CN112268616B - 一种基于肖特基接触光栅化结构的n×m太赫兹探测器阵列成像系统 - Google Patents

一种基于肖特基接触光栅化结构的n×m太赫兹探测器阵列成像系统 Download PDF

Info

Publication number
CN112268616B
CN112268616B CN202010917421.6A CN202010917421A CN112268616B CN 112268616 B CN112268616 B CN 112268616B CN 202010917421 A CN202010917421 A CN 202010917421A CN 112268616 B CN112268616 B CN 112268616B
Authority
CN
China
Prior art keywords
detector
schottky contact
terahertz
grating structure
sbd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010917421.6A
Other languages
English (en)
Other versions
CN112268616A (zh
Inventor
马建国
周绍华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202010917421.6A priority Critical patent/CN112268616B/zh
Publication of CN112268616A publication Critical patent/CN112268616A/zh
Priority to US17/203,290 priority patent/US11523069B2/en
Application granted granted Critical
Publication of CN112268616B publication Critical patent/CN112268616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J5/22Electrical features thereof
    • G01J5/24Use of specially adapted circuits, e.g. bridge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本发明公开了一种基于肖特基接触光栅化结构的N×M太赫兹探测器阵列成像系统,将光栅化引入到肖特基二极管中,使得光栅化的肖特基接触与太赫兹波产生共振,增强等离子体谐振效应,可进一步提高阵列单元的探测灵敏度。而且,无须使用天线,可有效避免片上天线损耗大、增益效率低、通过DRC设计规则验证难度大等问题;芯片面积大大减小,极大地降低了生产成本。最后,在有太赫兹源的前提下,设计过程中通过调整阵列探测器单元的光栅化结构参数,该探测器阵列可实现单色阵列成像或多色阵列成像,为低成本、高性能太赫兹相机和太赫兹成像仪的实现提供了一种新的解决方案。

