力发电机故障检测方法 Download PDFInfo
- Publication number
- CN112270081B CN112270081B CN202011142534.XA CN202011142534A CN112270081B CN 112270081 B CN112270081 B CN 112270081B CN 202011142534 A CN202011142534 A CN 202011142534A CN 112270081 B CN112270081 B CN 112270081B
- Authority
- CN
- China
- Prior art keywords
- matrix
- elman
- column
- vector
- driven generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 31
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 239000013598 vector Substances 0.000 claims description 64
- 239000011159 matrix material Substances 0.000 claims description 49
- 238000005070 sampling Methods 0.000 claims description 19
- 230000003416 augmentation Effects 0.000 claims description 12
- 238000010606 normalization Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 230000001133 acceleration Effects 0.000 claims description 6
- 238000010248 power generation Methods 0.000 claims description 3
- 230000001960 triggered effect Effects 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 abstract description 4
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D17/00—Monitoring or testing of wind motors, e.g. diagnostics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pure & Applied Mathematics (AREA)
- Evolutionary Computation (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Computer Hardware Design (AREA)
- Databases & Information Systems (AREA)
- Sustainable Development (AREA)
- Geometry (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Wind Motors (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011142534.XA CN112270081B (zh) | 2020-10-13 | 2020-10-13 | 一种基于并行Elman-NN的风力发电机故障检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011142534.XA CN112270081B (zh) | 2020-10-13 | 2020-10-13 | 一种基于并行Elman-NN的风力发电机故障检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112270081A CN112270081A (zh) | 2021-01-26 |
CN112270081B true CN112270081B (zh) | 2023-09-19 |
Family
ID=74341847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011142534.XA Active CN112270081B (zh) | 2020-10-13 | 2020-10-13 | 一种基于并行Elman-NN的风力发电机故障检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112270081B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113033649B (zh) * | 2021-03-13 | 2023-10-03 | 宁波大学科学技术学院 | 一种基于实时判别型动态特征提取的pta过程异常监测方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108897286A (zh) * | 2018-06-11 | 2018-11-27 | 宁波大学 | 一种基于分散式非线性动态关系模型的故障检测方法 |
CN111198098A (zh) * | 2020-01-14 | 2020-05-26 | 重庆邮电大学 | 一种基于人工神经网络的风力发电机轴承故障预测方法 |
WO2020197533A1 (en) * | 2019-03-22 | 2020-10-01 | General Electric Company | Surrogate of a simulation engine for power system model calibration |
-
2020
- 2020-10-13 CN CN202011142534.XA patent/CN112270081B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108897286A (zh) * | 2018-06-11 | 2018-11-27 | 宁波大学 | 一种基于分散式非线性动态关系模型的故障检测方法 |
WO2020197533A1 (en) * | 2019-03-22 | 2020-10-01 | General Electric Company | Surrogate of a simulation engine for power system model calibration |
CN111198098A (zh) * | 2020-01-14 | 2020-05-26 | 重庆邮电大学 | 一种基于人工神经网络的风力发电机轴承故障预测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112270081A (zh) | 2021-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108334672B (zh) | 基于有效风速估计的变速风力发电机组最大风能捕获方法 | |
EP3791060B1 (en) | Wind turbine control method | |
CN112613554B (zh) | 一种风力发电机变桨系统故障预测方法和系统 | |
Asghar et al. | Estimation of wind turbine power coefficient by adaptive neuro-fuzzy methodology | |
Chen et al. | Wind turbine SCADA alarm pattern recognition | |
CN102662323B (zh) | 风力发电变桨距执行机构的自适应滑模控制方法及系统 | |
EP3842635B1 (en) | Operating a wind turbine with sensors implemented by a trained machine learning model | |
CN112270081B (zh) | 一种基于并行Elman-NN的风力发电机故障检测方法 | |
CN115977874B (zh) | 基于激光测风雷达的风电机组偏航自适应校准方法及系统 | |
CN113987870B (zh) | 一种风电机组主传动系统状态评估方法及终端设备 | |
Chen et al. | Effective wind speed estimation study of the wind turbine based on deep learning | |
CN110009135A (zh) | 一种基于宽度学习的风电功率预测方法 | |
CN112994101A (zh) | 基于神经网络的风电场发电功率后评估及监测方法 | |
CN114528648A (zh) | 确定风力涡轮机转子平面内风速的方法 | |
CN112232427B (zh) | 一种基于分布式回归模型的风力发电机故障检测方法 | |
Pang et al. | Multi kernel fusion convolutional neural network for wind turbine fault diagnosis | |
EP4166782A1 (en) | Wind turbine model predictive control (mpc) with thrust and/or power correction | |
Karami et al. | Real-time wind direction estimation using machine learning on operational wind farm data | |
CN112267978B (zh) | 一种基于分散式esn模型的风力发电机故障检测方法 | |
CN113673786A (zh) | 基于rbf和lstm的风力发电机有效风速估计系统及方法 | |
Zhao et al. | Data-driven fault detection framework for offshore wind-hydrogen systems | |
Bouzem et al. | Probabilistic and Reliability Analysis of an Intelligent Power Control for a Doubly Fed Induction Generator-Based Wind Turbine System | |
Liu et al. | A prognostics approach based on feature fusion and deep BiLSTM neural network for aero-engine | |
CN113946608B (zh) | 一种基于在线rbf神经网络的风力发电机组运行状态监测方法 | |
Dou et al. | Fault detection for wind turbines via long short-term memory network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240129 Address after: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee after: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd. Country or region after: China Address before: 315211 Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang Patentee before: Ningbo University Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240603 Address after: No. 1-2410, Tianwang Business Complex Building, east of Fangcao Road and south of Linhuang Street, Songshan District, Chifeng City, Inner Mongolia Autonomous Region, 024000 Patentee after: Inner Mongolia Zhuofeng Technology Group Co.,Ltd. Country or region after: China Address before: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee before: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd. Country or region before: China |