Description

一种基于肖特基接触光栅化结构的N×M太赫兹探测器阵列成 像系统
技术领域
本发明涉及太赫兹探测器的技术领域,尤其涉及到一种基于肖特基接触光栅化结构的N×M太赫兹探测器阵列成像系统。
背景技术
太赫兹波是电磁波谱上介于微波与红外光之间的电磁波,其频率在0.1~10THz左右,波长对应3mm~30um。太赫兹技术是目前信息科学技术研究的前沿与热点领域之一,近几年来,受到世界各国研究机构的广泛关注。美、日、欧等发达国家先后将太赫兹技术评定为“改变未来世界的十大技术”和“国家支柱技术十大重点战略目标”,投入巨资来夯实在太赫兹领域的国际地位。如美国国家基金会(NSF)、国防高级研究计划署(DARPA)、国家航空航天局(NASA)、能源部(DOE)、欧洲研究委员会(ERC)、IBM、波音公司和空客等政府与大型跨国企业都在太赫兹技术领域持续投入。我国在2005年香山会议后,太赫兹技术被政府列为重点领域和优先发展主题。
目前,太赫兹探测与成像技术研究的重点在于提高辐射源和探测器的性能。肖特基二极管具有速度快、良好的非线性效应、能够在常温下工作和容易集成等优点,所以常被用作太赫兹探测器中的混频器和检波二极管。传统的基于肖特基二极管的太赫兹探测器都采用天线来接收太赫兹波,而天线在太赫兹频段的增益低且面积大,导致太赫兹探测器的性能差和成本高,严重地阻碍了太赫兹探测与成像技术的发展。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于肖特基接触光栅化结构的N×M太赫兹探测器阵列成像系统,旨在实现低成本、高性能的太赫兹探测与成像。
为实现上述目的,本发明所提供的技术方案为:
一种基于肖特基接触光栅化结构的N×M太赫兹探测器阵列成像系统,包括由N×M个探测器单元纵横排列所组成的探测器阵列、N个行选开关、M个列选开关、探测器和读出电路测试开关以及读出电路;
所述每个探测器单元包括具有肖特基接触光栅化结构的SBD、偏置电压Vb1、偏置电阻Rb1、隔直电容C1、NMOSFET;
其中,所述具有肖特基接触光栅化结构的SBD的阳极分别与偏置电阻Rb1的一端和隔直电容C1的一端连接,其阴极接地;
所述偏置电阻Rb1的另一端与偏置电压Vb1连接,用于为具有肖特基接触光栅化结构的SBD供电;
所述隔直电容C1的另一端与开关S1的一端,而开关S1的另一端与NMOSFET的源极连接;
所述每个探测器单元中NMOSFET的栅极均与所在列的列选开关连接;
所述每个探测器单元中NMOSFET的漏极均与所在行的行选开关连接;
所述探测器和读出电路测试开关连接在N个行选开关和读出电路之间。
进一步地,所述具有肖特基接触光栅化结构的SBD为阳极转化为光栅化结构的SBD,具有形成类光栅化的沟道。
进一步地,所述具有肖特基接触光栅化结构的SBD的肖特基接触光栅化结构参数包括光栅的宽度、长度、区域面积、周期和图案形式,通过该些参数来实现任意频点的单频探测或者是一个探测器单元支持多个不同频点探测。
进一步地,所述具有肖特基接触光栅化结构的SBD为浅沟道隔离型SBD或多晶硅栅隔离型SBD。
进一步地,所述读出电路包括低噪声斩波放大器和高分辨率模数转换器;所述低噪声斩波放大器连接于N个行选开关和高分辨率模数转换器之间,将接收到的太赫兹信号进行放大并利用斩波电路技术来减少放大器自身的offset和1/f噪声;所述高分辨率模数转换器将放大后的太赫兹信号进行数字化,以便进行后端信号处理。
进一步地,所述探测器和读出电路测试开关包括探测器测试开关S1和读出电路测试开关S2;所述探测器测试开关S1和读出电路测试开关S2分别连接于所述N个行选开关和读出电路之间。
与现有技术相比,本方案原理及优点如下:
1.将光栅化引入到肖特基二极管中,使得光栅化的肖特基接触与太赫兹波产生共振,增强等离子体谐振效应,可进一步提高阵列单元的探测灵敏度。
2.无须使用天线,可有效避免片上天线损耗大、增益效率低、通过DRC设计规则验证难度大等问题;芯片面积大大减小,极大地降低了生产成本。
3.在有太赫兹源的前提下,设计过程中通过调整阵列探测器单元的光栅化结构参数,该探测器阵列可实现单色阵列成像或多色阵列成像,为低成本、高性能太赫兹相机和太赫兹成像仪的实现提供了一种新的解决方案。
4.引入探测器和读出电路测试开关,可在电路出现故障时分别对每一个探测器单元和读出电路进行测试,以便准确确定具体故障原因和位置。
5.提出光栅化栅极的思想并与肖特基二极管(SBD)结合,通过周期性的SBD结构,在沟道中形成类光栅化的沟道,实现衬底中Plasmon与栅极Plasmonic间的共振增强;采用光栅化栅极的方法可降低空间中微弱的太赫兹信号与栅上金属结构激发出来的Plasmonic微弱和在传播过程中的扩散和损耗等问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的服务作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种基于肖特基接触光栅化结构的N×M太赫兹探测器阵列成像系统的结构示意图。
具体实施方式
下面结合具体实施例对本发明作进一步说明:
如图1所示,一种基于肖特基接触光栅化结构的N×M太赫兹探测器阵列成像系统,包括由N×M个探测器单元(D11、D12、D13、…、DNM)纵横排列所组成的探测器阵列、N个行选开关(Row1、Row2、Row3、…、RowN)、M个列选开关(Column1、Column2、Column3、…、ColumnM)、探测器和读出电路测试开关以及读出电路;每个探测器单元包括具有肖特基接触光栅化结构的SBD、偏置电压Vb1、偏置电阻Rb1、隔直电容C1、NMOSFET;
其中,具有肖特基接触光栅化结构的SBD的阳极分别与偏置电阻Rb1的一端和隔直电容C1的一端连接,其阴极接地;偏置电阻Rb1的另一端与偏置电压Vb1连接,用于为具有肖特基接触光栅化结构的SBD供电;隔直电容C1的另一端与开关S1的一端,而开关S1的另一端与NMOSFET的源极连接;每个探测器单元中NMOSFET的栅极均与所在列的列选开关连接;每个探测器单元中NMOSFET的漏极均与所在行的行选开关连接;探测器和读出电路测试开关连接在N个行选开关和读出电路之间。
具体地,本实施例采用的具有肖特基接触光栅化结构的SBD为浅沟道隔离型(Shallow Trench Separated,STS)SBD或多晶硅栅隔离型(Polysilicon-Gate separated,PGS)SBD。该浅沟道隔离型SBD或多晶硅栅隔离型SBD均为阳极转化为光栅化结构的SBD,具有形成类光栅化的沟道,其肖特基接触光栅化结构参数包括光栅的宽度、长度、区域面积、周期和图案形式,使得有太赫兹源的前提下,可根据实际需求调整光栅化结构参数,实现任意频点的单频探测或者是一个探测器单元支持多个不同频点探测。
具体地,上述的读出电路包括低噪声斩波放大器和高分辨率模数转换器;其中,低噪声斩波放大器连接于N个行选开关和高分辨率模数转换器之间,将接收到的太赫兹信号进行放大并利用斩波电路技术来减少放大器自身的offset和1/f噪声;所述高分辨率模数转换器将放大后的太赫兹信号进行数字化,以便进行后端信号处理。
探测器和读出电路测试开关包括探测器测试开关S1和读出电路测试开关S2;所述探测器测试开关S1和读出电路测试开关S2分别连接于所述N个行选开关和读出电路之间。主要是方便在电路故障过程中分别对每个探测器单元(D11、D12、D13……DNM)和读出电路进行测试,以便确定具体故障原因和位置。
本实施例中,探测器阵列成像系统的具体工作过程如下:
当阵列的行选开关和列选开关闭合(如行选开关Row2和列选开关Column2闭合)、探测器测试开关S1断开、读出电路测试开关S2断开时,探测器阵列接收到的太赫兹信号经过低噪声斩波放大器放大后,进入高分辨率模数转换器进行数字化处理,然后从Dout处输出;
当阵列的行选开关和列选开关闭合(如行选开关Row1和列选开关Column1闭合)、探测器测试开关S1闭合、读出电路测试开关S2断开时,进行探测器单元性能测试,如果可以接收到太赫兹信号说明探测器单元D11工作正常,反之探测器单元D11工作故障;
当阵列的行选开关和列选开关断开(如行选开关Row1和列选开关Column1断开)、探测器单元测试开关S1断开、读出电路测试开关S2闭合时,进行读出电路性能测试,如果Dout处正常输出经过高分辨率模数转换器数字化处理的信号说明读出电路工作正常,反之读出电路工作故障。
本实施例所述的N×M太赫兹探测器阵列成像系统,可通过调节肖特基接触的光栅化结构参数(光栅的宽度、长度、区域面积、周期和图案形式)来实现任意频点的单频探测或者是一个阵列单元支持多个不同频点探测;以及,通过将光栅化引入到肖特基二极管中,使得光栅化的肖特基接触与太赫兹波产生共振,增强等离子体谐振效应,可进一步提高探测灵敏度;还有的是,设计过程中通过调整阵列探测器单元的光栅化结构参数,该探测器阵列可实现单色阵列成像或多色阵列成像,为低成本、高性能太赫兹相机和太赫兹成像仪的实现提供了一种新的解决方案。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (3)

1.一种基于肖特基接触光栅化结构的N×M太赫兹探测器阵列成像系统,其特征在于,包括由N×M个探测器单元纵横排列所组成的探测器阵列、N个行选开关、M个列选开关、探测器和读出电路测试开关以及读出电路;
所述每个探测器单元包括具有肖特基接触光栅化结构的SBD、偏置电压Vb1、偏置电阻Rb1、隔直电容C1、NMOSFET;
其中,所述具有肖特基接触光栅化结构的SBD的阳极分别与偏置电阻Rb1的一端和隔直电容C1的一端连接,其阴极接地;
所述偏置电阻Rb1的另一端与偏置电压Vb1连接,用于为具有肖特基接触光栅化结构的SBD供电;
所述隔直电容C1的另一端与开关S1的一端,而开关S1的另一端与NMOSFET的源极连接;
所述每个探测器单元中NMOSFET的栅极均与所在列的列选开关连接;
所述每个探测器单元中NMOSFET的漏极均与所在行的行选开关连接;
所述探测器和读出电路测试开关连接在N个行选开关和读出电路之间;
所述具有肖特基接触光栅化结构的SBD为阳极转化为光栅化结构的SBD,具有形成类光栅化的沟道;
所述具有肖特基接触光栅化结构的SBD的肖特基接触光栅化结构参数包括光栅的宽度、长度、区域面积、周期和图案形式,通过该些参数来实现任意频点的单频探测或者是一个探测器单元支持多个不同频点探测,
其中探测器和读出电路测试开关包括探测器测试开关S1和读出电路测试开关S2;所述探测器测试开关S1和读出电路测试开关S2分别连接于所述N个行选开关和读出电路之间,用于在电路故障过程中分别对每个探测器单元和读出电路进行测试,以便确定具体故障原因和位置。
2.根据权利要求1所述的一种基于肖特基接触光栅化结构的N×M太赫兹探测器阵列成像系统,其特征在于,所述具有肖特基接触光栅化结构的SBD为浅沟道隔离型SBD或多晶硅栅隔离型SBD。
3.根据权利要求1所述的一种基于肖特基接触光栅化结构的N×M太赫兹探测器阵列成像系统,其特征在于,所述读出电路包括低噪声斩波放大器和高分辨率模数转换器;所述低噪声斩波放大器连接于N个行选开关和高分辨率模数转换器之间,将接收到的太赫兹信号进行放大并利用斩波电路技术来减少放大器自身的offset和1/f噪声;所述高分辨率模数转换器将放大后的太赫兹信号进行数字化,以便进行后端信号处理。
CN202010917421.6A 2020-09-03 2020-09-03 一种基于肖特基接触光栅化结构的n×m太赫兹探测器阵列成像系统 Active CN112268616B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010917421.6A CN112268616B (zh) 2020-09-03 2020-09-03 一种基于肖特基接触光栅化结构的n×m太赫兹探测器阵列成像系统
US17/203,290 US11523069B2 (en) 2020-09-03 2021-03-16 NxM terahertz detector array imaging system based on a schottky contact rasterization structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010917421.6A CN112268616B (zh) 2020-09-03 2020-09-03 一种基于肖特基接触光栅化结构的n×m太赫兹探测器阵列成像系统

Publications (2)

Publication Number Publication Date
CN112268616A CN112268616A (zh) 2021-01-26
CN112268616B true CN112268616B (zh) 2024-04-05

Family

ID=74349790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010917421.6A Active CN112268616B (zh) 2020-09-03 2020-09-03 一种基于肖特基接触光栅化结构的n×m太赫兹探测器阵列成像系统

Country Status (2)

Country Link
US (1) US11523069B2 (zh)
CN (1) CN112268616B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229511B (zh) * 2020-09-03 2023-04-07 广东工业大学 一种基于肖特基接触光栅化结构的太赫兹探测器
CN114784128B (zh) * 2022-03-25 2024-04-02 国科大杭州高等研究院 一种基于蝶形天线结构的拓扑增强型碲化锑太赫兹光电探测器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420225B1 (en) * 2005-11-30 2008-09-02 Sandia Corporation Direct detector for terahertz radiation
CN204130553U (zh) * 2014-09-09 2015-01-28 华中科技大学 基于超材料的肖特基型太赫兹多谱信号探测器
CN110381271A (zh) * 2019-06-05 2019-10-25 广东工业大学 N×m基于超材料的mosfet栅极光栅化阵列探测器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109378354A (zh) * 2018-09-19 2019-02-22 天津大学 一种硅基光栅化栅极太赫兹探测器
CN109541712B (zh) * 2018-11-30 2020-07-28 天津大学 基于周期性光栅化栅极金属栅mosfet太赫兹探测器
JP7301667B2 (ja) * 2019-08-07 2023-07-03 キヤノン株式会社 検出装置および検出システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420225B1 (en) * 2005-11-30 2008-09-02 Sandia Corporation Direct detector for terahertz radiation
CN204130553U (zh) * 2014-09-09 2015-01-28 华中科技大学 基于超材料的肖特基型太赫兹多谱信号探测器
CN110381271A (zh) * 2019-06-05 2019-10-25 广东工业大学 N×m基于超材料的mosfet栅极光栅化阵列探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
表面等离激元热载流子光电探测器研究进展;邱开放 等;《趋势与展望》;20200331;第3节 *

Also Published As

Publication number Publication date
US11523069B2 (en) 2022-12-06
CN112268616A (zh) 2021-01-26
US20220070390A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
CN112268616B (zh) 一种基于肖特基接触光栅化结构的n×m太赫兹探测器阵列成像系统
Nakajima et al. High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode
CN101452032A (zh) 一种检测太赫兹信号的超导氮化铌热电子接收检测装置
LU101368B1 (en) NxM metamaterial-based MOSFET gate-rasterized array detector
Kazemi et al. Ultra sensitive ErAs/InAlGaAs direct detectors for millimeter wave and THz imaging applications
CN112229511B (zh) 一种基于肖特基接触光栅化结构的太赫兹探测器
US7979101B2 (en) Electromagnetic wave detection element and electromagnetic wave detection device using the same
CN112284532B (zh) 基于n×m多频太赫兹天线阵列的sbd探测器
CN112284526B (zh) 一种基于多频天线结构的n×m太赫兹探测器阵列成像系统
Gerecht et al. A passive heterodyne hot electron bolometer imager operating at 850 GHz
CN109541712B (zh) 基于周期性光栅化栅极金属栅mosfet太赫兹探测器
CN112230297B (zh) 基于n×m多频天线阵列和sbd阵列的探测器
Meuris et al. Caliste-SO, a CdTe based spectrometer for bright solar event observations in hard X-rays
CN110390127A (zh) N×m基于dra的nmosfet太赫兹阵列探测器和天线设计方法
CN112229512A (zh) 基于n×m肖特基二极管阵列的太赫兹探测器
CN109579989A (zh) 基于非周期光栅化栅漏极mosfet太赫兹探测器
Zhang et al. 32× 32 NbN SNSPD array based on thermally coupled row-column multiplexing architecture
Lei-Jun et al. A Novel CMOS Multi-band THz Detector with Embedded Ring Antenna
CN109855729B (zh) 基于非周期光栅化栅极金属栅mosfet太赫兹探测器
Rieh et al. THz detectors and related topics
Ortolani et al. Imaging the coupling of terahertz radiation to a high electron mobility transistor in the near-field
Liu et al. Design, Fabrication and Characterization of a Submillimeter-Wave Niobium HEB Mixer Imaging Array Based on the “Reverse-Microscope” Concept
Otto et al. Finline-integrated cold electron bolometer
Danani et al. Design of Stray Radiation Sensor for ITER ECE Diagnostic
Leung et al. Improved performance of a superconductive optical detector with planar antennas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant